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Abstract

The square G? of a graph G is the graph defined on V(G) such that two vertices
w and v are adjacent in G? if the distance between u and v in G is at most 2. Let
X(H) and x,(H) be the chromatic number and the list chromatic number of H,
respectively. A graph H is called chromatic-choosable if x;(H) = x(H). It is an
interesting problem to find graphs that are chromatic-choosable.

Motivated by the List Total Coloring Conjecture, Kostochka and Woodall (2001)
proposed the List Square Coloring Conjecture which states that G? is chromatic-
choosable for every graph G. Recently, Kim and Park showed that the List Square
Coloring Conjecture does not hold in general by finding a family of graphs whose
squares are complete multipartite graphs and are not chromatic choosable. It is a
well-known fact that the List Total Coloring Conjecture is true if the List Square
Coloring Conjecture holds for special class of bipartite graphs. Hence a natural
question is whether G2 is chromatic-choosable or not for every bipartite graph G.

In this paper, we give a bipartite graph G such that x,(G?) # x(G?). Moreover,
we show that the value y,(G?) — x(G?) can be arbitrarily large.

Keywords: Square of graph, chromatic-choosable, list chromatic number

1 Introduction

A proper k-coloring ¢ : V(G) — {1,2,...,k} of a graph G is an assignment of colors to
the vertices of GG so that any two adjacent vertices receive distinct colors. The chromatic
number x(G) of G is the least k such that there exists a proper k-coloring of G.
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A list assignment on G is a function L that assigns each vertex v a set L(v) which is a
list of available colors at v. A graph G is said to be k-choosable if for any list assignment
L such that |L(v)| > k for every vertex v, there exists a proper coloring ¢ such that
¢(v) € L(v) for every v € V(G). The least k such that G is k-choosable is called the list
chromatic number x,(G) of G. Clearly x,(G) = x(G) for every graph G.

A graph G is called chromatic-choosable if x,(G) = x(G). It is an interesting problem
to determine which graphs are chromatic-choosable. There are several famous conjectures
that some classes of graphs are chromatic-choosable including the List Coloring Conjecture
(see [5] for detail).

The line graph L(G) of a graph G is the graph such that V(L(G)) = E(G) and two
vertices x and y are adjacent in L(G) if and only if z and y are adjacent edges in G.
The List Coloring Conjecture which asserts that x,(L(G)) = x(L(G)) for every graph G,
where L(G) is the line graph of G.

Borodin, Kostochka and Woodall [2] proposed the List Total Coloring Conjecture
which asserts that x,(7(G)) = x(T(G)) for every graph G, where T(G) is the total
graph of G. Motivated by the List Total Coloring Conjecture, Kostochka and Woodall [8]
proposed the List Square Coloring Conjecture which states that G? is chromatic-choosable
for every graph G. It was noted in [8] that the List Total Coloring Conjecture is true
if the List Square Coloring Conjecture is true. The List Square Coloring Conjecture
has attracted a lot of attention and been cited in many papers related with coloring
problems. Recently, Kim and Park [3] disproved the List Square Coloring Conjecture by
finding a family of graphs whose squares are complete multipartite graphs with partite
sets of unbounded size. Later, two different types of counterexamples to the List Square
Coloring Conjecture have been known in [4, 7].

If H is the graph obtained by placing a vertex in the middle of every edge of a graph G,
then H? = T(G), where T(G) is the total graph of G. Hence if the List Square Coloring
Conjecture is true for a special class of bipartite graphs, then the List Total Coloring
Conjecture is true. (see [8] for detail.)

On the other hand, all of the counterexamples in [3, 4, 7] to the List Square Coloring
Conjecture are not bipartite graphs. Hence a natural interesting question is whether
G? is chromatic-choosable when G is a bipartite graph. This question was raised by an
anonymous referee and appeared in [3]. In this paper, we will give a bipartite graph G
such that x,(G?) # x(G?). Moreover, we show that the gap between x,(G?) and x(G?)
can be arbitrarily large for bipartite graphs G.

