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Abstract

The square G2 of a graph G is the graph defined on V (G) such that two vertices
u and v are adjacent in G2 if the distance between u and v in G is at most 2. Let
χ(H) and χℓ(H) be the chromatic number and the list chromatic number of H,
respectively. A graph H is called chromatic-choosable if χℓ(H) = χ(H). It is an
interesting problem to find graphs that are chromatic-choosable.

Motivated by the List Total Coloring Conjecture, Kostochka and Woodall (2001)
proposed the List Square Coloring Conjecture which states that G2 is chromatic-
choosable for every graph G. Recently, Kim and Park showed that the List Square
Coloring Conjecture does not hold in general by finding a family of graphs whose
squares are complete multipartite graphs and are not chromatic choosable. It is a
well-known fact that the List Total Coloring Conjecture is true if the List Square
Coloring Conjecture holds for special class of bipartite graphs. Hence a natural
question is whether G2 is chromatic-choosable or not for every bipartite graph G.

In this paper, we give a bipartite graph G such that χℓ(G
2) 6= χ(G2). Moreover,

we show that the value χℓ(G
2)− χ(G2) can be arbitrarily large.

Keywords: Square of graph, chromatic-choosable, list chromatic number

1 Introduction

A proper k-coloring φ : V (G) → {1, 2, . . . , k} of a graph G is an assignment of colors to
the vertices of G so that any two adjacent vertices receive distinct colors. The chromatic
number χ(G) of G is the least k such that there exists a proper k-coloring of G.
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A list assignment on G is a function L that assigns each vertex v a set L(v) which is a
list of available colors at v. A graph G is said to be k-choosable if for any list assignment
L such that |L(v)| > k for every vertex v, there exists a proper coloring φ such that
φ(v) ∈ L(v) for every v ∈ V (G). The least k such that G is k-choosable is called the list
chromatic number χℓ(G) of G. Clearly χℓ(G) > χ(G) for every graph G.

A graph G is called chromatic-choosable if χℓ(G) = χ(G). It is an interesting problem
to determine which graphs are chromatic-choosable. There are several famous conjectures
that some classes of graphs are chromatic-choosable including the List Coloring Conjecture
(see [5] for detail).

The line graph L(G) of a graph G is the graph such that V (L(G)) = E(G) and two
vertices x and y are adjacent in L(G) if and only if x and y are adjacent edges in G.
The List Coloring Conjecture which asserts that χℓ(L(G)) = χ(L(G)) for every graph G,
where L(G) is the line graph of G.

Borodin, Kostochka and Woodall [2] proposed the List Total Coloring Conjecture
which asserts that χℓ(T (G)) = χ(T (G)) for every graph G, where T (G) is the total
graph of G. Motivated by the List Total Coloring Conjecture, Kostochka and Woodall [8]
proposed the List Square Coloring Conjecture which states that G2 is chromatic-choosable
for every graph G. It was noted in [8] that the List Total Coloring Conjecture is true
if the List Square Coloring Conjecture is true. The List Square Coloring Conjecture
has attracted a lot of attention and been cited in many papers related with coloring
problems. Recently, Kim and Park [3] disproved the List Square Coloring Conjecture by
finding a family of graphs whose squares are complete multipartite graphs with partite
sets of unbounded size. Later, two different types of counterexamples to the List Square
Coloring Conjecture have been known in [4, 7].

If H is the graph obtained by placing a vertex in the middle of every edge of a graph G,
then H2 = T (G), where T (G) is the total graph of G. Hence if the List Square Coloring
Conjecture is true for a special class of bipartite graphs, then the List Total Coloring
Conjecture is true. (see [8] for detail.)

On the other hand, all of the counterexamples in [3, 4, 7] to the List Square Coloring
Conjecture are not bipartite graphs. Hence a natural interesting question is whether
G2 is chromatic-choosable when G is a bipartite graph. This question was raised by an
anonymous referee and appeared in [3]. In this paper, we will give a bipartite graph G

such that χℓ(G
2) 6= χ(G2). Moreover, we show that the gap between χℓ(G

2) and χ(G2)
can be arbitrarily large for bipartite graphs G.

