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Abstract

The notion of a word-representable graph has been studied in a series of papers
in the literature. A graph G = (V,E) is word-representable if there exists a word
w over the alphabet V such that letters x and y alternate in w if and only if xy
is an edge in E. If V = {1, . . . , n}, this is equivalent to saying that G is word-
representable if for all x, y ∈ {1, . . . , n}, xy ∈ E if and only if the subword w{x,y} of
w consisting of all occurrences of x or y in w has no consecutive occurrence of the
pattern 11.

In this paper, we introduce the study of u-representable graphs for any word
u ∈ {1, 2}∗. A graph G is u-representable if and only if there is a vertex-labeled
version of G, G = ({1, . . . , n}, E), and a word w ∈ {1, . . . , n}∗ such that for all
x, y ∈ {1, . . . , n}, xy ∈ E if and only if w{x,y} has no consecutive occurrence of the
pattern u. Thus, word-representable graphs are just 11-representable graphs. We
show that for any k ⩾ 3, every finite graph G is 1k-representable. This contrasts
with the fact that not all graphs are 11-representable graphs.

The main focus of the paper is the study of 12-representable graphs. In par-
ticular, we classify the 12-representable trees. We show that any 12-representable
graph is a comparability graph and the class of 12-representable graphs include the
classes of co-interval graphs and permutation graphs. We also state a number of
facts on 12-representation of induced subgraphs of a grid graph.

∗Supported by FONDECYT (Fondo Nacional de Desarrollo Cient́ıfico y Tecnológico de Chile) post-
doctoral grant #3130631.
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1 Introduction

The notion of a word-representable graph was first defined in [11]. A graph G = (V,E) is
word-representable if there exists a word w over the alphabet V such that letters x and
y alternate in w if and only if xy is an edge in E. For example, the cycle graph on four
vertices labeled by 1, 2, 3 and 4 in clockwise direction can be represented by the word
14213243. Word-representable graphs have been studied in a series of papers [1]–[7], [9],
[11]–[13], and they will be the main subject of an up-coming book [10].

The first examples of graphs that are not word-representable were given in [11]. In
fact, V. Limouzy [private communication, 2014] noticed that it is NP-hard to determine
whether a given graph is word-representable, see [10] for the details. In [14] it was proved
that any comparability graph G is not just word-representable, but it is permutationally
word-representable. That is, for the graph G, there exists a word w with the neces-
sary letter alternation properties such that w is obtained by concatenating a number of
permutations of the alphabet.

The key observation that motivated this paper was the fact that the study of word-
representable graphs is naturally connected with the study of patterns in words. That
is, let P = {1, 2, . . .} be the set of positive integers and P∗ be the set of all words over
P. If n ∈ P, then we let [n] = {1, . . . , n} and [n]∗ denote the set of all words over [n].
Given a word w = w1 . . . wn in P∗, we let A(w) be the set of letters occurring in w. For
example, if w = 4513113458, then A(w) = {1, 3, 4, 5, 8}. If B ⊆ A(w), then we let wB

be the word that results from w by removing all the letters in A(w) \ B. For example,
if w = 4513113458, then w{1,3,5} = 5131135. If u ∈ P∗, we let red(u) be the word that is
obtained from u by replacing each occurrence of the i-th smallest letter that occurs in u
by i. For example, if u = 347439, then red(u) = 123214.

Given a word u = u1 . . . uj ∈ P∗ such that red(u) = u, we say that a word w =
w1 . . . wn ∈ P∗ has a u-match starting at position i if red(wiwi+1 . . . wi+j−1) = u. Then
we can rephrase the definition of word-representable graphs by saying that a graph G is
word-representable if and only if there is a labeling G = ([n], E), and a word w ∈ [n]∗

such that for all x, y ∈ [n], xy ∈ E if and only if w{x,y} has no 11-matches.
This led us to the following defintion. Given a word u ∈ [2]∗ such that red(u) = u, we

say that a graph G is u-representable if and only if there is a labeling G = ([n], E), and a
word w ∈ [n]∗ such that for all x, y ∈ [n], xy ∈ E if and only if w{x,y} has no u-matches.
In this case we say that w u-represents G = ([n], E).

This definition leads to a number of natural questions. For example, how much of the
theory of 11-representable graphs carries over to u-representable graphs? Can we classify
the u-representable graphs for small words u such as u = 111, u = 1111, u = 12, or
u = 121? If a graph G = ([n], E) is u-representable, can we always find a word w which
is a concatenation of a finite set of permutations representing some labeled version of G?

Given how involved the theory of word-representable graphs is, our first surprise was
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the fact that every graph is 111-representable. Indeed, we will show that for every k ⩾ 3,
every graph is 1k-representable. Thus, we decided to explore the next simplest case, which
is the class of 12-representable graphs.

It turns out that there is a rich theory behind the class of 12-representable graphs.
For example, we will show that not every graph is 12-representable. In particular, the
cycles Cn for n ⩾ 5 are not 12-representable. We will also show that there are non-12-
representable trees, which contrasts with the fact that every tree is 11-representable. In
fact, we will give a complete classification of the 12-representable trees. We say that a
tree T = (V,E) is a double caterpillar if and only if all vertices are within distance 2 of a
central path. We will prove that a tree T is 12-representable if and only if T is a double
caterpillar.

Further, we will show that the class of 12-representable graphs is properly included
in the class of comparability graphs, and it properly includes the classes of co-interval
graphs and permutation graphs as shown in Figure 1. It turns out that the notion of
12-representable graphs is a natural generalization of the notion of permutation graphs.

Figure 1 also gives examples of graphs inside/outside the involved graph classes.
For instance, even cycles of length at least 6, being comparability graphs, are not 12-
representable (see Theorem 14 in Section 3); also, odd wheels on six or more vertices are
not 11-representable [11].

