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Abstract

In this paper we study a generalization of both proper edge-coloring and strong
edge-coloring: k-intersection edge-coloring, introduced by Muthu, Narayanan and
Subramanian [18]. In this coloring, the set S(v) of colors used by edges incident to
a vertex v does not intersect S(u) on more than k colors when u and v are adjacent.
We provide some sharp upper and lower bounds for x; ;. for several classes of
graphs. For [-degenerate graphs we prove that x} ,.(G) < I+ 1)A —Il(k—1) — 1.
We improve this bound for subcubic graphs by showing that x5 ; . (G) < 6. We show
that calculating x} ;. (K ) for arbitrary values of k and n is related to some problems
in combinatorial set theory and we provide bounds that are tight for infinitely many
values of n. Furthermore, for complete bipartite graphs we prove that x} . . (Knm) =

[m

. W Finally, we show that computing x} ; (G) is NP-complete for every k > 1.

1 Introduction

A proper edge-coloring of a graph is an assignment of colors to the edges of GG such that
every pair of adjacent edges receive different colors. Normally the aim is to use the smallest
number of colors, which is denoted by x’(G). This notion is one of the main theme of the
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theory of graph coloring and is studied extensively. Vizing’s theorem, which claims that
for every simple graph G either \'(G) = A(G) or X'(G) = A(G) + 1 holds is among the
most famous theorems in graph theory. In this work all edge-colorings are proper, so we
will simply use the term edge-coloring. Furthermore all graphs are simple and finite.

Various relaxations or generalizations of the concept of edge-coloring are studied.
Among which is the notion of strong edge-coloring, introduced by Fouquet and Jolivet [11],
which not only requires for adjacent edges to have distinct colors, but also requires all
edges adjacent to a given edge to receive different colors. Let G be a graph and let
¢ : E(G) — N be an edge-coloring of G. For a vertex v let ¢(v) be the set of colors that
appear on edges incident to v (thus |¢p(v)| = d(v)). An equivalent definition of strong edge-
coloring is to say that an edge-coloring ¢ is a strong edge-coloring if |¢(v) N p(u)| < 1 for
each pair u, v of adjacent vertices (the color of uv being the only color in common). This
formulation led Muthu, Subramanian and the fifth author [18] to introduce the following
relaxed version: a k-intersection edge-coloring of a graph G is a (proper) edge-coloring in
which we have |¢(v) N¢(u)| < k for each pair u, v of adjacent vertices. The k-intersection
chromatic index of G, denoted xj_;,(G), is the smallest number of colors in a possible
k-intersection edge-coloring of G. Observe that not only X/ ;. (G) is the strong chromatic
index of G, but also for k > A(G), X} (G) = X'(G). Hence we assume k < A.

Vizing’s theorem says that the chromatic number of a line graph is at most 1 more
than its clique number. Recall that the square of a graph G, denoted G2, is a graph on a
same set of vertices where two vertices are adjacent if and only if they are at distance at
most 2 in G. Then x};,.(G) is the chromatic number of the square of the line graph of G.
Unlike line graphs, the difference between clique number and the chromatic number of a
square of a line graph can be arbitrarily large. However Erdos and Nesettil conjectured
9, 10] that for a given value of A, the largest strong chromatic index is reached by graphs
whose square of the line graph is a complete graph. Chung et al. [6] determined the
largest clique of the square of the line graph of a graph of degree A. Thus bounding
the strong chromatic index of graphs of bounded maximum degree is studied by various
authors, we refer to chapter 3 of [20] for a survey.

The aim of this work is to extend this study to the concept of k-intersection edge-
coloring. We note that, capturing the flavors of both combinatorial set theory and coloring
problems, determining x;j ;.. (G) proves to be an interesting challenge even for the simplest
of graphs like complete graphs. Indeed we show how one can first of all use Corradi’s
lemma (8] to obtain a good lower bound on xj}..(/K,). Then trying to obtain tighter
bounds, we in fact obtain a strengthening of Corrddi’s lemma.

The structure of the paper is as follows. In the next section, after giving few examples,
we give general bounds for k-intersection edge-chromatic number in terms of parameters
like maximum degree or degeneracy. In Section 3 we give nearly tight bounds for k-
intersection chromatic index of complete graphs and in Section 4 we give an exact formula
for the case of complete bipartite graphs. In the last section we prove that computing the
k-intersection chromatic index is an NP-complete problem.

We will use standard notations of graph theory. A subcubic graph is a graph of
maximum degree 3. An [-degenerate graph is a graph any subgraph of which (including
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itself) has a vertex of degree at most .

2 Examples and degree bounds

Since our colorings are always proper, X;..(G) = A for any value of k. If we write
A, = max{d(u) + d(v)|uv € E(G)}, the next natural lower bound on x}_,.(G) is A, — k.
Thus, in general we have

Xhoint(G) = max{A. — k, A}.