2 Construction

Let [n] denote {1,2,...,n}. A Latin square of order n is an n X n array such that every
cell contains an element of [n] and every element of [n] occurs exactly once in each row
and each column. For a Latin square L of order n, the element on the ¢th row and the
jth column is denoted by L(i,7). Two Latin squares L; and Ly are orthogonal if for
any (i,7) € [n] x [n], there exists unique (k,¢) € [n] x [n] such that L,(k,¢) = i and
LQ(k ) E) =7
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From now on, we fix a prime number n with n > 3. For i € [n — 1], we define a Latin
square L; of order n by

Li(j,k)=j+i(k—1) (modmn), for (j,k)€ [n]x[n] (1)

Then it is easily checked (and well-known) that L; is a Latin square of order n and
{Ly, La,...,L,_1} is a family of mutually orthogonal Latin squares of order n (see page
252 in [9]). In Figure 1, Ly and L, are orthogonal Latin squares defined in (1) for n = 3.

Now we will construct a bipartite graph G such that G? is not chromatic-choosable.
First, we will describe briefly how to construct such bipartite graph G, and then will give
a formal description in Construction 2.1.

The procedure of the construction of G

Step 1: For each prime number n > 3, we construct a graph H, with 2n? vertices as
follows. For k € [n], let Py be the set of n elements such that

Py = {vgp1, V2, Uknts
and for ¢ € [n — 1], let @; be the set of n elements such that
Qi = {wii,wia, ..., Wi},
and let S be the set of n elements such that
S = {s1,82, ..., Sn}

Let {Li,Lo,...,L,_1} be the family of mutually orthogonal Latin squares of order n
obtained by (1). Graph H,, is defined as follows:

V(H,) = (Ui B U (U?:_sz‘) US>
E(H,) = U U {wi jVk L) k€ [n]} U U {sjvp; : k € [n]}

i€[n—1] j€[n] J€[n]

Let T; = {v1;,v2,, ..., } for each j € [n]. Note that for each vertex w; ;, Ny, (w; ;) =
{vr,L.#) + k € [n]}, and H, is the graph obtained by removing the edges in (J;c(, {zy :

1]2[3 1132
Li=[2]3]1 Lyo=[2]1][3
3112 3121

Figure 1: Latin squares L; and Ly of order 3 defined in (1).
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Figure 2: Graph H, when n = 3 in Step 1. The bold edges induce the graph obtained by

removing the edges in (J,c5{zy : @,y € T}} from graph Gs in [3].

x,y € T;} from the graph G, in [3] and adding vertices of S and the edges of ;¢ {zs; :
x € T;}. (Figure 2 is the case when n = 3.)

Given a graph H and a vertex v in H, duplicating v means adding a new vertex vg
and making it adjacent to all the neighbors of v in H, but v and vy are not adjacent. (See
Figure 3 for an illustration.)

Step 2: Duplicate each vertex of Up_, Py exactly (n — 1) times. For each vertex vy,
denote the (n — 1) copies of v ; by vz’j, v , U ;» and denote the original vertex vy, ;

kg -
by v, ;.
Let Tjm = {0} s b s - - 0L, } for each m € [n].
Step 3: Fori e [n—1], let R = {u;1,ui2,....,uin} be a set of new vertices. For each

vertex u; ;, make wu; ; adjacent to all vertices in Ui} 1,(;1)- Note that the neighborhood
of u; ; follows the same pattern of the neighborhood of w; ;. For example, if Ny, (w; ;) =
{Vk,L.k) o F € [n]}, then Ng(u;;) = Up_Tk,1,,k)- Now, call the resulting graph G.

v v Vo
w1 wWo w3 w1 w2 w3

Figure 3: The graph on the right is obtained by duplicating the vertex v of the graph on
the left.
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Ng(wi,1) = U?=1{Ui,1vvé,2avé,3}a Ng(wz2,1) = U?:l{vll,lavé,&véz}

Ng(wi,2) = U?=1{Ui,2vvé,3avé,1}a Ng(wz,2) = U?:l{vll,%vé,lavéﬁ}

Ng (w1 3) = U?:ﬁ”i,m”é,p”é,z}a Ng(wz,3) = U?:l{vll,Savé,Zavé,l}

)

)

T, UTy3UT3

NG(Uz,l)

T11UTy 2 UTs 3,

NG(Ul,l)
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1UT3,

)
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Figure 4: Graph G when n = 3.