!!"#$%#$&$'()*+$,-#)%.&,/,
,01#2"#$%#$&$'()*+$,-#)%.&,

!!"#$%#$&$'()*+$,-#)%.&3,!,4,5,/,
,,,,,,,,,,,,,)++,&67%+$,-#)%.&,,

817%)#)*6+6(9,-#)%.&,/,
%$#7:();1')++9,01#2"#$%#$&$'()*+$,-#)%.&,,

!"#$%&$%'%()*+,%-.$*&/'--

81"6'($#<)+,-#)%.&, %$#7:();1',-#)%.&,

122,0.$$+&,1',=,<$#;8$&,1#,71#$,
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$<$',898+$&,1>,+$'-(.,=,1#,71#$,

817%+$($,-#)%.&,)'2,6'2$%$'2$'(,&$(&,

(.6&,&$(,6&,'1'"$7%(9,

Figure 1: The place of 12-representable graphs in a hierarchy of graph classes.

A fundamental difference between word-representable graphs and u-representable graphs
is the following. For word-representable graphs, it is not so important whether we
deal with labeled or unlabeled graphs: two isomorphic graphs are both either word-
representable or not. On the other hand, for certain u, a given graph G may have two
different labeled versions G1 = ([n], E1) and G2 = ([n], E2) such that there is a word w
which u-represents G1 but there is no word w′ which u-represents G2. In fact, we will
see the phenomenon in the case where u = 12. This is why we say an unlabelled graph
is u-representable if it admits labeling G = ([n], E) such that there is word w which
u-represents G.

the electronic journal of combinatorics 22 (2015), #P00 3



This paper is organized as follows. In Section 2, we give all necessary definitions
and show that any graph is 1k-representable if k ⩾ 3. Some basic properties of 12-
representable graphs are established in Section 3. In Section 4, we shall prove that a tree
T is 12-representable if and only if T is a double caterpillar. In Section 5, we compare
the class of 12-representable graphs to other graph classes thus explaining Figure 1. In
Section 6, we provide a discussion of 12-representability of induced subgraphs of a grid
graph. Finally, in Section 7, we introduce a number of new ways to define representability
of simple graphs, directed graphs, and hypergraphs via words subject to certain pattern
avoidance conditions. We also define several analogues of Wilf-equivalencies in Section 7,
which are yet to be studied.

2 Preliminaries

A simple graph G = (V,E) consists of a set of vertices V and a set of edges E of the form
xy where x, y ∈ V and x ̸= y. All graphs considered in this paper are simple and finite.
Sometimes V will be a finite subset of P. In this case we say that the graph is labeled. For
an unlabeled graph we define its labeling as an assignment to its vertices some elements
of P (labels).

If G = (V,E) is a labeled graph (i. e. V ⊂ P) and |V | = n, then the reduction of
G, denoted red(G), is a relabeling G′ = ({1, . . . , n}, E ′) such that the label on the i-th
smallest vertex of V is replaced by i.

Let G = (V,E) be a graph and v ∈ V . Then we say that the graph G′ = (V ′, E ′) is
obtained by adding a copy v′ of the vertex v if V ′ = V ∪ {v′} and E ′ = E ∪ E∗, where
v′a ∈ E∗ if and only if va ∈ E and E∗ does not contain edges not involving v′.

Given a word w = w1 . . . wk ∈ P∗ and x, y ∈ A(w), we say that x and y alternate in w
if w{x,y} is either of the form xyxyxy . . . of even or odd length or yxyx . . . of even or odd
length. Let G = (V,E) be a labeled graph. Then we say that G is word-representable if
there exists a word w ∈ V ∗ such that for all x, y ∈ V , xy is an edge in E if and only if
x and y alternate in w. In such a situation, we say that w word-represents G and w is
called a word-representant of G.

We say that H = (V ′, E ′) is an induced subgraph of G = (V,E) if V ′ ⊆ V and for
all x, y ∈ V ′, xy ∈ E ′ if and only if xy ∈ E. Then we have the following observation
establishing the hereditary nature of the notion of graph word-representability.

Observation 1. If G = (V,E) is word-representable and H = (V ′, E ′) is an induced
subgraph of G, then H is word-representable.

Indeed, it is easy to see that if w represents G = (V,E), then wV ′ represents H =
(V ′, E ′).

In this paper, we introduce two generalizations of the notion of a word-representable
graph — see Definitions 2 and 22. In Section 7, we will discuss several other natural
notions of representing simple graphs, directed graphs, and hypergraphs by words subject
to certain pattern avoidance conditions. The key to our main generalization is to re-frame
the notion of word-representable graphs in the language of patterns in words. Note that
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x and y alternate in a word w ∈ P∗ if and only if w{x,y} has no 11-match. Thus, a graph
G = ([n], E) is word-representable if and only if there is a word w ∈ [n]∗ such that for all
x, y ∈ [n], xy is an edge in E if and only if w{x,y} has no 11-match. This leads us to our
main definition.

Definition 2. Let u = u1 . . . uj be a word in {1, 2}∗ such that red(u) = u. Then we say
that a labeled graph G = ([n], E) is u-representable if there is a word w ∈ P∗ such that
for all x, y ∈ [n], xy ∈ E if and only if w{x,y} has no u-match. We say that an unlabeled
graph H is u-representable if there exits a labeling of H, H ′ = ([n], E ′), such that H ′ is
u-representable. In such a situation, we say that H ′ realizes the u-representability of H.

Thus, by Definition 2, G is word-representable if and only if G is 11-representable.

Observation 3. Replacing “word-representable graphs” by “u-representable graphs” in
Observation 1, we would obtain a true statement establishing the hereditary nature of
u-representable graphs.

The theory of word-representable graphs is rather involved, and thus the following
theorem, where 1k denotes k 1s, came as a surprise to us.

Theorem 4. For every k ⩾ 3, every finite graph G is 1k-representable.

Proof. Fix any k ⩾ 3. Clearly, if G is the complete graph Kn on vertex set [n], then G is
1k-representable by any permutation of [n], in particular, w = 12 . . . n 1k-represents Kn.