Our first result is that the equality holds for forests.
Proposition 1. If G is a forest, then x}_...(G) = max{A, — k, A}.

Proof. We use induction on the number m of edges. Let M := max{A, — k, A}. If G is
a disjoint union of stars (in particular when m = 0), then M = A and the claim is clear
because every proper edge-coloring of a star is a k-intersection edge-coloring. Otherwise,
consider an edge vw between two non-leaf vertices of G such that all neighbours of v are
leaves except u. Now, remove leaf neighbours of v and edge-color what remains by the
induction hypothesis. Up to a relabelling, we may assume that colors 1,2,...,d(w) are
used for edges incident to w. We complete the coloring by using colors M, M —1,... M —
d(v) + 2 for the edges pending at v. The coloring that we obtain is a k-intersection M-
edge-coloring, because max{1, d(w)+d(v) — M} colors are in the intersection for the edge
vw and max{1,d(w) +d(v) — M} < k. O

The previous proposition asserts that we know how to color forests, i.e. all 1-degenerate
graphs. Some upper bounds for the strong chromatic index of [-degenerate graphs are
given in [4], and we now provide a similar bound for k-intersection chromatic index. Our
proof is based on the following observation on [-degenerate graph, first mentioned in [4],
of the existence of a certain type of edges.

Observation 2 ([4]). Let G be a nonempty l-degenerate graph. There exists in G an edge
uv such that d(u) <1 and v has < | neighbours of degree > 1.

< [ vertices
of arbitrary

degree
U v
< [ —1 vertices of vertices of de-
arbitrary degree gree at most [
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Proof. Assuming without loss of generality that GG is connected, let us consider the set
S C V(G) of all vertices of degree < [ in G: either there exists an edge between two
vertices of S (which is sufficient for our claim) or there exists by virtue of I-degeneracy a
vertex v of degree < [ in G\S which is adjacent to a vertex u of S. m

We show how such an edge can help to obtain a coloring of a graph in the following
lemma (which we use for Theorem 7).

Lemma 3. Let G be a graph, let I,k be two integers with | < k, and let e = uv be an
edge of G with the property that (as above) d(u) < I and v has at most | neighbours of
degree > 1. Then any k-intersection r-edge-coloring of G — e can be extended to G if
r>(l+1)A—-1k—1)—1.

Proof. A coloring of G — e can be extended to e with the following observations:

e The color of e must be different from at most [—1 colors used around u, and u cannot
have strictly more than % colors in common with any of its neighbours (including
v) as it has degree at most | < k

e The color of e has to be different from the (at most) A — 1 colors used around v.

e Assuming, in the worst case, that v has exactly k colors in common with each of its
neighbours of degree > [, e cannot be given a color already used around those (at
most < [ vertices), which amounts to at most (A — k) colors.

This list excludes a total of at most (I — 1) + (A — 1) + (A — k) < r — 1 colors, which
ensures that one is available for e. O

Corollary 4. If G is an [-degenerate graph and k > 1, then
X-imt(G) < (L+ DA = 1(k = 1) =1

A minimally [-connected graph is a [-vertex-connected graph such that for any edge
e, the subgraph GG — e is not [-vertex-connected. Trees being exactly the minimally 1-
connected graphs, the k-intersection chromatic number of minimally 1-connected graphs
is given by Proposition 1. We show in the next theorem that for £ > 2 the k-intersection
chromatic number of a minimally 2-connected graph is almost determined by the formula
of Corollary 4. We omit the proof as it is very similar to the proof of previous theorem
based on the following lemma proved in [4]. We recall that a minimally /-connected graph
is an [-degenerate graph [16] (see also [3, page 24]).

Lemma 5. [}] A minimally 2-connected graph contains an edge uv such that v has degree
at most 2, and all but at most one of the neighbours of u are also vertices of degree 2.

Theorem 6. If G is a minimally 2-connected graph or a subgraph of such a graph, then
for any k with 2 < k < A we have x},_;,,(G) < mar{A, — k +1,A}.
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Note that this upper bound is just 1 more than the general lower bound. For a cycle
C' of odd length, we have x/;..(G) = 3, and thus this bound is attained for k = 2.

Recall that the case £k = 1 corresponds to strong edge-coloring, and this technique
does not work for chordless graphs and 2-degenerate graphs since k is smaller than the
degeneracy. These cases are discussed in [4] where the authors show a linear upper bound.