NG(SQ) = U?

1T'l,17

3
l

Ng(sl) =U

THE ELECTRONIC JOURNAL OF COMBINATORICS 22 (2015), #P00



Figure 4 is an illustration of G when n = 3, and its description is below.

Description of Figure 4: For each [ € [3], the dotted line abbreviates adjacency
between P! U PLU P! and Q; U Q,. For each [ € [3], the bold line abbreviates adjacency
between P/UPLUPL and R U R, and the doubled thin line abbreviates adjacency between
the union of all P!’s and S. In Ng(w; ;) and Ng(u;;), the bold subscripts are the jth row
of the Latin square L; which was defined in Figure 1, respectively. Note that for each
[ € [3] the subgraph induced by P! U PLUPLUQ; U QU S is isomorphic to graph Hj in
Figure 2. Moreover, note that for any 1 < ji, js2, j3 < 3, lel U PJQ2 U P]‘é UR;URyUS also
induces a copy of Hs. (The indices ji, jo, j3 are not necessarily distinct.)

The following is a formal description of the construction of G.

Construction 2.1. We construct a graph G with n(n? 4+ 2n — 1) vertices as follows. For
each k,l € [n], let P} be the set of n elements such that

Pkl; = {Ufc,lv ,Ui:,27 D) Ué,n}?
and for each i € [n — 1], let Q; be the set of n elements such that
Qi = {wii,wia, ..., Wi},
and for ¢ € [n — 1], let R; be the set of n elements such that
R, = {ui1,ui2,....;uin},
and let
S = {s1,82,....,Sn}

Let {Li,Lo,...,L,_1} be the family of mutually orthogonal Latin squares of order n
obtained by (1). For each I,m € [n], let

— l l l
E7m - {vl,m7 U2,m7 tet 7vn,m}'

Now we define a graph G as follows:

V(@) = (UL Uil B) U (Us' Qi) U (U R;) U S,
E(G) - E1UE2U"‘UEnUEn+1UEn+2,

where
E = U U {wi,jvfchi(M) : k € [n]}, for each [ € [n],
i€[n—1] j€n]
Enp = U U {uijy 1y € Ty 1, for some [ € [n]},
i€[n—1] j€[n]
E,o = U {smy :y € T}, for some [ € [n]}.
me(n]
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By the definition of the graph G, it follows that

NG<wi,j) = U {Ui,Li(j,l)v Ué,Li(j,Q)u S UL,Li(j,n)}a (2)
l€[n]

Ne(uij) = TGy YT YU:- U, LG, (3)

N(;(sm) = Tl,m U TQ,m U---u Tn,m- (4)

For simplicity, for each [ € [n], let P' = Pl U---U P! and let

P = P'u---uP",

Q = QiU ---UQy,_1,
R = RiU---UR,_;.

Let K,,, denote the complete multipartite graph with r partite sets in which each partite
set has n vertices. We will show that the subgraph of G? induced by P is the complete
multipartite graph K,,,> whose partite sets are {P} : k,l € [n]}.

For each [ € [n], let G be the subgraph of G induced by P'U Q. The following
properties were obtained in Lemma 2.2 and Lemma 2.4 in [3].

Lemma 2.2. ([3]) For each | € [n], G| satisfies the following properties.
(1) For any vertex w € @,
|Ng,(w) N Pl| =1, for each k € [n].
(2) For any distinct vertices w and w' in @,
|Ng,(w) N Ng, (w')] < 1.