We proceed by induction on the number of edges in a graph with the base case being
the complete graph. Our goal is to show that if G is 1k-representable, then the graph G′

obtained from G by removing any edge ij is also 1k-representable.
Suppose that w 1k-represents G = ([n], E) and let p(w) denote the initial permutation

of w. That is, p(w) is obtained from w by removing all but the leftmost occurrence of each
letter. For example, p(31443266275887) = 31426758. Further, let π be any permutation
of [n]\{i, j}. Then we claim that the word

w′ = ik−1πip(w)w

1k-represents G′. Indeed, the vertices i and j are not connected any more because w′
{i,j}

contains ik. Also, no new edge can be created because of the presence of w as a subword.
Thus, we only need to show that each edge ms represented by w is still represented by
w′ if s ̸= j or m ̸= i.

If s ̸= j and m = i, then either

1. w{s,i} = stid . . . where 1 ⩽ d, t ⩽ k − 1 in which case w′
{s,i} = ik−1sisistid . . ., or

2. w{s,i} = idst . . . where 1 ⩽ d, t ⩽ k − 1 in which case w′
{s,i} = ik−1siisidst . . ..

In each case, it is easy to see that w{s,i} has no 1k-match so that w′ 1k-represents the edge
is.

If m ̸= i and s = j, then either
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1. w{m,j} = mtjd . . . where 1 ⩽ d, t ⩽ k − 1 in which case w′
{m,j} = mmjmtjd . . ., or

2. w{m,j} = jdmt . . . where 1 ⩽ d, t ⩽ k − 1 in which case w′
{m,j} = mjmjdmt . . ..

In each case, it is easy to see that w{m,j} has no 1k-match so that w′ 1k-represents the
edge mj.

Finally suppose m, s ̸∈ {i, j} and m occurs before s in π. Then either

1. w{m,s} = mtsd . . . where 1 ⩽ d, t ⩽ k − 1 in which case w′
{m,j} = msmsmtsd . . ., or

2. w{m,j} = sdmt . . . where 1 ⩽ d, t ⩽ k − 1 in which case w′
{m,j} = mssmsdmt . . ..

In each case, it is easy to see that w{m,s} has no 1k-match so that w′ 1krepresents the edge
ms.

We note that there are some natural symmetries among u-representable graphs. That
is, suppose that u = u1 . . . uj ∈ P∗ and red(u) = u. Let the reverse of u be the word
ur = ujuj−1 . . . u1. Then for any word w ∈ P∗, it is easy to see that w has a u-match if
and only if wr has a ur-match. This justifies the following observation.

Observation 5. Let G = (V,E) be a graph and u ∈ P∗ be such that red(u) = u. Then G
is u-representable if and only if G is ur-representable.

For any word w = w1 . . . wk ∈ P∗ whose largest letter is n, we let wc = (n + 1 −
w1) . . . (n + 1 − wk). It is easy to see that w has a u-match if and only if wc has a uc-
match. Given a graph G = ([n], E), we let the supplement of G be defined by G = ([n], E)
where for all x, y ∈ [n], xy ∈ E if and only if n + 1 − x and n + 1 − y are adjacent in
G. One can think of the supplement of the graph G = (V,E) as a relabeling where one
replaces each label x by the label n+ 1− x.

It is easy to see that if w witnesses that G = ([n], E) is u-representable, then wc

witnesses that G is uc-representable. This justifies the following observation.

Observation 6. Let G = ([n], E) be a graph, and u be a word in [n]∗ such that red(u) = u.
Then G is u-representable if and only if G is uc-representable.

We can combine Observations 2 and 3 to prove the following fact about 12-representable
graphs. Suppose that w 12-represents G. Then wr 21-represents G and, hence, (wr)c 12-
represents G. It follows that if a vertex v has label 1 (resp., n) in some labeling realizing
the 12-representability of an unlabeled graph G, then there is another labeling realizing
the 12-representability of G such that the vertex v has label n (resp., 1).

3 12-representable graphs

In this section we begin the study of 12-representable graphs.
Our first topic of study is the length of a word w than can 12-represent a graph. Recall

that G = ([n], E) is a permutation graph if and only if there is a permutation σ of [n] such
that for all 1 ⩽ i < j ⩽ n, ij is in E if and only if j occurs before i in σ. However, this
means that σ 12-represents G. Thus we have the following simple fact.
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Proposition 7. A graph G can be 12-represented by a permutation if and only if G is a
permutation graph.

It follows that all graphs on at most four vertices are 12-representable (since C5 is
the minimum graph that is not a permutation graph). We will study the place of 12-
representable graphs among the other graph classes in Section 5.

Next we show that any 12-representable graph can be 12-represented by a word having
at most two copies of each letter.

Theorem 8. Let G = (V,E) be a labeled representable graph. Then there exists a word-
representant w in which each letter occurs at most twice.

Proof. Let w′ represent G and suppose that a letter j occurs in w′ more than twice. Then
let w′ = AjBjC, where A and C do not contain any copies of j. Note that ij ∈ E if and
only if (i < j and all copies of i are in C) or (i > j and all copies of i are in A). So, any
copies of the letter j in B do not affect on the neighborhood of the vertex j in G and
therefore they can be omitted. Doing the same with all other letters occurring in w′ more
than twice, one obtain a required word w representing G.

Note that replacing “at most” by “exactly” in the statement of Theorem 8, we obtain a
true statement. This is based on the fact that replacing a letter x in a word 12-representing
a graph by any number of copies of x, we obtain a word 12-representing the same graph.

Lemma 9. Let G = (V,E) be a 12-representable graph and v ∈ V . Then the graph H
obtained by adding to G a copy of v is also 12-representable.

Proof. Let i be the label of v. First, increase by 1 all labels j > i, keeping all other labels
the same. Add a copy of v and label it i + 1 to obtain a labeling of H. Now, in a word
w 12-representing G replace each letter j > i by j + 1 and substitute each occurrence of
i by i(i+ 1) to obtain a word w′. Clearly, ia is an edge in H if and only if (i+ 1)a is an
edge in H, and i and i+ 1 are not adjacent in H. All edges not involving v and its copy
are the same in G and H. Thus, w′ 12-represents H.