A graph with A < 3 is called subcubic. For k > 3 the x}_;.(G) is the same as the
chromatic index of G, thus if A = 3 then x}_;.(G) is either 3 or 4 (by Vizing’s theorem).
Determining whether 3 or 4 is the correct answer is a well-known NP-complete problem
and it led to the study of snarks (see [5] and its references). For k = 1, determining
the value of x/;,.(G) is NP-Hard for subcubic graphs [20], while x/;,.(G) < 10 for this
class [14, 2]. Thus we consider the 2-intersection chromatic number for the class of sub-
cubic graphs. We show below that the 2-intersection chromatic number of any subcubic
graph is at most 6. We do not know if there is a subcubic graph of 2-intersection chromatic
number equal to 6, though we have many examples for 5 (e.g. Kjs3).

Theorem 7. Let G be a subcubic graph. Then x4 ,,.(G) < 6.
In order to show Theorem 7 we prove the following stronger statement:

Lemma 8. Let G be a subcubic graph. There exists a coloring ¢ using at most six colors,
such that for every vertex v of degree 2 with neighbours u and w of degree 3 (if any) either

¢(uv) ¢ p(w) or ¢p(wv) ¢ ¢(u).

Proof. By contradiction. Suppose the statement of the lemma is not true and let G' be
a counterexample minimizing |V (G)|. Thus G is connected. Let v be a vertex of G and
let ¢ be a 2-intersection 6-edge-coloring of G — v satisfying the conditions of the Lemma.
Observe that if applied to G, the coloring ¢ could violate the conditions of the Lemma.
This could happen only in the following particular situation: v has a neighbour wu; of
degree 3 with uy and ugz being the other two neighbours of uy; us is a vertex of degree 2
and ug is a vertex of degree 3. If one applies ¢ to G, then vertex us might not satisfy
the statement of the Lemma. However, in this case, it is possible to recolor the edge usu
with another color in order to obtain a valid partial coloring of GG satisfying the statement
of the Lemma. Therefore, we will assume that, when applied to GG, the coloring ¢ remains
valid and thus the only remaining edges to color are those incident to v.

By the minimality of G, v cannot be of degree 1, as otherwise ¢ could be easily
extended to G. Hence v has degree at least 2.

First, let us suppose that there exists a vertex v of degree 2. Note that since G is
connected it is also 2-degenerate. We use the labeling of Figure 1 to label vertices around
v, but we point out that different vertices of the figure may represent the same vertex in
the graph.

We count the number of colors we cannot use at vu;. To have a proper edge-
coloring, ¢(ujuz) and ¢(ujug) are forbidden. Any proper edge-coloring would be a
2-intersection edge-coloring unless either ¢(ujus) € {d(usug), p(usuz)}, or ¢p(ujus) €
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Figure 1: Example of vertex of degree 2

{d(uguy), d(usus)}. However by our assumption, only one of these two cases can hap-
pen, say ¢(ujuz) = ¢(uguy), in which case the color ¢(uqus) is also forbidden at vu;.
Thus in general we have at least three colors available for vu;. Let {1,2,3} be this set of
three colors. Similarly there are three colors available at vw; and let {a, 8,w} be this set
of three colors.

Let us color vuy by 1. If {a, B,w} # {1, d(ujuz), (ujusz)}, then we have a color for
vw; which satisfies the condition of the lemma. Otherwise, note o = 1, 8 = ¢(uqusz),w =
¢(uyug) and color vw; with a = 1 and vuy with 2 (as 2 ¢ {p(uqus), p(uius)}).

Therefore, every vertex is of degree 3. This time we use the labeling of the neighbour-
hood of v given in Figure 2. Again different vertices of the figure may represent the same
vertex in the graph, in which case the proof is even simpler. Let «, 5, w be the respective
colors of edges ujus, wiwy and tit5. Depending on the number of distinct colors among
a, B, w we consider three cases.

Figure 2: The precoloring

e Suppose o = [ = w. Since ¢ satisfies the condition of the lemma, just as in the
previous case there are at least three colors available for each of vuy, vw; and vt;.
Thus we can pick one distinct color for each, and since « is forbidden for all three
the coloring is 2-intersection for all these three edges.
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e We have a = § # w. Moreover, we know that o # ¢(t1t3). Therefore, without loss
of generality we can assume that o = = 1, w = 2 and ¢(t1t3) = 3. We pick a color
for vty different from o = § and since it must be different from ¢(t1t2) and ¢(t1t3),
we can say this color is 4. Then we color successively vw; and vu; by choosing
each time a color such that ¢ remains a proper edge-coloring. Now, since G is a
counterexample, ¢ cannot be a 2-intersection coloring. The only possible conflict
is that the colors we have chosen for vw; and vu; are respectively 2 and 3. Hence
we have the following set of available colors for vu; and vwy: {2,3,4}. Also, recall
that the other two colors which were initially available for v¢; can be neither 2 nor
3 (because tity and tqt3 are colored 2 and 3 respectively). Hence we color vu; with
4, vw; with 2 and recolor vt; with a color different from 4. We are done.