(3) For any vertex w € @,

|Neg,(w) N Tym| =1, for each m € [n].
(4) For any vertex v € P!,

|Ng,(v) N Q;| =1, for each i € [n—1].

From Lemma 2.2, we show the following lemmas.
Lemma 2.3. (1) For each k,l € [n], P! is an independent set of G*.
(2) For eachi € [n— 1], Q; and R; are independent sets of G*.

(3) The set S is an independent set of G*.
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Proof. Consider P} for some k,l € [n]. Let v, v/ be distinct vertices in P}. We will show
that v and v" do not have a common neighbor. First, the vertices v and v" do not have a
common neighbor in @ by (1) of Lemma 2.2. Next, |[Ng(u) N P}l| =1 for any u € R by
(3), and |Ng(s) N P!| =1 for any s € S by (4). Hence v and v’ do not have a common
neighbor in RUS. Thus v and v’ do not have a common neighbor in G, and consequently,
v and v are not adjacent in G2. Therefore, P} is an independent set in G2

Let w and w’ be any distinct vertices in ;. Suppose that the vertices w and w’ are
adjacent in G?. Since G is a bipartite graph, they have a common neighbor v in P. Then
v € P! for some [. Thus w,w’ € Ng,(v)NQ;. But, by (4) of Lemma 2.2, |Ng, (v) NQ;| = 1.
This is a contradiction for the assumption that w and w’ are distinct. Therefore for each
i € [n — 1], Q; is an independent set in G2.

Let u = w;; and v’ = w; ; be any distinct vertices in R;. Suppose that the vertices
u and v’ are adjacent in G?. Then they have a common neighbor v in P. Then v €
Ng(u) N Ng(u'), and so by (3), v € T4 r1,¢,a) N Th,L.(jrp) for some a and b. Therefore,
a =band L;(j,a) = L;(j',a), which implies 7 = j’ since L; is a Latin square. This is a
contradiction. Thus for each 7 € [n — 1], R; is an independent set in G2.

Moreover, it is clear that by (4), any two vertices in .S do not have a common neighbor
in G, and so S is an independent set of G2. O

Let G?[P'] denote the subgraph of G2 induced by P'.
Lemma 2.4. For each | € [n], G*[P'] & K., whose partite sets are P!, P.,..., P

Proof. The proof of Lemma 2.4 is similar to the proof of Lemma 2.8 in [3]. We include
here for the sake of completeness. Take an integer [ € [n]. Note that Ng,(w) C P' for
each w € Q by the definition of G;. First, note that G?[P'] is isomorphic to a subgraph
of K, since for each k, [ € [n], P} is an independent set of G?[P'] by Lemma 2.3. Let

Fi = {G*[Ng(w)N P :w e QY U{G*Ng(s)N P! :s e S}

Note that for each w € Q, Ng(w) N P! induces a complete graph K, in G?, and for each
s € S, Ng(s) N P! induces a complete graph K,, in G2. Therefore F; is a family of copies
of K,,.

For any two vertices w, w' € ), we have |Ng,(w) N Ng,(w')| < 1 by (2) of Lemma 2.2
and so | Ng(w) N Ng(w') N PY < 1. This implies that G*[Ng(w) N P'] and G?[Ng(w') N P!]
are edge-disjoint. Note that Ng(s;,) N P! = T, for each m € [n]. Thus T}, N T} =0
if m # m’. This implies that if s # s, then G?[Ng(s) N P! and G*[Ng(s') N P! are
edge-disjoint. Next, by (3) of Lemma 2.2, for each m € [n], |Ng,(w) N T},,| = 1. Thus
|INe(w) N PPN T,,,] = 1. This implies that G*[Ng(w) N P'] and G*[Ng(s) N P'] are
edge-disjoint. Therefore any two cliques in F; are edge-disjoint.