Next, we shall consider labeled graphs I3, J4 and Q4 presented in Figure 2. These
graphs will play a key role in determining which graphs are 12-representable.

I3 =
1 2 3r r r J4 =

1 3

42 r
r

r
r

Q4 =
1 4

32 r
r

r
r

Figure 2: The graphs I3, J4, and Q4.

Lemma 10. Let G = (V,E) be a labeled graph. Then if G has an induced subgraph H
such that red(H) is equal to one of I3, J4, or Q4, then G is not 12-representable.
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Proof. First, suppose that G has a subgraph H such that red(H) = I3. Thus H must be
of the form H = ({i, j, k}, {ij, jk}) where i < j < k. Now, for a contradiction, suppose
that w = w1 . . . wn 12-represents G. Let wm be the left-most occurrence of j in w. Then
since ij ∈ E, no i occurs in w1 . . . wm−1, and since jk ∈ E, no k occurs in wm+1 . . . wn.
But then, clearly, w{i,k} has no 12-match, which contradict the condition that ik ̸∈ E.

Next, suppose that G has a subgraph H such that red(H) = J4 or red(H) = Q4. Thus,
H must be of the form H = ({i, j, k, ℓ}, {ik, jℓ}) where max{i, j} < min{k, ℓ}. Again, for
a contradiction, suppose that w = w1 . . . wn 12-represents G. Let wt be the right-most
occurrence of k in w. Then since ik ∈ E, no i occurs in w1 . . . wt−1, and since jk ̸∈ E,
it must be the case that j occurs in w1 . . . wt−1. Let ws be the left-most occurrence of
j in w. Then s < t. But since jℓ ∈ E, no ℓ occurs in ws+1 . . . wn. Next, let wr be the
right-most occurrence of ℓ in w. Then r < s. But this would imply that iℓ ∈ E which is
a contradiction.

An immediate corollary to Lemma 10 is that in any path x0x1 · · · xs in a 12-representable
labeled graph, we have x0 < x1 > x2 < x3 > · · · or x0 > x1 < x2 > x3 < · · · .

Let us say that a labeled graph G = (V,E), where V ⊂ P, has a bad path if G has an
induced path P whose endpoints are labeled by two smallest elements in P .

Lemma 11. Let G = ([n], E) be a labeled graph. Then if G has a bad path P of length at
least 3, then G is not 12-representable.

Proof. Let P = x0x1 . . . xs and max{x0, xs} < min{x1, x2, . . . , xs−1}. If s ⩾ 4 then the
reduction of the subgraph induced by {x0, x1, xs−1, xs} is J4 or Q4. If s = 3 then without
loss of generality x1 < x2, and the reduction of the subgraph induced by {x0, x1, x2} is I3.
In both cases G is not 12-representable by Lemma 10.

We note that Lemma 11 does not say that paths are not 12-representable, it only
states certain properties of its labeling. In fact, all paths are 12-representable since they
are caterpillars, and all caterpillars are permutation graphs [16].

Lemma 12. Let G = (VG, EG) and H = (VH , EH) be 12-representable graphs. Assume
that there are labelings of G and H such that x ∈ VG and y ∈ VH receive the smallest or
the highest labels in G and H, respectively. Then the graph G ∪H ∪ {xy} obtained from
disjoint copies of G and H by adding the edge xy, is 12-representable.

Proof. Suppose, without loss of generality, that in our labelings VG = {1, 2, . . . , k} and
VH = {k + 1, k + 2, . . . , ℓ}. Moreover, by Lemma 6 we can assume that x is labeled by
k and y is labeled by k + 1. Denote by wG and wH the words 12-representing G and H,
respectively. Let w′

G be the word obtained from wG by replacing each occurrence of k by
k+1, and w′

H be the word obtained from wH by replacing each occurrence of k+1 by k.
It is easy to see that the word w = w′

Gw
′
H represents the graph G ∪H ∪ {xy}.

Given two subsets of positive integers A and B, we write A < B if every element of A
is less than every element of B, i. e. x < y whenever x ∈ A and y ∈ B. A subset U ⊂ V
is a cutset if G \ U is disconnected.
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Lemma 13. Suppose that G = ([n], E) is a labeled graph. Let U be a cutset of G. Denote
by G1 = (V1, E1) and G2 = (V2, E2) two components of G \ U . If G is 12-representable,
|V1| ⩾ 2, |V2| ⩾ 2, and the smallest element of V1 ∪ V2 lies in V1, then V1 < V2.

Proof. Let H = red(G1 ∪ G2). Then 1 ∈ V1. Denote by k > 1 the smallest element in
V2. Assume that the property V1 < V2 does not hold. Then V1 contains labels that are
greater than k. Denote by C1 (resp., C2) the set of all vertices in V1 whose labels are
less (resp., greater) than k. Since G1 is connected, there is an edge ab such that a ∈ C1

and b ∈ C2. Denote by ℓ a neighbor of k in G2. Then the reduction of the subgraph
induced by {a, b, k, ℓ} is either J4 or Q4, and so G is not representable by Lemma 10, a
contradiction. Hence, V1 < V2.

The following theorem provides examples of non-12-representable graphs. Note that we
have shown, in the paragraph following Proposition 7, that C3 and C4 are 12-representable.
It turns out that they are the only 12-representable cycles.

Theorem 14. Cn is not 12-representable for any n ⩾ 5.

Proof. Suppose for a contradiction that Cn is 12-representable where n ⩾ 5. Let 1, x1, . . . , xn−1

be the labels of vertices as we proceed around the cycle in a clockwise order. Then since
no subgraph of Cn can reduce to I3 by Lemma 10, the sequence 1, x1, x2, . . . , xn−1, 1 must
be an up-down sequence, i. e. 1 < x1 > x2 < x3 > x4 < · · · xn−2 < xn−1 > 1. This is
clearly impossible if n is odd. Now assume that n is even. But then consider the position
of 2 in the sequence 1, x1, x2, . . . , xn−1, 1. Clearly 2 cannot be equal to x1 or xn−1. But
this means that one of the two paths that connect 1 to 2 around the cycle would be a bad
path of length at least 3 which is impossible by Lemma 11.