e Last case is when |{«, 8,w}| = 3. More generally, in G — v the sets ¢(uq), ¢(w)
and ¢(t;) are pairwise disjoint and thus we can fix ¢(ujuz) = 1, ¢p(uuz) = 2,
d(wiwy) = 3, p(wyws) = 4, ¢(tite) = 5 and ¢(t1t3) = 6. As in the previous cases
we color successively vt; and vw; such that there are no conflicts. It remains to
color vuy. We pick a color ¢ ¢ {o(vt1), p(vwy), p(ugusg), p(uqus)} for it such that
the coloring of the subgraph G — {vw;,vt;} is a 2-intersection edge-coloring (note
that this is possible due to the hypothesis on G — v). Since G is a counterexample
the obtained proper edge-coloring must not be a 2-intersection coloring. Therefore,
without loss of generality we can assume that ¢ = 5 and ¢(vw;) = 6. Observe that
this is the only possible conflict. If it is possible to replace ( by some other color
then we would be done. Hence the set of available colors for vu, is {5,6, ¢(vty)}.
Assume v = ¢(vty) (thus v ¢ {1,2}). Recall that initially we had three colors for
edge vtq, say {v,v, u}, and these colors cannot be neither 5 nor 6. Therefore, we
have v € {3,4} and we assign ¢(vu;) = 7 and choose for vt; color v ¢ {3,4}. The
obtained coloring is a valid 2-intersection 6-edge-coloring.

Thus no such counterexample exists. O

3 Complete graphs

Determining xj ;.. (/) turns out to be more of a combinatorial set theory problem. While
we are not able to reduce it to a simple expression depending on n and k, we can under-
stand its asymptotic behaviour to some extent: the key tool in our attempt is a lemma
of Corradi (cf. Lemma 10) which provides an asymptotically tight lower bound for odd
values of k. This lemma can then be improved and adapted to our needs in order to yield
another asymptotically tight lower bound for even values of k.

It turns out that for a fixed k, the k-intersection chromatic index of K, grows like a
linear function of the number (Z) of edges. To this end we want to find the constant ¢
such that X} . (Kn) = cx(3) + O(n). We now show how a coloring of a small complete
graph can be used to generate colorings of arbitrarily large ones, and hence produce
an asymptotic upper bound on x} ;. (K,). For this we use the following decomposition
theorem:
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Theorem 9 (Wilson [21], see also IV.3.7 in [7]). For a given integer p and sufficiently
large integer n, the edge set of K,, can be partitioned into copies of K, if and only if (g)
divides (Z) and p — 1 divides n — 1.

Let us now suppose that xj ..(K,) = ¢ (22’) holds for some integer p, and let n be
chosen to satisfy the conditions of Wilson’s theorem. We can partition edges of K, into
copies of K, as the theorem claims, and give a k-intersection edge-coloring of each K, with
a distinct set of X} ;. (Kp) = ¢k (’2’) colors. This results in a k-intersection edge-coloring of
K,, with ¢ (72‘) colors.

The first lower bound we obtain is a consequence of the following lemma.

Lemma 10 (Corradi [8], see also p.23 of [15]). Let Ay, As, ..., A, be r-element sets whose

union is X. If |A; N A;| < k for all i # j, then | X| > )

Let K, be k-intersection edge-colored with x}_...(K,) colors. Let A; be the set of colors
used at edges incident to vertex i. Then each A; is an (n — 1)-subset of the set of colors
used and |A; N A;| < k is satisfied because the coloring is a k-intersection edge-coloring.
Applying the lemma we have:

Corollary 11. For any values of k and n we have xj_(Kn) > 27 (5)-

Ky is k-edge-colorable when k is odd, and any proper edge-coloring of Kj; is a k-
intersection edge-coloring as all vertices are of degree k: as a result we have x} ;. (Kx1+1) =

ﬁ (kgl) Consequently, from our construction based on Wilson’s theorem:
Corollary 12. For odd values of k we have Xj_,,(Kn) = $£5(;) + O(n). Besides,

X-int(En) = 755 (5) for infinitely many values of n.

For even values of k the lower bound of Corollary 11 is never tight. An improved lower
bound in this case is given in the following theorem.

Theorem 13. For even values of k we have Xj_;,,(Kn) = #42(5)-

Proof. Assume that K, is k-intersection edge-colored with a set C' of colors of cardinality
r. Build a hypergraph H whose vertex set is C, and whose hyperedges are — for each
vertex v of K, — the set of colors incident to v. As a consequence, H has n edges of
cardinality n — 1. For a vertex ¢ € C of H let dy/(c) be the degree of ¢ in H. We obtain
the following upper bound on Y . du(c)*.