2 Construction

Let [n] denote {1, 2, . . . , n}. A Latin square of order n is an n× n array such that every
cell contains an element of [n] and every element of [n] occurs exactly once in each row
and each column. For a Latin square L of order n, the element on the ith row and the
jth column is denoted by L(i, j). Two Latin squares L1 and L2 are orthogonal if for
any (i, j) ∈ [n] × [n], there exists unique (k, ℓ) ∈ [n] × [n] such that L1(k, ℓ) = i and
L2(k, ℓ) = j.
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From now on, we fix a prime number n with n > 3. For i ∈ [n− 1], we define a Latin
square Li of order n by

Li(j, k) = j + i(k − 1) (mod n), for (j, k) ∈ [n]× [n]. (1)

Then it is easily checked (and well-known) that Li is a Latin square of order n and
{L1, L2, . . . , Ln−1} is a family of mutually orthogonal Latin squares of order n (see page
252 in [9]). In Figure 1, L1 and L2 are orthogonal Latin squares defined in (1) for n = 3.

Now we will construct a bipartite graph G such that G2 is not chromatic-choosable.
First, we will describe briefly how to construct such bipartite graph G, and then will give
a formal description in Construction 2.1.

The procedure of the construction of G

Step 1: For each prime number n > 3, we construct a graph Hn with 2n2 vertices as
follows. For k ∈ [n], let Pk be the set of n elements such that

Pk = {vk,1, vk,2, ..., vk,n},

and for i ∈ [n− 1], let Qi be the set of n elements such that

Qi = {wi,1, wi,2, ...., wi,n},

and let S be the set of n elements such that

S = {s1, s2, ...., sn}.

Let {L1, L2, . . . , Ln−1} be the family of mutually orthogonal Latin squares of order n

obtained by (1). Graph Hn is defined as follows:

V (Hn) = (∪n
k=1Pk)

⋃

(

∪n−1
i=1 Qi

)

⋃

S,

E(Hn) =





⋃

i∈[n−1]

⋃

j∈[n]

{wi,jvk,Li(j,k) : k ∈ [n]}





⋃





⋃

j∈[n]

{sjvk,j : k ∈ [n]}



 .

Let Tj = {v1,j, v2,j , . . . , vn,j} for each j ∈ [n]. Note that for each vertex wi,j, NHn
(wi,j) =

{vk,Li(j,k) : k ∈ [n]}, and Hn is the graph obtained by removing the edges in
⋃

j∈[n]{xy :

L1 =
1 2 3
2 3 1
3 1 2

L2 =
1 3 2
2 1 3
3 2 1

Figure 1: Latin squares L1 and L2 of order 3 defined in (1).
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S
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Figure 2: Graph Hn when n = 3 in Step 1. The bold edges induce the graph obtained by
removing the edges in

⋃

j∈[3]{xy : x, y ∈ Tj} from graph G3 in [3].

x, y ∈ Tj} from the graph Gn in [3] and adding vertices of S and the edges of
⋃

j∈[n]{xsj :

x ∈ Tj}. (Figure 2 is the case when n = 3.)

Given a graph H and a vertex v in H , duplicating v means adding a new vertex v0
and making it adjacent to all the neighbors of v in H , but v and v0 are not adjacent. (See
Figure 3 for an illustration.)

Step 2: Duplicate each vertex of ∪n
k=1Pk exactly (n − 1) times. For each vertex vk,j,

denote the (n − 1) copies of vk,j by v2k,j, v
3
k,j, . . . , v

n
k,j, and denote the original vertex vk,j

by v1k,j.

Let Tl,m = {vl1,m, v
l
2,m, . . . , v

l
n,m} for each m ∈ [n].