4 Characterization of 12-representable trees

A caterpillar is a tree in which all the vertices are within distance 1 of a central path. In
this paper, we need the notion of a double caterpillar defined as follows.

Definition 15. A double caterpillar T is a tree in which all the vertices are within distance
2 of a central path. Such a path is called a double caterpillar’s spine if it is obtained by
first removing all leaves from T and then removing all leaves from the obtained tree.

A star or star tree is the complete bipartite graph K1,n. Here we allow n ⩾ 0, where
n = 0 corresponds to the graph K1 (an isolated vertex). The centrum of a star is the
all-adjacent vertex in it. Suppose that a vertex v in a tree T is adjacent to vertices
v1, v2, . . . , vk. Removing v we obtain a forest T\v whose ith component Ti is determined
by the tree having vi as a vertex. We say that the ith component of the forest is good if
it is a star with centrum at the vertex vi.

Lemma 16. If a tree T is 12-representable then for any vertex v, at most two components
Ti of the forest T\v are not good.
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Proof. Note that all trivial (one-vertex) components of T\v are good by the definition.
Let T1, T2, . . . , Tk be non-trivial components of T\v. By Lemma 13 we can assume that
the labels of these components satisfy the property T1 < T2 < · · · < Tk.

Now, suppose that there are three components of the forest T\v which are not good.
Without loss of generality, we can assume that these components are T1, T2 and T3.
Further, assume that the vertices v, v1, v2 and v3 receive labels r, m1 < m2 < m3,
respectively, in some labeling T ′ realizing representability of T . Since T2 is not good, it
contains two vertices y1, y2 such that y1m2, y1y2 ∈ E and y2m1 ̸∈ E. Note that a similar
statement is true for T1 and T3. The structure of these components is schematically shown
in Figure 3.

Note that if m1 < r < m3 then we obtain a contradiction with Lemma 10 since the
reduction of {v, v1, v3} induces I3.

T T T1 32

m m m1 2 3

r

x

x2

1 y

y

z

z

1 1

2 2

Figure 3: The structure of components in T\v which are not good.

We can now assume that r < m1, since for the case r > m3 we can take the supplement
of T ′ and apply the observation about 12-representable graphs given at the end of Section
2. Since T1 < T2 < T3 we have r < min{y1, y2} < max{y1, y2} < m3, and therefore
the subgraph induced by the vertices {r, y1, y2,m3} reduces to a copy of Q4, which is
impossible by Lemma 10.

Note that a tree T\v can have two components which are not good (see, for example,
Figure 4), and thus Lemma 16 cannot be enhanced.

1

2

4

3

6

5

8

w= 2416583597

7

9

Figure 4: Removal of 3 produces a forest with two components which are not good.

The main result of this section is the following characterization of 12-representable
trees.
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Theorem 17. A tree T is 12-representable if and only if it is a double caterpillar.

Proof. Necessity. Suppose that a tree T is not a double caterpillar. Further, suppose
that P = v1v2 . . . vk is a longest path in T . Since all trees of diameter 5 are double
caterpillars, P has at least six edges, and thus k ⩾ 7. By our assumption, T has a vertex
v at distance 3 from P . Suppose that vi is the closest to v vertex on the path P . Since
P is of maximum length, we have i ∈ {4, 5, . . . , k − 3}. But then in the forest T\vi at
least three components which are not good, namely those containing v, v1 and vk. Thus
by Lemma 16, T is not 12-representable.

... ... ...
...v

1
v v

2 2n

}} }

k leaves k leaves k leaves

Figure 5: A uniform double caterpillar with even spine.

Sufficiency. By Lemma 9, we can assume that no leaf has a sibling. To show that any
such double caterpillar is 12-representable, we will use induction on the length of double
caterpillar’s spine, and prove the statement for uniform double caterpillars DC(P2n) with
even spines P2n = v1v2 . . . v2n presented schematically in Figure 5; then any other double
caterpillar will be 12-representable due to Lemma 9 and Observation 3.

... ...4

3

6

5

1

2

2k+1

2k+2 2k+3

2k+4 2k+6

2k+5

4k+2

4k+1

4k+3

4k+4

Figure 6: The labeling of DC(P2).

We will prove even a stronger statement, namely that there is a labeling of DC(P2n)
in which the label of v1 is 1 and that of v2n is the maximum label 2n(k + 1). The base
of the induction is given by labeling DC(P2) presented in Figure 6, and the following
12-representant:

24365 . . . (2k + 2)(2k + 1)(2k + 4)(2k + 6) . . . (4k + 2)(4k + 4)135 . . .

(2k + 1)(2k + 4)(2k + 3)(2k + 6)(2k + 5) . . . (4k + 2)(4k + 1)(4k + 3)

stated on two lines. It is straightforward to check that this word has the right alternating
properties.

Now, suppose that we are given a double caterpillar DC(P2n). Choose any 1 ⩽ r ⩽
n − 1 and remove the edge v2rv2r+1 on DC(P2n)’s spine. We get two double caterpillars
with even spinesDC(P2r) andDC(P2(n−r)) on s = 2r(k+1) and t = 2(n−r)(k+1) vertices
respectively. We can now apply the induction hypothesis to DC(P2r) and DC(P2(n−r)),
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i. e. consider the labeling of DC(P2r) where v1 has the smallest label 1 and v2r has the
largest label s, and the labeling of DC(P2(n−r)) where v2r+1 has the smallest label s + 1
and v2n has the largest label s+ t. Now apply Lemma 12 to connect these graphs by the
edge v2rv2r+1 thus obtaining a labeling realizing 12-representability of DC(P2n) in such a
way that v1 has the smallest label 1 and v2n has the largest label s+ t = 2n(k+1) (recall
that in the proof of Lemma 12 no vertices except for the endpoints of the inserted edge
changed their labels).