ZdH(C)Q = Z Z lene|

ceC ecHe'cH
= Z <|e| + Z |eﬂe'|>
ecH een
e#e’
<Y <(n— 1) + k(n — 1)) = (k+ Dn(n —1) :2(k+1)(g>.
ecH
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For a given ¢ € C let R(c) be the number of edges of K, colored with c¢. Since we are
working with proper edge-coloring we have R(c) = 1dy(c). Replacing these values in the

previous inequality we have
k 1
> <52 (3) g

ceC

We are now missing a lower bound for the left side of this inequality, and for this we can
use the Cauchy-Schwarz inequality. Indeed,

> aie > of (e atY g <|(C)|) )

ceC

Together with the previous formula, this yields the inequality |C| > k%l(g) (i.e. Corol-
lary 11), and the proof up to this point is the one of Corrddi’s lemma as found in [15].

Note that inequality (2) is tight if and only if R(c) = (3)/|C| for all ¢ € C. Substituting
this value for each R(c) implies R(c) = £, Therefore when k is even the inequality cannot
be tight as +! is not an integer. In the following we show how to improve inequality (2)
by arguing that our variables must be integers.

Since > . R(c) = (}), the sum >~ R(c)? is minimized when |R(c) — R(c)] < 1 for
any two colors ¢, ¢ € C. Let this minimum be f(r) where r = |C/|. For integers p and ¢
we use the notation p%gq to denote the remainder in the division of p by ¢q. By what we
have just said, f(r) defined by

- O 18] @) (8]

number of colors ¢ number of colors ¢

such that R(c)= L(g) /1J such that R(c)= L(g)/7J +1

is a lower bound for ) . R(c )2 nd we would like to find a better lower bound for f(r).
Since we already know that r > 25 %) we claim that f(r — 1) > f(r) when n is large
enough. To see this, recall that f(r ) > .cc R(c)? where R(c)’s in the sum differ at most
by 1. Thus one can obtain f(r — 1) from f(r) by removing the smaller of R(c)’s, say
R(cy) from the sum and distributing it evenly among the rest starting with the smaller
ones. Note that since r is large with respect to R(cy), in this distribution exactly R(c;)
of R(c)’s are increased by 1. Thus to obtain f(r — 1) from f(r) one subtracts R(c;)? and
adds a minimum of R(c;) X 2R(cy). Thus f(r —1) > f(r), and therefore f(r) is a strictly

decreasing function of r for r > F +1(
E+1

If we find a value of 7y > =5 +1 (”) such that f(ro) > *3 ( ) then we would conclude
that ... (K) = ro. To see this, suppose K,, admits a colorlng with |C| = r < rp, which

by Corollary 11 satisfies r > & +1( ). Then Y .. R(c)* > f(r) and since f is a decreasing
function we have > _, R(c)> > f(ro) > =2 (}). This contradicts inequality (1).
Therefore, to complete the proof of the theorem it is enough to show that for ry =
[ &5 (5)] we have f(rg) > (7). We give the main idea of the proof when the fraction
2k42
K242k

(3) is an integer.
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k+1\2

o= () (3) (5) () (5+0) =55 (3)

as required. O

Firs note that 12 (3) < 1o < 3(2) Thus (2)%r0 = 13(3) and | 8] = £ 5o

We believe that given an even k the lower bound of Theorem 13 is tight for infinitely
many values of n. To this end, considering Wilson’s theorem it would be enough to prove
that the equality holds for at least one value of n.

Conjecture 14. For each even value of k, there exists an integer n such that x} . (K,) =
2k+2 (n
k2+2k (2) )

Indeed, for both k£ = 2 and k = 4, choosing n = 9 works.

Theorem 15. We have X}, (K,) = 2(5) + O(n) and X)_in(Kn) = 5(5) + O(n). Fur-
thermore, the equalities x4 ..,(K,) = 53") and X)_i(Kn) = 2 (3) hold for infinitely many

1\2
values of n.

Proof. The colorings are produced from the construction based on Wilson’s Theorem, and
the two colorings of Ky given in Figures 3 and 4 which prove that x5, (Ko) = 3(}) = 27
and Y. (Ko) = 15—2(3) = 15.

Note that Figure 3 only shows a 2-intersection 9-edge-coloring of CZ, but assigning

a unique color to each missing edge would result in a 2-intersection 27-edge-coloring of
K. ]

{27374?6}

{375’778}

{0757678}

{1,2,4,8}

{0717475}

Figure 3: A 2-intersection edge-coloring of CZ with 9 colors.
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Figure 4: A 4-intersection edge-coloring of Ky with 15 colors.
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4 Complete bipartite graphs

In this section we give an exact formula for the k-intersection chromatic number of com-
plete bipartite graphs.