Step 3: For i ∈ [n − 1], let Ri = {ui,1, ui,2, ...., ui,n} be a set of new vertices. For each
vertex ui,j, make ui,j adjacent to all vertices in ∪n

l=1Tl,Li(j,l). Note that the neighborhood
of ui,j follows the same pattern of the neighborhood of wi,j. For example, if NHn

(wi,j) =
{vk,Li(j,k) : k ∈ [n]}, then NG(ui,j) = ∪n

k=1Tk,Li(j,k). Now, call the resulting graph G.

w1w1 w2w2 w3w3

vv v0

Figure 3: The graph on the right is obtained by duplicating the vertex v of the graph on
the left.
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v1,1v1,1v1,1

v1,2v1,2v1,2

v1,3v1,3v1,3
1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3 v2,1v2,1v2,1

v2,2v2,2v2,2

v2,3v2,3v2,3

v3,1v3,1v3,1

v3,2v3,2v3,2

v3,3v3,3v3,3

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

s1

s2

s3

P 1

1
P 1

2
P 1

3
P 2

1
P 2

2
P 2

3
P 3

1
P 3

2
P 3

3

Q1 Q2 R1 R2S

T1,1

T1,2

T1,3

T2,1

T2,2

T2,3

T3,1

T3,2

T3,3

NG(w1,1) = ∪3

l=1
{vl

1,1, v
l
2,2, v

l
3,3}, NG(w2,1) = ∪3

l=1
{vl

1,1, v
l
2,3, v

l
3,2}

NG(w1,2) = ∪3

l=1
{vl

1,2, v
l
2,3, v

l
3,1}, NG(w2,2) = ∪3

l=1
{vl

1,2, v
l
2,1, v

l
3,3}

NG(w1,3) = ∪3

l=1
{vl

1,3, v
l
2,1, v

l
3,2}, NG(w2,3) = ∪3

l=1
{vl

1,3, v
l
2,2, v

l
3,1}

NG(u1,1) = T1,1 ∪ T2,2 ∪ T3,3, NG(u2,1) = T1,1 ∪ T2,3 ∪ T3,2

NG(u1,2) = T1,2 ∪ T2,3 ∪ T3,1, NG(u2,2) = T1,2 ∪ T2,1 ∪ T3,3

NG(u1,3) = T1,3 ∪ T2,1 ∪ T3,2, NG(u2,3) = T1,3 ∪ T2,2 ∪ T2,1

NG(s1) = ∪3

l=1
Tl,1, NG(s2) = ∪3

l=1
Tl,2, NG(s3) = ∪3

l=1
Tl,3

Figure 4: Graph G when n = 3.
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Figure 4 is an illustration of G when n = 3, and its description is below.

Description of Figure 4: For each l ∈ [3], the dotted line abbreviates adjacency
between P l

1 ∪ P l
2 ∪ P l

3 and Q1 ∪Q2. For each l ∈ [3], the bold line abbreviates adjacency
between P l

1∪P
l
2∪P

l
3 and R1∪R2, and the doubled thin line abbreviates adjacency between

the union of all P l
k’s and S. In NG(wi,j) and NG(ui,j), the bold subscripts are the jth row

of the Latin square Li which was defined in Figure 1, respectively. Note that for each
l ∈ [3] the subgraph induced by P l

1 ∪ P l
2 ∪ P l

3 ∪Q1 ∪Q2 ∪ S is isomorphic to graph H3 in
Figure 2. Moreover, note that for any 1 6 j1, j2, j3 6 3, P 1

j1
∪P 2

j2
∪P 3

j3
∪R1 ∪R2 ∪ S also

induces a copy of H3. (The indices j1, j2, j3 are not necessarily distinct.)

The following is a formal description of the construction of G.

Construction 2.1. We construct a graph G with n(n2 + 2n − 1) vertices as follows. For
each k, l ∈ [n], let P l

k be the set of n elements such that

P l
k = {vlk,1, v

l
k,2, ..., v

l
k,n},

and for each i ∈ [n− 1], let Qi be the set of n elements such that

Qi = {wi,1, wi,2, ...., wi,n},

and for i ∈ [n− 1], let Ri be the set of n elements such that

Ri = {ui,1, ui,2, ...., ui,n},

and let

S = {s1, s2, ...., sn}.

Let {L1, L2, . . . , Ln−1} be the family of mutually orthogonal Latin squares of order n

obtained by (1). For each l, m ∈ [n], let

Tl,m = {vl1,m, v
l
2,m, . . . , v

l
n,m}.