In addition, |F| = |Q| +|S| =n(n — 1) + n = n?. Thus F; is a family of n? pairwise
edge-disjoint cliques of size n in G?[P!]. Tt follows that

B > [P > x () = B
Hence G?[P!] & K,,., for each [ € [n], since G?[P'] is isomorphic to a subgraph of K,,,,,. O
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[a¥)

To show that G*[P] = K,,,2, it remains to show the following lemma.
Lemma 2.5. For any distinct s,t € [n], for anyv € P* andv' € P', v and v’ are adjacent
in G2.
Proof. Let v € P5 and v/ € P' be any vertices with s # t. Then v € T, and v' € Ty,
for some a,b € [n]. If @ = b, then Ty, U T, C Ng(s,) and so v and v" have a common
neighbor s, in G. Hence vv’ € E(G?).

We will show that if @ # b, then there exist i € [n—1] and j € [n] such that L;(j,s) = a
and L;(j,t) = b for fixed s and ¢t. Note that if a # b and s # ¢, then there exist ¢ and j
satisfying the following equations.

jti(s—1)=a  (mod n)
jHit—=1)=b (mod n).
Thus from (1), we know that there exist i € [n — 1] with L;(j,s) = a, and j € [n] with

L;(j,t) = b. Note that by (3), we have T 1,(j,.s)UTt,1,¢j.0) C Na(wij). Therefore T ,UT;, C
Ng(uij), and so v and v’ have a common neighbor u; ; in G. Hence vv’ € E(G?). O

By Lemmas 2.3, 2.4 and 2.5, the following theorem holds.

Theorem 2.6. If G is the graph defined in Construction 2.1, then G*[P] = K> whose
partite sets are the P}’s.

The following lower bound on the list chromatic number of a complete multipartite
graph was obtained in [10].

Theorem 2.7. (Theorem 4, [10]) For a complete multipartite graph K. with n,r > 2,

W) > (= 1) |2

n
Consequently, we obtain that x,(G) > x(G) by the following theorem.
Theorem 2.8. For each prime n = 3, if G is the graph defined in Construction 2.1, then
xe(G?) — x(G?) > n® — 6n + 3.

Proof. Tt is clear that x(G?) < n? + 2n — 1 by Lemma 2.3. On the other hand, by
Theorems 2.6 and 2.7,

(6 > xe(Kaw) > (n— 1) f”Z - !

n

J >2(n—1)%

Thus
xe(G*H) = x(G?) >2(n—1)2 = (n*+2n—1) =n? — 6n + 3.
O

Remark 2.9. Note that for any prime n > 7, we have x,(G?) — x(G?*) > n? —6n+3 > 0.
Thus from Theorem 2.8, there exists a bipartite graph G such that G? is not chromatic-
choosable. Furthermore, since there are infinitely many primes, the gap x.(G?) — x(G?)
can be arbitrarily large. Note that for large n there exists a constant ¢ such that y,(G?) >
cx(G?) log(x(G?)) by applying the well-known result of Alon [1].

THE ELECTRONIC JOURNAL OF COMBINATORICS 22 (2015), #P00 9



3 Further Discussion

Note that from (4) of Lemma 2.2, each vertex v in P has exactly one neighbor in each
of Q;, R;, and S, respectively. Thus, if G is the bipartite graph defined in Construction
2.1 for prime number n, then dg(x) = 2n — 1 for each z € P and dg(y) = n? for each
y € QURUS. Hence from Theorem 2.8, if (G is the bipartite graph defined in Construction
2.1 for n = 7, then G? is not chromatic-choosable and every vertex of one partite set of
G has degree 13. Note that the List Total Coloring Conjecture is true if the List Square
Coloring Conjecture holds for bipartite graphs such that every vertex of one partite set
has degree at most 2. Thus, it would be interesting to answer the following questions.

Question 3.1. If GG is a bipartite graph such that every vertex of one partite set has
degree at most 2, then is it true that y,(G?) = x(G*)?