Theorem 16. If integers 1 <k <m < n, then X _y(Kmn) = [

Proof. Let ¢ be a k-intersection edge-coloring of I, , using colors from a set C' of car-
dinality X} int(Kmn). Let A ={0,1,...,m —1} and B = {0,1,...,n — 1} be two parts
of Ky Let a € A be a vertex and let ¢(a) = {c1,¢a,...,¢,} be the set of colors of the
edges incident to a. Furthermore, let G, be the subgraph induced by the edges whose
color is in ¢(a). From the definition of k-intersection edge-coloring, we deduce that for
every vertex b in B, dg,(b) < k. Therefore, |E(G,)| < km.

Given ¢ € C let d(c) be the number of edges colored c. It is easily seen that
Daeh 2cesa) UC) = Yo d*(c). That is because there are exactly d(c) vertices in A
each with an incident edge of color c. But on the other hand }_ ) d(c) = [E(Ga)|.
Therefore, > ..o d*(c) < kmn. Since ) - d(c) = |E(K,m)| = mn, by the Cauchy-
Schwarz inequality, |C|(%)2 < kmn and $0 X (Kmp) = |C| = [22]. It remains to
show that K,,, admits a k-intersection edge-coloring using p = (%W colors.

In general, an edge-coloring of K,,, is equivalent to an m X n matrix where rows

are labelled by A and columns are labelled by B. To have a proper edge-coloring the
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elements of each row (and column) must be distinct. For such an edge-coloring to be a
k-intersection edge-coloring it is necessary and sufficient that for each pair of a row and
a column there are at most k entries in common.

In order to give such a matrix we first consider a lexicographic order on the entries of
the m x n matrix: the top left entry is first and then left to right, top to bottom order.
Following this order, fill the entries by assigning 0 to the first one and the value of the
previous entry +1 (mod p) to obtain the value of the next entry. This assignment is not
yet a proper edge-coloring. In fact, a whole row might be repeated and this will be the
case for row ¢ if ¢n is a multiple of p. Thus to ensure a proper edge-coloring we update
our procedure as follows. After completing ¢n entries where p divides /n, to obtain the
next entry we add +2 (mod p). The precise formula is given by

f(i,j) =(in+j+ |i/s]) mod p (i€ A j€EB),

where s = lem(p,n)/n. We denote this matrix by P,,s. See Table 1 for the example
when k= 7,m = 10,n = 12 (thus p = 18,s = 3). Note that the jump happens at entries
with * sign, that is when we reach a multiple of p and n in our lexicographic order.

flojij2]3[4]5|6]7[8]9][10] 11 |
3] 4 5 ]6]7]8]9]10] 11
3

oo 1]2

1]12]13]14 15|16 [17 |0 | 1 | 2 41 5

2l 6l 718191011 ]12]13]14]15]16] 17«
3111213456 |7]8|9|10[11] 12

g4l13]14al15]16l 17 0o 12345 6

5071819101112 [13[14|15|16 17| O«

612131456 789 |10l11]12] 13

7l14ali5l16]17] 0o | 1 [ 23456 7

8| 8 |9 |10]11] 12|13 [14[15|16|17| 0 | 1«

93456 7|8 9]10]11]12]13] 14 |

Table 1: A 7-intersection edge-coloring of Ky 12. The intersections of columns with row
8 is shown in color.

We will show that f is a proper edge-coloring by using the fact that m < n < p.
Indeed, in each row the colors appear consecutively mod p and since p > n, clearly all
colors in a row are distinct.

If i,/ € A and j € B are such that f(i,5) = f(¢,j), then in + [i/s| = i'n + [i'/s]
(mod p) and so |i/s| = [i'/s] (mod ged(p,n)). Since k < m < n, we have p > m and so
sed(pmy mplying li/s] < m/s < ged(p,n). Similarly, |i'/s] < ged(p,n). Therefore,
li/s| = [i'/s|. Thus, in = i'n (mod p) and so i« = ¢ (mod s). This together with
li/s| = |i'/s] gives 1 =17

It remains to show that this coloring is also a k-intersection coloring.

Let r; be an arbitrary but fixed row with r; = (a,a+1,...,a+n — 1) for some a (all
additions are modulo p). We prove that each column intersects r; in at most k elements.

>
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This would complete our proof as r; is chosen arbitrarily. We note that each of the colors,
and in particular the entries of r;, appears at most k times and at least £k — 1 times in
the matrix. Consider the set of entries of P, » whose values belong to r;. Our aim is to
partition this set into k segments P{*, P5°, ..., P’ such that each P;* crosses at most one
entry from a given column.

Before defining the segments P]”, let us partition P, , into [%1 blocks of s consecutive
rows (i.e. full blocks), and possibly a last block of < s rows (i.e. partial block). They
appear on Table 1 as the sets of values located between two consecutive bold horizontal
lines. We note that when read in the lexicographic order, each block is a sequence of
consecutive values modulo p, and that the value of the first entry of a full block is equal
to the value of its last entry incremented by one.