Now we define a graph G as follows:

V (G) =
(

∪n
l=1 ∪

n
k=1 P

l
k

)

⋃

(

∪n−1
i=1 Qi

)

⋃

(

∪n−1
i=1 Ri

)

∪ S,

E(G) = E1 ∪ E2 ∪ · · · ∪ En ∪ En+1 ∪ En+2,

where

El =
⋃

i∈[n−1]

⋃

j∈[n]

{wi,jv
l
k,Li(j,k)

: k ∈ [n]}, for each l ∈ [n],

En+1 =
⋃

i∈[n−1]

⋃

j∈[n]

{ui,jy : y ∈ Tl,Li(j,l) for some l ∈ [n]},

En+2 =
⋃

m∈[n]

{smy : y ∈ Tl,m for some l ∈ [n]}.
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By the definition of the graph G, it follows that

NG(wi,j) =
⋃

l∈[n]

{vl1,Li(j,1)
, vl2,Li(j,2)

, . . . , vln,Li(j,n)
}, (2)

NG(ui,j) = T1,Li(j,1) ∪ T2,Li(j,2) ∪ · · · ∪ Tn,Li(j,n), (3)

NG(sm) = T1,m ∪ T2,m ∪ · · · ∪ Tn,m. (4)

For simplicity, for each l ∈ [n], let P l = P l
1 ∪ · · · ∪ P l

n and let

P = P 1 ∪ · · · ∪ P n,

Q = Q1 ∪ · · · ∪Qn−1,

R = R1 ∪ · · · ∪ Rn−1.

Let Kn⋆r denote the complete multipartite graph with r partite sets in which each partite
set has n vertices. We will show that the subgraph of G2 induced by P is the complete
multipartite graph Kn⋆n2 whose partite sets are {P l

k : k, l ∈ [n]}.

For each l ∈ [n], let Gl be the subgraph of G induced by P l ∪ Q. The following
properties were obtained in Lemma 2.2 and Lemma 2.4 in [3].

Lemma 2.2. ([3]) For each l ∈ [n], Gl satisfies the following properties.

(1) For any vertex w ∈ Q,

|NGl
(w) ∩ P l

k| = 1, for each k ∈ [n].

(2) For any distinct vertices w and w′ in Q,

|NGl
(w) ∩NGl

(w′)| 6 1.

(3) For any vertex w ∈ Q,

|NGl
(w) ∩ Tl,m| = 1, for each m ∈ [n].

(4) For any vertex v ∈ P l,

|NGl
(v) ∩Qi| = 1, for each i ∈ [n− 1].

From Lemma 2.2, we show the following lemmas.

Lemma 2.3. (1) For each k, l ∈ [n], P l
k is an independent set of G2.

(2) For each i ∈ [n− 1], Qi and Ri are independent sets of G2.

(3) The set S is an independent set of G2.
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Proof. Consider P l
k for some k, l ∈ [n]. Let v, v′ be distinct vertices in P l

k. We will show
that v and v′ do not have a common neighbor. First, the vertices v and v′ do not have a
common neighbor in Q by (1) of Lemma 2.2. Next, |NG(u) ∩ P l

k| = 1 for any u ∈ R by
(3), and |NG(s) ∩ P l

k| = 1 for any s ∈ S by (4). Hence v and v′ do not have a common
neighbor in R∪S. Thus v and v′ do not have a common neighbor in G, and consequently,
v and v′ are not adjacent in G2. Therefore, P l

k is an independent set in G2.
Let w and w′ be any distinct vertices in Qi. Suppose that the vertices w and w′ are

adjacent in G2. Since G is a bipartite graph, they have a common neighbor v in P . Then
v ∈ P l for some l. Thus w,w′ ∈ NGl

(v)∩Qi. But, by (4) of Lemma 2.2, |NGl
(v)∩Qi| = 1.

This is a contradiction for the assumption that w and w′ are distinct. Therefore for each
i ∈ [n− 1], Qi is an independent set in G2.