1

4 7

5 6

9

8

10 11

12

13 14

15

2 3

16

w= 4 2 3 7 2 3 5 6 9 1 2 3 5 6 12 10 11 15 8 10 11 13 16 14

Figure 7: A 12-representation of the full binary tree of height 3 plus one vertex.

Note that the labeling presented in the proof of Theorem 17 is not the only possible
labeling for double caterpillars. For example, the tree presented in Figure 7 has the spine
1, 9, 8, 15, while the maximum label is 16.

5 12-representable graphs and known classes of graphs

The goal of this section is to justify Figure 1.
Let us recall the definitions and known properties of some graph classes. A compara-

bility graph is an undirected graph that connects pairs of elements that are comparable
to each other in a partial order (a poset). Comparability graphs are also known as tran-
sitively orientable graphs or partially orderable graphs. A transitive orientation of a graph
is an acyclic orientation that has a property that if a → b and b → c are arcs then we
must have the arc a → c. A graph G is a co-comparability graph if its complement Gc is a
comparability graph. It is known [4] that a graph G is a permutation graph if and only if
both G and its complement Gc are comparability graphs. An interval graph is the inter-
section graph of a family of intervals on the real line. It has one vertex for each interval
in the family, and an edge between every pair of vertices corresponding to intervals that
intersect. A graph G is co-interval if its complement Gc is an interval graph. A graph is
chordal if it has no induced cycle on at least 4 vertices. It is a well known fact [5] that a
graph is an interval graph if and only if it is chordal and a co-comparability graph.

As it is mentioned in the introduction, any comparability graph is word-representable
[14], and any odd cycle of length 5 or more, being a non-comparability graph, is word-
representable [10]. Moreover, odd wheels on six or more vertices are non-word-representable [11],
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and the set of 1k-representable graphs, for any k ⩾ 3, coincides with the set of all graphs
by Theorem 4. Our next result shows that any 12-representable graph is necessarily a
comparability graph.

Theorem 18. If G is a 12-representable graph, then G is a comparability graph.

Proof. By Lemma 10, any induced path P of length 3 is such that red(P ) ̸= I3. We now
direct edges in G so that if ab is an edge and a < b then the arc a → b goes from a to b.
This orientation is obviously acyclic. We claim that this orientation is, in fact, transitive,
which completes the proof of our theorem. Indeed, if the directed copy of G contains a
directed path P⃗ of length 3, say a → b → c, then we must have the arc a → c in the
graph or otherwise red(P⃗ ) = I3.

1

6

3

5 4

27

6

3

1

7 5 4 2

C =

C
C

Figure 8: A co-interval graph C and an interval representation of its complement Cc.

Theorem 19. If G is a co-interval graph, then G is 12-representable.

Proof. Suppose that G is a co-interval graph on n vertices. It is a well-known easy fact
that for any interval graph, there is its interval representation such that the endpoints
of intervals are all distinct. Consider such an interval representation of the complement
graph Gc. Next, put to an interval in this representation a label n − i + 1 if the left
endpoint of this interval is the ith one from left to right among all left endpoints. Such
a labeling induces a labeling of G. We refer to Figure 8 for an example of a co-interval
graph C and its labeling based on the endpoints of the intervals.

Next, form a word w corresponding to labeled intervals by going through all interval
endpoints (both left and right endpoints) from left to right and recording their labels in
the order we meet them. For example, for the labeled interval representation in Figure 8,
the word w is 76755434261213. Optionally, all occurrences of ii, like 55 in the last word,
can be replaced by a single i. We claim that the word w 12-represents G. Indeed, let
i < j. If ith and jth intervals overlap, then w{i,j} = jiji or w{i,j} = jiij; anyway, i and j
are not adjacent. Otherwise, by the choice of the labeling, the ith interval lies directly to
the right from the jth one, and thus w{i,j} = jjii, i.e. ij is an edge.

To conclude our description of Figure 1, we would like to justify that the Venn diagram
presented by us is proper, namely that there are strict inclusions of sets and also that
the class of co-interval graphs is not a subset of the class of permutation graphs, and vice
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versa, and these classes do overlap. Note that it remains to explain the set inclusions only
inside the class of 12-representable graphs since the rest of the diagram has been already
explained above.

a"
b"

c" e"
f"d"

g"

a" c"
b" d"

a" c"
d" b"A=" Ac=" a"

b"
c" e"

f"d"
g"

B=" Bc="

Figure 9: Graphs A and B and their complements Ac and Bc.

Clearly, complete graphs are both co-interval graphs (for the set of non-intersecting
intervals) and permutation graphs (for the reverse of the identity permutation). In Fig-
ure 9, there are two graphs, A and B, and their complements Ac and Bc. The graph A
is a permutation graph (for 2143) but not a co-interval graph, because its complement
is not chordal. The graph B is 12-representable by Theorem 17, while it is neither a
permutation graph nor a co-interval graph since Bc is neither a comparability graph [16]
(note that B = T2 in their notation) nor a chordal graph (adbc in an induced C4).

Finally, for the sake of completeness, let us provide an example of a co-interval graph
that is not a permutation graph. Consider the graph Gn whose vertices are defined by all
intervals of non-zero length with left endpoints in the set {0, 1, . . . , n} and right endpoints
in the set {1 − ϵ, 2 − ϵ, . . . , n − ϵ}, where ϵ ∈ (0, 1). Further, two vertices are connected
in Gn by an edge if and only if the intervals corresponding to them do not overlap. By
definition, Gn is a co-interval graph. It is therefore a comparability graph corresponding
to the following poset P on V (Gn): I < J if and only if the interval I lies entirely to the
left of the interval J . We claim that Gn is not a permutation graph if n is large enough.
This follows from two known facts. First [2], a graph G is a permutation graph if and
only if it is the comparability graph of a poset that has dimension at most 2. On the
other hand, the Example 8.1.4 in [15] shows that the dimension of the poset P grows
arbitrary large while increasing n. Therefore, for large enough n, the graph Gn becomes
a non-permutation graph.