From the j-th occurrence of a (in the lexicographic order) and the following n — 1
entries we build a segment PJT If this occurrence of a is contained in a full block, and
if before completing P; we have arrived at the last entry of this block, then we continue
with the first entry of the same block. As a result, each segment is always contained in a
specific block. Therefore, if all blocks are full then the coloring is indeed k-intersecting,
as there are at most k occurrences of a in the matrix and each of the k segments crosses
a given column exactly once.

Otherwise suppose the last block is a partial block, which implies that mn is not
divisible by k. We add to our matrix a partial row r,, of € entries such that %*6 =p,
and fill them with the same pattern. Note that ¢ < £ < n. Again, the value of the
first entry of this block is equal to the value of its last entry of r,, incremented by one
(modulo p). We can now use the same definition of segments as previously to define the
Pf contained in this last block. Consequently, in the extended matrix there are exactly k
segments P/, Py, ..., P" each of length n. By the previous argument all segments which
do not contain entries from row r,, cross any given column precisely once. Now, suppose
that a segment covering some entries of 7, crosses a given column more than once: since
this segment is of length n it actually crosses the column exactly twice. Hence in the
initial matrix P, ; this column crosses this segment only once, and the coloring is indeed
k-intersecting. |

5 Complexity

In this section we consider the complexity of the problem of determining if a given graph
G admits a k-intersection edge-coloring. Our main result is the following.

Theorem 17. Determining X, .. for each 1 < k < A is NP-complete.

It is known that computing x} ;.. is NP-complete for k =1 [17] and k = A(G) [13].

The k-INTERSECTION /(-EDGE-COLORING problem is defined as follows:
INSTANCE: A graph G.
QUESTION: Does G have a k-intersection edge-coloring with ¢ colors?
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The 3-COLORING problem on graphs of maximum degree 4 is NP-Complete [12], and is
defined as follows:

INSTANCE: A graph G of maximum degree 4

QUESTION: Does G have a proper vertex-coloring with three colors?

In order to prove Theorem 17 we use gadgets to reduce 3-COLORING of graphs with
maximum degree 4 to k-INTERSECTION (k + 2)-EDGE-COLORING. The gadgets are
given in Figures 5 and 6. The sub-gadget P of Figure 5 is used to build all other gadgets.
It is obtained from Kj ;41 by adding a pendant edge at every vertex of degree k. We also
use the labelling of vertices as given in the figure.

Yk Y2 Y1

Tk41

Zk+1
* 22 21

Figure 5: The sub-gadget P

Lemma 18. The graph P of Figure 5 admits a k-intersection (k + 2)-edge-coloring. Fur-
thermore, in any such edge-coloring the set of pendant edges receive the same color.

Proof. A k-intersection (k+2)-edge-coloring is easily obtained from a proper (k+ 1)-edge-
coloring of Kj, ;41 and by assigning a same color to all the pendant edges. To prove the
second part of the statement assume ¢ is a k-intersection (k + 2)-edge-coloring of P and
suppose colors 1,2, ..., k+1 are used at the edges incident to zj,;. Observe that in order
to have a valid k-intersection edge-coloring, each y; must be incident to an edge-colored
with a color distinct from those used for the edges incident to xx.1, i.e. color k+ 2. Thus
color k + 2 induces a matching of y;, 1 <7 < ktoxj, 1 < j < k. In particular this implies
that the color that is missing at z; is incident to every other z;. Since the choice of xy 1
was arbitrary, ¢ induces a set of k + 1 matchings each of size k between z; and y;, i.e., ¢
induces a proper (k+ 1)-edge-coloring of Ky j41. In this coloring all k41 colors appear on
edges incident to each y;, thus, to have a k-intersecting edge-coloring, all pendant edges
must receive a same color. O

Note that the forced structure of a k-intersection (k + 2)-edge-coloring proved in the
previous lemma implies in particular that P does not admit a k-intersection (k + 1)-edge-
coloring.
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Lemma 19. For every r, there exists a k-intersection (k + 2)-edge-colorable graph (see
Figure 6) with at least v pendant edges such that in every k-intersection (k + 2)-edge-
coloring of this graph all pendant edges receive the same color.

Proof. For r < k 4 1 such a construction is given in Lemma 18. Let » > k£ + 1 and let
i = [7]. We take i copies Py, ..., P; of the gadget P of Figure 5. Let x{z{,xiﬂziﬂ be
copies of x121 and 12511 in Pj. Let P’ be obtained from Py, ..., P; by identifying .iIZi_H
with /™" and 2], with 27*" (see Figure 6).