Let u = ui,j and u′ = ui,j′ be any distinct vertices in Ri. Suppose that the vertices
u and u′ are adjacent in G2. Then they have a common neighbor v in P . Then v ∈
NG(u) ∩ NG(u

′), and so by (3), v ∈ Ta,Li(j,a) ∩ Tb,Li(j′,b) for some a and b. Therefore,
a = b and Li(j, a) = Li(j

′, a), which implies j = j′ since Li is a Latin square. This is a
contradiction. Thus for each i ∈ [n− 1], Ri is an independent set in G2.

Moreover, it is clear that by (4), any two vertices in S do not have a common neighbor
in G, and so S is an independent set of G2.

Let G2[P l] denote the subgraph of G2 induced by P l.

Lemma 2.4. For each l ∈ [n], G2[P l] ∼= Kn∗n whose partite sets are P l
1, P

l
2,. . . , P

l
n.

Proof. The proof of Lemma 2.4 is similar to the proof of Lemma 2.8 in [3]. We include
here for the sake of completeness. Take an integer l ∈ [n]. Note that NGl

(w) ⊂ P l for
each w ∈ Q by the definition of Gl. First, note that G2[P l] is isomorphic to a subgraph
of Kn⋆n, since for each k, l ∈ [n], P l

k is an independent set of G2[P l] by Lemma 2.3. Let

Fl = {G2[NG(w) ∩ P l] : w ∈ Q} ∪ {G2[NG(s) ∩ P l] : s ∈ S}.

Note that for each w ∈ Q, NG(w) ∩ P l induces a complete graph Kn in G2, and for each
s ∈ S, NG(s) ∩ P l induces a complete graph Kn in G2. Therefore Fl is a family of copies
of Kn.

For any two vertices w, w′ ∈ Q, we have |NGl
(w)∩NGl

(w′)| 6 1 by (2) of Lemma 2.2
and so |NG(w)∩NG(w

′)∩P l| 6 1. This implies that G2[NG(w)∩P l] and G2[NG(w
′)∩P l]

are edge-disjoint. Note that NG(sm) ∩ P l = Tl,m for each m ∈ [n]. Thus Tl,m ∩ Tl,m′ = ∅
if m 6= m′. This implies that if s 6= s′, then G2[NG(s) ∩ P l] and G2[NG(s

′) ∩ P l] are
edge-disjoint. Next, by (3) of Lemma 2.2, for each m ∈ [n], |NGl

(w) ∩ Tl,m| = 1. Thus
|NG(w) ∩ P l ∩ Tl,m| = 1. This implies that G2[NG(w) ∩ P l] and G2[NG(s) ∩ P l] are
edge-disjoint. Therefore any two cliques in Fl are edge-disjoint.

In addition, |Fl| = |Q|+ |S| = n(n− 1) + n = n2. Thus Fl is a family of n2 pairwise
edge-disjoint cliques of size n in G2[P l]. It follows that

|E(Kn∗n)| > |E(G2[P l])| > n2 ×

(

n

2

)

= |E(Kn∗n)|.

Hence G2[P l] ∼= Kn∗n for each l ∈ [n], since G2[P l] is isomorphic to a subgraph ofKn∗n.
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To show that G2[P ] ∼= Kn⋆n2, it remains to show the following lemma.

Lemma 2.5. For any distinct s, t ∈ [n], for any v ∈ P s and v′ ∈ P t, v and v′ are adjacent
in G2.

Proof. Let v ∈ P s and v′ ∈ P t be any vertices with s 6= t. Then v ∈ Ts,a and v′ ∈ Tt,b

for some a, b ∈ [n]. If a = b, then Ts,a ∪ Tt,b ⊂ NG(sa) and so v and v′ have a common
neighbor sa in G. Hence vv′ ∈ E(G2).

We will show that if a 6= b, then there exist i ∈ [n−1] and j ∈ [n] such that Li(j, s) = a

and Li(j, t) = b for fixed s and t. Note that if a 6= b and s 6= t, then there exist i and j

satisfying the following equations.

j + i(s− 1) ≡ a (mod n)

j + i(t− 1) ≡ b (mod n).