6 Grid graphs

In this section, we consider certain induced subgraphs of a grid graph or polyominoes.
Examples of a grid graph and some of its possible induced subgraphs are given in Figure 10,
where the notions of “corner graphs” and “skew ladder graphs” were invented by us.

Clearly, grid graphs with holes or grid graphs containing a 3×3 grid subgraph are not
12-representable because of large induced cycles (cycles of length at least 8) contained in
them, which are not possible in 12-representable graphs by Theorem 14.

The situation with ladder graphs, corner graphs and skew ladder graphs is different.
These graphs turn out to be 12-representable. Note that such a representability for ladder
graphs follows from representability of either of the other two classes of graphs.
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Figure 10: Induced subgraphs of a grid graph.
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Figure 11: Labeling corner graphs to show their 12-representability.

To show that corner graphs are 12-representable, one can consider labelling as shown
in Figure 11 in general case, and in case of k = 3 to help the reader to follow the labelling.
Words, 12-representing the general and particular cases, respectively, are as follows

3.51.72.94.(11)6. · · · .(4k + 1)(4(k − 1)).(4k + 3)(4k).(4(k + 1) + 1)(4k − 2).4k.

(4(k + 1) + 3)(4k + 2).(4(k + 2) + 1)(4(k + 1)). · · · .(4(2k) − 1)(4(k + 1) + 2).(4(2k))(4(2k − 1)).(4(2k) − 2)

and
3.51.72.94.(11)6.(13)8.(15)(12).(17)(10).(12).(19)(14).(21)(16)(23)(18).(24)(20).(22),

where the dots just help seeing the patterns in our construction, and the first word is on
two lines. Note the corner element in bold that is repeated in our construction. We do
not provide a careful justification of why these words work, which can be seen by direct
inspection.

To show that skew ladder graphs are 12-representable, one can consider labelling as
shown in Figure 12 in general case, and in case of k = 2 to help the reader to follow the
labelling. Words, 12-representing the general and particular cases, respectively, are as
follows

3.51.72.94.(11)6. · · · .(4(k − 1) + 1)(4(k − 2)).(4k − 1)(4(k − 1) − 2).(4k + 1).(4k + 3)(4(k − 1)).

(4k + 1)(4k − 2).(4(k + 1) + 1)(4k + 2).(4(k + 1) + 3)(4k).(4k + 2).(4(k + 2) + 1)(4(k + 1)).

(4(k + 2) + 3)(4(k + 1) + 2). · · · .(4(2k) + 1)(4(2k − 1)).(4(2k) + 2)(4(2k − 1) + 2).(4(2k))

and
3.51.72.9.(11)4.96.(13)(10).(15)8.10.(17)(12).(18)(14).(16),
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Figure 12: Labeling skew ladder graphs to show their 12-representability.

where the first word is on three line, and again, in bold we indicate repeated corner
elements.

It would be interesting to know whether or not induced subgraphs of a grid graph have
a nice 12-representation classification, which we leave as an open problem along with the
larger problem of finding a classification of 12-representable graphs.

7 Other notions of word-representable graphs

As it is mentioned in Section 2, apart from our main generalization, given in Definition 2,
of the notion of a word-representable graph, we have another generalization given in
Definition 22 below. In this section, we also state some other ways to define the notion
of a (directed) graph representable by words. Our definitions can be generalized to the
case of hypergraphs by simply allowing words defining edges/non-edges be over alphabets
containing more than two letters. However, the focus of this paper was studying 12-
representable graphs, so we leave all the notions introduced below for a later day to
study.

Given a word u = u1 . . . uj ∈ P∗ such that red(u) = u, and a word w = w1 . . . wn ∈ P∗,
we say that the pattern u occurs in w if there exist 1 ⩽ i1 < · · · < ij ⩽ n such that
red(wi1 . . . wij) = u, and that w avoids u if u does not occur in w.

Given a word v = v1 . . . vj ∈ P∗ and a word w = w1 . . . wn ∈ P∗, we say that v exactly
occurs in w if there exist 1 ⩽ i1 < · · · < ij ⩽ n such that wi1 . . . wij = v and that w
exactly avoids v if v does not exactly occur in w. We say that w has an exact v-match
starting at position i if wiwi+1 . . . wi+j−1 = v.

Similar definitions can be made for set of words. That is, let Γ be a set of words in
P∗ such that red(u) = u for all u ∈ Γ. Then we say that Γ occurs in w = w1 . . . wn ∈ P∗

if there exist 1 ⩽ i1 < · · · < ij ⩽ n such that red(wi1 . . . wij) ∈ Γ, and that w avoids
Γ if Γ does not occur in w. We say that w has a Γ-match starting at position i if
red(wiwi+1 . . . wi+j−1) ∈ Γ. Similarly, if ∆ is any set of words in P∗, we say that ∆ exactly
occurs in w = w1 . . . wn ∈ P∗ if there exist 1 ⩽ i1 < · · · < ij ⩽ n such that wi1 . . . wij ∈ ∆,
and that w exactly avoids ∆ if ∆ does not exactly occur in w. We say that w has an exact
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∆-match starting at position i if wiwi+1 . . . wi+j−1 ∈ ∆.
The study of pattern avoidance and pattern containment in words and permutations

is a fast growing area (see [8] for a comprehensive introduction to the field).
We defined the notion of a u-representable graph in Definition 2. More generally, we

can make the same definition for sets of words.

Definition 20. Let Γ be a set of words in {1, 2}∗ such that red(u) = u for all u ∈ Γ.
Then we say that a graph G = (V,E), where V ⊂ P, is Γ-representable if there exists a
word w ∈ P∗ such that A(w) = V and for all x, y ∈ V , xy ̸∈ E if and only if w{x,y} has a
Γ-match.

