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Abstract

We consider a model for complex networks that was introduced by Krioukov et
al. In this model, N points are chosen randomly inside a disk on the hyperbolic plane
and any two of them are joined by an edge if they are within a certain hyperbolic
distance. The N points are distributed according to a quasi-uniform distribution,
which is a distorted version of the uniform distribution. The model turns out to
behave similarly to the well-known Chung-Lu model, but without the independence
between the edges. Namely, it exhibits a power-law degree sequence and small
distances but, unlike the Chung-Lu model and many other well-known models for
complex networks, it also exhibits clustering.

The model is controlled by two parameters o and v where, roughly speaking,
« controls the exponent of the power-law and v controls the average degree. The
present paper focuses on the evolution of the component structure of the random
graph. We show that (a) for @ > 1 and v arbitrary, with high probability, as the
number of vertices grows, the largest component of the random graph has sublinear
order; (b) for a < 1 and v arbitrary with high probability there is a “giant”
component of linear order, and (c) when a = 1 then there is a non-trivial phase
transition for the existence of a linear-sized component in terms of v.

Keywords: random graphs on the hyperbolic plane; component structure; giant
component; phase transition.
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1 Introduction

The term “complex networks” describes a class of large networks which exhibit the fol-
lowing fundamental properties:

1. they are sparse, that is, the number of their edges is proportional to the number of
nodes;

2. they exhibit the small world phenomenon: almost all pairs of vertices that are in
the same component are within a short distance from each other;

3. clustering is present: two nodes of the network that have a common neighbour are
somewhat more likely to be connected with each other;

4. their degree distribution is scale free. This means that its tail follows a power law.
There has been extensive experimental evidence (see for example [2]) which suggests
that many networks that emerge in applications have a degree distribution whose
tail follows a power law with exponent between 2 and 3.

The books of Chung and Lu [10] and of Dorogovtsev [7] are excellent references for a
detailed discussion of these properties.

During the last 15 years a number of models have been developed in a series of attempts
to capture these features. Among the first such models is the preferential attachment
model. This is a class of models of randomly growing graphs whose aim is to capture a basic
feature of such networks: nodes which are already popular tend to become more popular as
the network grows. It was introduced by Barabési and Albert [2] and subsequently defined
and studied rigorously by Bollobés, Riordan and co-authors (see for example [6], [5]).

Another extensively studied model was defined by Chung and Lu [8], [9]. Here every
vertex has a weight which effectively corresponds to its expected degree and every two
vertices are joined independently of every other pair with probability that is proportional
to the product of their weights. If these weights follow a power-law distribution, then it
turns out that the resulting random graph has power-law degree distribution. This model
is a special case of an inhomogeneous random graph.

All these models have their shortcomings. Namely, none of them succeeds in incor-
porating all the above features. For example, the Chung—Lu model exhibits a power law
degree distribution (provided the weights of the vertices are suitably chosen) and average
distance of order O(loglog N) (when the exponent of the power law is between 2 and 3,
see [8]), but it does not exhibit clustering. This is also the situation in the Barabdsi-Albert
model.

In the case of the Chung-Lu model the absence of clustering is essentially due to the
fact that pairs of vertices form edges independently. On the contrary, the presence of
clustering requires the edges not to appear independently. If two edges share a common
endvertex, then the probability that their other two endvertices are joined must be higher
compared to that where we assume nothing about these edges. This property is naturally
present in random graphs that are created over metric spaces, such as random geometric
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graphs. In this context, the vertices are a random set of points in a given metric space
and any two of them are adjacent if their distance is smaller than a certain distance.

Recently Krioukov et al. [19] introduced a model which naturally exhibits these typical
features. In this model, a random network is created on the hyperbolic plane (we will see
the detailed definition shortly). In particular, Krioukov et al. [19] determined the degree
distribution showing that it is scale free and its tail follows a power law, whose exponent is
determined by one of the parameters of the model. The exponent can take any value that
is at least 2. Furthermore, they consider the clustering properties of the resulting random
network. A numerical approach in [19] suggests that the (local) clustering coefficient is
positive and it is determined by one of the parameters of the model. These characteristics
have been verified rigorously by Gugelmann, Panagiotou and Peter [12].

The basic hypothesis of Krioukov et al. [19] was that the hyperbolic geometry underlies
complex networks. In particular, the heterogeneity of the nodes, whose expression is
the power law degree distribution, is in fact the expression of an underlying hyperbolic
geometry. Complex networks do exhibit some sort of hierarchy in the sense that their
nodes/members form groups which are further organised into subgroups etc. Thus, there
is a hidden tree-like structure and the hyperbolic geometry is the natural space which can
accommodate such a structure.

The aim of the present work is the study the component structure of such a random
graph and more specifically the number of vertices that are contained in a largest compo-
nent of the graph. One of our main findings is that for the range of the parameters of the
random graph model where the exponent of the power law is larger than 3, the random
graph typically consists of many relatively small components, no matter how large the
average degree of the graph is. This is in sharp contrast with the classical Erdés-Rényi
model (see [3]) as well as with the situation on random geometric graphs on Euclidean
spaces (see [20]) where the dependence on the average degree is crucial. However, we
show that the structure of the random geometric graph is significantly different when
the exponent of the power law is smaller than 3. In fact, we show that in this case a
giant component exists with high probability, that is, a component containing a positive
fraction of the vertices of the random graph.