Thus from (1), we know that there exist i ∈ [n − 1] with Li(j, s) = a, and j ∈ [n] with
Li(j, t) = b. Note that by (3), we have Ts,Li(j,s)∪Tt,Li(j,t) ⊂ NG(ui,j). Therefore Ts,a∪Tt,b ⊆
NG(ui,j), and so v and v′ have a common neighbor ui,j in G. Hence vv′ ∈ E(G2).

By Lemmas 2.3, 2.4 and 2.5, the following theorem holds.

Theorem 2.6. If G is the graph defined in Construction 2.1, then G2[P ] ∼= Kn⋆n2 whose
partite sets are the P l

k’s.

The following lower bound on the list chromatic number of a complete multipartite
graph was obtained in [10].

Theorem 2.7. (Theorem 4, [10]) For a complete multipartite graph Kn⋆r with n, r > 2,

χℓ(Kn⋆r) > (n− 1)

⌊

2r − 1

n

⌋

.

Consequently, we obtain that χℓ(G) > χ(G) by the following theorem.

Theorem 2.8. For each prime n > 3, if G is the graph defined in Construction 2.1, then

χℓ(G
2)− χ(G2) > n2 − 6n+ 3.

Proof. It is clear that χ(G2) 6 n2 + 2n − 1 by Lemma 2.3. On the other hand, by
Theorems 2.6 and 2.7,

χℓ(G
2) > χℓ(Kn⋆n2) > (n− 1)

⌊

2n2 − 1

n

⌋

> 2(n− 1)2.

Thus
χℓ(G

2)− χ(G2) > 2(n− 1)2 − (n2 + 2n− 1) = n2 − 6n+ 3.

Remark 2.9. Note that for any prime n > 7, we have χℓ(G
2)− χ(G2) > n2 − 6n+ 3 > 0.

Thus from Theorem 2.8, there exists a bipartite graph G such that G2 is not chromatic-
choosable. Furthermore, since there are infinitely many primes, the gap χℓ(G

2) − χ(G2)
can be arbitrarily large. Note that for large n there exists a constant c such that χℓ(G

2) >
cχ(G2) log(χ(G2)) by applying the well-known result of Alon [1].
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3 Further Discussion

Note that from (4) of Lemma 2.2, each vertex v in P has exactly one neighbor in each
of Qi, Rj , and S, respectively. Thus, if G is the bipartite graph defined in Construction
2.1 for prime number n, then dG(x) = 2n − 1 for each x ∈ P and dG(y) = n2 for each
y ∈ Q∪R∪S. Hence from Theorem 2.8, if G is the bipartite graph defined in Construction
2.1 for n = 7, then G2 is not chromatic-choosable and every vertex of one partite set of
G has degree 13. Note that the List Total Coloring Conjecture is true if the List Square
Coloring Conjecture holds for bipartite graphs such that every vertex of one partite set
has degree at most 2. Thus, it would be interesting to answer the following questions.

Question 3.1. If G is a bipartite graph such that every vertex of one partite set has
degree at most 2, then is it true that χℓ(G

2) = χ(G2)?

Question 3.2. If the answer to Question 3.1 is yes, then what is the largest k such that
G2 is chromatic-choosable for every bipartite graph G with a partite set in which each
vertex has degree at most k?

We already mentioned that there is a bipartite graph G such that every vertex of one
partite set of G has degree 13 and G2 is not chromatic-choosable. Thus if the answer
to Question 3.1 is yes (or the List Total Coloring Conjecture is true), then the k in
Question 3.2 must be less than 13.

On the other hand, if we apply the ‘duplication idea’ in Step 2 in the procedure of
the construction of G repeatedly, then we can obtain a bipartite graph G such that every
vertex of one partite set of G has degree 7 and G2 is not chromatic-choosable. This implies
that the integer k in Question 3.2 must be less than 7.