Definition 21. Let Γ be a set of words in {1, 2}∗ such that red(u) = u for all u ∈ Γ.
Then we say that a graph G = (V,E), where V ⊂ P, is Γ-occurrence representable if there
exists a word w ∈ P∗ such that A(w) = V and for all x, y ∈ V , xy ̸∈ E if and only if Γ
occurs in w{x,y}.

In the case where Γ = {u} consists of a single word, we simply say that a graph
G is u-occurrence representable if G is Γ-occurrence representable. For example, the
11-occurrence representable graphs are very simple. That is, if a word w = w1 . . . wn

11-occurrence represents a graph G = (V,E), then any vertex x such that w has two or
more occurrences of x, cannot be connected to any other vertex y since 11 will always
occur in w{x,y}. Let I = {x ∈ V : x occurs more than once in w} and J = {y ∈ V :
y occurs exactly once in w}. Then it is easy to see that the elements of J must form a
clique in G, while the elements of I form an independent set. Thus, if G is 11-occurrence
representable, then G consists of a clique together with a set of isolated vertices. Clearly,
all such graphs are 11-occurrence representable, which gives a characterisation of 11-
occurrence representable graphs.

Another simple observation is that the sets of 12-representable graphs and 12-occurrences
representable graphs coincide, since a word contains a 12-match if and only if it contains
a 12-occurrence.

Similarly, we have the following analogues of our definition for exact matchings and
exact occurrences.

Definition 22. Let ∆ be a set of words in P∗. Then we say that a graph G = (V,E),
where V ⊂ P, is exact-∆-representable if there is a word w ∈ P∗ such that A(w) = V and
for all x, y ∈ V , xy ̸∈ E if and only if w{x,y} has an exact ∆-match.

Definition 23. Let ∆ be a set of words in P∗. Then we say that a graph G = (V,E),
where V ⊂ P, is exact-∆-occurrence representable if there is a word w ∈ P∗ such that
A(w) = V and for all x, y ∈ V , xy ̸∈ E if and only if ∆ exactly occurs in w{x,y}.

Note that to avoid trivialities, while dealing with exact matchings or occurrences, the
sets of words defining (non-)edges should be large and hopefully contain at least one word
for each pair of vertices in V . Clearly, the properties of (exact) Γ-representability and
(exact) ∆-occurrence representability are hereditary.
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Recall the definitions of the reverse ur and the complement uc in Section 2. If Γ is a
set of words in P∗, then we let Γr = {ur : u ∈ Γ}. If ∆ is a set of words in u ∈ {1, . . . , n}∗
such that A(u) = {1, . . . , n}, then we let ∆c = {uc : u ∈ ∆}. Then we have the following
observation generalizing and extending Observation 5.

Observation 24. Let G = (V,E) be a graph, Γ be a set of words in P∗ such that red(u) =
u for all u ∈ Γ. Then

1. G is Γ-representable if and only if G is Γr-representable.

2. G is Γ-occurrence representable if and only if G is Γr-occurrence representable.

Recall the definition of the supplement G of a graph G given in Section 2. The
following observation generalizes and extends Observation 6.

Observation 25. Let G = (V,E) be a graph, and ∆ be a set of words in {1, . . . , n}∗ such
that A(u) = {1, . . . , n} for all u ∈ ∆. Then

1. G is ∆-representable if and only if G is ∆c-representable.

2. G is ∆-occurrence representable if and only if G is ∆c-occurrence representable.

Given two words u, v ∈ P∗, we say that u and v are matching-representation Wilf-
equivalent (resp., occurrence-representation Wilf-equivalent) if for any graph G, a labeling
of G that is u-matching (resp. u-occurrence) representable exists if and only if a labeling
of G that is v-matching (resp., v-occurrence) representable exists. Note, that Obser-
vations 24 and 25 show that the matching-representation and occurrence-representation
Wilf-equivalence classes are closed under reversal and complement.

Our notion of using patterns to represent graphs can also be extended to give us a
notion of representing directed graphs via words. That is, suppose that we are given a
directed graph G = (V,E), where E ⊂ V × V and we are given two sets of words Γ,∆ in
P∗ such that red(u) = u for all u ∈ Γ and red(v) = v for all v ∈ ∆.

Definition 26. We say that a directed graph G = (V,E), where V ⊂ P, is Γ,∆-
representable if there is a word w ∈ P∗ such that A(w) = V and for all pairs x < y
in V , (x, y) ̸∈ E if and only if w{x,y} has a Γ-match and (y, x) ̸∈ E if and only if w{x,y}
has a ∆-match.

Definition 27. We say that a graph G = (V,E), where V ⊂ P, is Γ,∆-occurrence
representable if there is a word w ∈ P∗ such that A(w) = V and for all pairs x < y in V ,
(x, y) ̸∈ E if and only if Γ occurs in w{x,y} and (y, x) ̸∈ E if and only if ∆ occurs in w{x,y}.

We can make similar definitions for exact matching and exact occurrences. That is,
let Γ and ∆ be two sets of words in P∗.

Definition 28. We say that a directed graph G = (V,E), where V ⊂ P, is exact Γ,∆-
representable if there is a word w ∈ P∗ such that A(w) = V and for all pairs x < y in V ,
(x, y) ̸∈ E if and only if w{x,y} has an exact Γ-match and (y, x) ̸∈ E if and only if w{x,y}
has an exact ∆-match.
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Definition 29. We say that a graph G = (V,E), where V ⊂ P, is exact-Γ,∆-occurrence
representable if there is a word w ∈ P∗ such that A(w) = V and for all pairs x < y in V ,
(x, y) ̸∈ E if and only if Γ exactly occurs in w{x,y} and (y, x) ̸∈ E if and only if ∆ exactly
occurs in w{x,y}.

We can obtain other notions of word-representability by mixing Γ-matches, exact
Γ-matches, Γ-occurrences, and exact Γ-occurrences with ∆-matches, exact ∆-matches,
∆-occurrences, and exact ∆-occurrences in the definitions above.
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