Question 3.2. If the answer to Question 3.1 is yes, then what is the largest k such that
G? is chromatic-choosable for every bipartite graph G with a partite set in which each
vertex has degree at most k7

We already mentioned that there is a bipartite graph G such that every vertex of one
partite set of G has degree 13 and G? is not chromatic-choosable. Thus if the answer
to Question 3.1 is yes (or the List Total Coloring Conjecture is true), then the k in
Question 3.2 must be less than 13.

On the other hand, if we apply the ‘duplication idea’ in Step 2 in the procedure of
the construction of GG repeatedly, then we can obtain a bipartite graph G such that every
vertex of one partite set of G has degree 7 and G? is not chromatic-choosable. This implies
that the integer £ in Question 3.2 must be less than 7.

We will describe briefly how to construct such bipartite graph G. Let G be the graph
in Construction 2.1 when n = 3. Now we duplicate each vertex of P exactly 2 times. For
each vertex v}, ;, we denote its copies by v’ﬁw and v”fw-. Let P’ denote the set of the first

copied vertices 1)/2,7]», and let P” denote the set of the second copied vertices v”f,w-. For
each h € [3], let T1p =11, UTs), UTsy, that is,

T .1 .1 .2 .2 .2 3 3 3
Tin = {ULha U2 hs U3,y VL ks V2 ks U3 ho VL ks U2 hs Us,h}-
In addition, let the two copies corresponding to 77 be denoted as follows:
12 2 3 3 3
Ton = {U1havzhavghav1ha”2ha”3h>v1havzhﬂ/3h
Tshn = {U”} o U ”;,ha Ul/é,ha Ul/ihav/lg,ha Ul/g,ha Ul/ihav”g,hav”g,h .
Next, we introduce 6 new vertices of By U By where By = {by1,b12,b13} and By =
{b2,1, b2, b2 5}, in which the neighborhood of each vertex b; ; € By U By follows the same
pattern of the neighborhood of w; ; (similar to Step 3 in the procedure of the construction
of G). More precisely, Ng(b; ;) = Up_ Tr. 1,5 for each b; ;, where G is the resulting graph.
See Figure 5 for an illustration and its description is below.
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Ng(b11) =T11UT22UTs3, Ng(b2,1) =T1,1UT23UT32

Ng(b12) =Ti,2UT23U T34, Ng(ba2) =Ti2UT21UTs3

Ng(b1,3) =T1,3UT21UTs.2, Ng(ba3) =T1,3UT22UT21

Figure 5: Graph G

Description of Figure 5: The sets P’ and P” are copies of P, and the bold line
abbreviates adjacency between P and SUQU R. Each of three PUSUQUR, PPUSUQUR,
P"USUQUR induces a graph isomorphic to graph G in Figure 4. Like as Ng(w; ;) and
Ne(u; ), in Ng(b; ), the bold subscripts are the jth row of the Latin square L; which was
defined in Figure 1.

Then, the resulting graph G is a bipartite graph with partite sets X = PU P" U P”
and Y = SUQU RU B; U By. Note that each vertex x € X has degree 7 and each vertex
y € Y has degree 27. Then for each k,I € [3], we can see that P} = {v} .} 5,0} 3 }

is an independent set in G? and each of its corresponding copies P’ 2 and P” 2 is also an
independent set in G2. In addition, each of S, Q1, Q2, Ri, R, Bi, B> is an independent
set in G2 Thus we know that G? is a multipartite graph with 34 partite sets. Therefore
x(G?) < 34. Moreover, we can easily check that the subgraph of G? induced by X is the
complete multipartite graph Ks,o7, and so xo(G?) = x¢(Kswr) = [£E] = 36 (see [6]).
Thus G? is not chromatic-choosable.

Remark 3.3. In general, for each prime number n, if we apply this duplication idea d
times to the graph H, in the Construction 2.1, then we have a bipartite graph whose
square is a multiparite graph with n? 4+ d(n — 1) + 1 partite sets, containing a complete
multiparitite graph K,,,,«. Through this way, we can also construct many bipartite graphs
whose square are not chromatic-choosable.
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