To give a k-intersection (k + 2)-edge-coloring of P’ we properly color the edges of each
copy of Ky 41 in P; such that the set of colors of the edges incident to xifl and x{ are
distinct (and so intersect on at most k colors).

It then follows from the previous lemma that all pendant edges must receive the same
color in any such coloring. O

% i
21 %) Rl 2 Rt

Figure 6: Gadget P’ built in the proof of Lemma 19

Lemma 20. Given integers n and k, there exists a graph M containing a subset A =
{t1,...,t,} of n vertices, each of degree k — 1, such that M is k-intersection (k+ 2)-edge-
colorable, and in every such coloring and for any two vertices x,y € A the set of colors
on the edges incident to x is the same as the set of colors on the edges incident to y.

Proof. Let P’ be a graph with at least n pendant edges constructed in Lemma 19. The
graph M is constructed from k& — 1 distinct copies Pj,..., P, ; of P’ as follows. Let

..., 1, be n vertices of degree 1 of P/. We then identify all ¢;,... ,t;‘f’_l for each j and
name ¢; each of the new vertices. It is easily verified that M is k-intersection (k+2)-edge-
colorable and that the set of colors on edges incident to ¢; is the same for every j. O]

Now we are ready to prove Theorem 17.

Proof. Recall that we reduce 3-COLORING of graphs of maximum degree 4 to k-INTER-
SECTION (k + 2)-EDGE-COLORING.

We are given the graph G of an instance of 3-COLORING with maximum degree 4
on n vertices. Let P’ be a graph constructed from Lemma 19 with (at least) 5 pendant
vertices Z = {z1,..., 25}, and let M be the graph constructed from Lemma 20 with n
vertices t1,...,t, of degree k — 1 each. We create a new graph F(G) containing n copies
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P{,..., P, of P" and a copy of M. We modify now our graph by identifying together a
vertex of degree 1 from a copy of Z in P/ with a vertex of degree 1 from a copy of Z in
Pj for any edge v;v; of G. At the end of this procedure, the copy of Z in P/ has at least
one remaining vertex of degree 1, we identify one such a vertex with ¢;. For a fixed k the
number of vertices in this construction is linear in the order of G' and hence F(G) is built
in polynomial time.

We claim that G is 3-vertex-colorable if and only if F/(G) is k-intersection (k + 2)-
edge-colorable. First, suppose G is 3-vertex-colored, and let ¢ be such a coloring with
colors 1,2,3. A k-intersection (k + 2)-edge-coloring is obtained as follows. First, color M
in F'(G) such that each ¢; is incident with colors from 4, ... k+2. Colour each P/ so that
all pendant edges are colored with ¢(v;). We obtain a k-intersection (k+ 2)-edge-coloring.

For the converse, suppose that v is a k-intersection (k + 2)-edge-coloring of F(G).
Then by Lemma 20 the sets of colors used on edges incident to ¢; and ¢; in the subgraph
M are the same. Let {4,...,k+2} be this set. Recall that by Lemma 19 all the pendant
edges of P/ must be colored with the same colour. Let ¢; be this colour. Note that
¢; ¢ {4,...,k + 2} hence ¢; € {1,2,3}. Furthermore, if v; is adjacent to v; (in G) then
¢; # ¢j. Thus the assignment of colour ¢; to vertex v; yields a 3-vertex-coloring of G. [

Since the gadget we used is bipartite, our proof in fact implies that, for a fixed k£ > 2,
finding the k-intersection chromatic index of bipartite graphs is an NP-complete problem.
On the other hand, being equivalent to proper edge-coloring, A-intersection edge-coloring
of a bipartite graph is always possible. It would be interesting to find out where the
threshold lies.
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Addendum (7 July 2015)

Recently we have been informed that a strengthening of Theorem 7 can be derived from
a result shown by Balister et al. [22]. In their paper the authors study the notion of
adjacent vertex-distinguishing edge-coloring, which is a proper edge-coloring such that
for each pair of adjacent vertices u and v, the set of colors incident to u is not equal to the
set of colors incident to v. The minimum number of colors required to obtain an adjacent
vertex distinguishing edge-coloring of G is denoted x/,(G).

Note that when the graph is A-regular, a (A — 1)-intersection (A + 1)-edge coloring is
equivalent to an adjacent vertex-distinguishing edge-coloring. In the context of subcubic
graphs, Balister et al. proved the following result:

Theorem 21 (Balister et al. [22). Let G be a subcubic graph with no isolated edge, then
Xa(G) <5,

From this result a strengthening of Theorem 7 of our paper follows easily:
Corollary 22. Let G be a subcubic graph. Then x4 ...(G) < 5.

Moreover, as mentioned in Section 2 of our paper, there are subcubic graphs with
Xoint (G) = b and thus the result of the above corollary is tight.
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