We will describe briefly how to construct such bipartite graph G. Let G be the graph
in Construction 2.1 when n = 3. Now we duplicate each vertex of P exactly 2 times. For
each vertex vlk,j, we denote its copies by v′

l
k,j and v′′

l
k,j. Let P

′ denote the set of the first

copied vertices v′
l
k,j, and let P ′′ denote the set of the second copied vertices v′′

l
k,j. For

each h ∈ [3], let T1,h = T1,h ∪ T2,h ∪ T3,h, that is,

T1,h = {v11,h, v
1
2,h, v

1
3,h, v

2
1,h, v

2
2,h, v

2
3,h, v

3
1,h, v

3
2,h, v

3
3,h}.

In addition, let the two copies corresponding to T1,h be denoted as follows:

T2,h = {v′
1
1,h, v

′1
2,h, v

′1
3,h, v

′2
1,h, v

′2
2,h, v

′2
3,h, v

′3
1,h, v

′3
2,h, v

′3
3,h},

T3,h = {v′′
1
1,h, v

′′1
2,h, v

′′1
3,h, v

′′2
1,h, v

′′2
2,h, v

′′2
3,h, v

′′3
1,h, v

′′3
2,h, v

′′3
3,h}.

Next, we introduce 6 new vertices of B1 ∪ B2 where B1 = {b1,1, b1,2, b1,3} and B2 =
{b2,1, b2,2, b2,3}, in which the neighborhood of each vertex bi,j ∈ B1 ∪ B2 follows the same
pattern of the neighborhood of wi,j (similar to Step 3 in the procedure of the construction
of G). More precisely, NG(bi,j) = ∪3

k=1Tk,Li(j,k) for each bi,j , where G is the resulting graph.
See Figure 5 for an illustration and its description is below.
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B1 B2
Q1 Q2 R1 R2S

T1,1

T1,2

T1,3

T2,1

T2,2

T2,3

T3,1

T3,2

T3,3

b1,1

b1,2

b1,3

b2,1

b2,2

b2,3

P P ′ P ′′

S ∪Q ∪ R

Graph G

NG(b1,1) = T1,1 ∪ T2,2 ∪ T3,3, NG(b2,1) = T1,1 ∪ T2,3 ∪ T3,2

NG(b1,2) = T1,2 ∪ T2,3 ∪ T3,1, NG(b2,2) = T1,2 ∪ T2,1 ∪ T3,3

NG(b1,3) = T1,3 ∪ T2,1 ∪ T3,2, NG(b2,3) = T1,3 ∪ T2,2 ∪ T2,1

Figure 5: Graph G

Description of Figure 5: The sets P ′ and P ′′ are copies of P , and the bold line
abbreviates adjacency between P and S∪Q∪R. Each of three P∪S∪Q∪R, P ′∪S∪Q∪R,
P ′′ ∪S ∪Q∪R induces a graph isomorphic to graph G in Figure 4. Like as NG(wi,j) and
NG(ui,j), in NG(bi,j), the bold subscripts are the jth row of the Latin square Li which was
defined in Figure 1.

Then, the resulting graph G is a bipartite graph with partite sets X = P ∪ P ′ ∪ P ′′

and Y = S ∪Q∪R∪B1 ∪B2. Note that each vertex x ∈ X has degree 7 and each vertex
y ∈ Y has degree 27. Then for each k, l ∈ [3], we can see that P l

k = {vlk,1, v
l
k,2, v

l
k,3, }

is an independent set in G2 and each of its corresponding copies P ′l
k and P ′′l

k is also an
independent set in G2. In addition, each of S, Q1, Q2, R1, R2, B1, B2 is an independent
set in G2. Thus we know that G2 is a multipartite graph with 34 partite sets. Therefore
χ(G2) 6 34. Moreover, we can easily check that the subgraph of G2 induced by X is the
complete multipartite graph K3⋆27, and so χℓ(G

2) > χℓ(K3⋆27) = ⌈4×27−1
3

⌉ = 36 (see [6]).
Thus G2 is not chromatic-choosable.

Remark 3.3. In general, for each prime number n, if we apply this duplication idea d

times to the graph Hn in the Construction 2.1, then we have a bipartite graph whose
square is a multiparite graph with nd + d(n − 1) + 1 partite sets, containing a complete
multiparitite graph Kn⋆nd. Through this way, we can also construct many bipartite graphs
whose square are not chromatic-choosable.
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