1.1 The model

We start by recalling some facts about the hyperbolic plane H. The hyperbolic plane
is an unbounded surface of constant negative curvature —1. There are several ways to
represent it in two dimensions, including the half-plane model, the Beltrami-Klein disk
model and the Poincaré disk model. In the Poincaré disk model, we equip the unit
disk D := {(z,y) € R* : 2%+ y? < 1} with the metric determined® by the differential
form ds? = 4 (1{222;_@222. The book of Stillwell [22] covers the basic theory of hyperbolic
geometry. In this paper we find it helpful to draw pictures in the native model of H.
This is obtained from the Poincaré disk model by multiplying each point (x,y) € D by

IThis means that the length of a curve 7 : [0,1] — D is given by fol W
1 1
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a scalar that equals the ratio of the distance to the origin in the hyperbolic metric, over
the distance to the origin in the euclidean metric (in the case of the origin itself we define
this ratio to equal one). This produces a model of H that fills all of R?. Tt lacks many of
the properties that make the classical models of H elegant to work with, but it does allow
us to see more detail in visualizations of the graph model we are about to introduce. To
the best of our knowledge the native model was first introduced by Krioukov et al. [19].

Basic facts about H that we will rely on heavily in the paper are that in H a disk
of radius r (i.e. the set of points at hyperbolic distance at most r from a given point)
has area equal to 27(cosh(r) — 1) and circumference length equal to 27 sinh(r). Another
important fact that we will rely on in the paper is the hyperbolic cosine rule. It states that
if A, B,C are distinct points on the hyperbolic plane, and we denote by a the distance
between B, C', by b the distance between A, C, by ¢ the distance between A, B and by - the
angle (at C') between the shortest AC- and BC-paths, then cosh(c) = cosh(a) cosh(b) —
cos(7) sinh(a) sinh(b).

We are now ready to introduce the model we will be studying in this paper. We will
name it the Krioukov-Papadopoulos-Kitsak-Vahdat-Boguna-model, after its inventors.
For convenience we will abbreviate this to KPKVB-model throughout the rest of the
paper. The model has three parameters: the number of vertices N, which we think of as
large, and o, v > 0 which we think of as fixed. Given N, v, o, we compute R := 2log(N/v).
We now select N points independently at random from the disk of radius R centred at the
origin O, which we denote by Dg, according to the following probability distribution. If
the random point u has polar coordinates (r, ), then 6, r are independent, 6 is uniformly
distributed in (0, 27] and the probability distribution of r has density function given by:

coshaR—1
0 otherwise.

(1.1)

q-sinher g0 o g R,
p(r) =

Note that when o = 1, then this is simply the uniform distribution on Dgx.

An alternative way to view this distribution is as follows. If we multiply the differen-
tial form in the Poincaré disk model by a factor 1/a? then we obtain (a model of) the
hyperbolic plane H, of curvature —a?. It can be seen that the above probability distribu-
tion corresponds precisely to a point taken uniformly at random from the disk of radius
R around the origin in H,. (We however treat these points as points of the ordinary
hyperbolic plane.) The set of N points we have thus obtained will be the vertex set of our
random graph and we denote it by V. The KPKVB-random graph, denoted G(N; «, v),
is formed when we join each pair of vertices, if and only if they are within (hyperbolic)
distance R. Figure 1 shows an example of such a random graph on N = 1000 vertices.

We should mention that Krioukov et al. in fact had an additional parameter ¢ in
their definition of the model. In their definition, the points were taken inside a disk of
radius R, := (2/¢)log(N/v) on the hyperbolic plane H, of curvature —¢?, and the points
were generated according to (1.1) with R¢ in place of R. In this case the random graph
is denoted by G(N;(,«,v). However, it turns out that there is no need for the extra
parameter (. The following lemma, which we prove in Appendix A, shows that we can
take ( = 1 without any loss of generality. We remind the reader that a coupling of two
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Figure 1: Simulation of the KPKVB-model with N = 1000, = .9, = 2. (Depicted in
the native model.)

random objects X,Y is a common probability space for a pair of objects (X', Y”) whose
marginal distributions satisfy X' <X, Y'Y .

Lemma 1.1. Let o,/,(, (" > 0 be such that (/o = ('/o/. For every v and N € N,
there exists a coupling between G(N;(,a,v) and G(N; (', o', v) such that G(N;(, a,v) =
G(N;{, o, v).

Thus, the previous lemma states that one can define G(N;(, «,v) and G(N; (', o/, v) on
a common probability space in such a way that the two graphs are isomorphic (with
probability one). Let us also remark that edge-set of G(N; «,v) is decreasing in « and
increasing in v in the following precise sense.

Lemma 1.2. Let o, o/, v,/ > 0 be such that o > o and v < v'. For every N € N, there
exists a coupling such that G(N;«,v) is a subgraph of G(N;a/ V).

The proof of Lemma 1.2 is given in Appendix B.

Krioukov et al. [19] focus on the degree distribution of G(N; o, v), showing that when
a > % this follows a power law with exponent 2a + 1. They also discuss clustering on
a smooth version of the above model. Their results have been verified rigorously by
Gugelmann et al. [12]. Note that when o = 1, that is, when the N vertices are uniformly
distributed in Dpg, the exponent of the power law is equal to 3. When % < «a < 1, the
exponent is between 2 and 3, as is the case in a number of networks that emerge in
applications such as computer networks, social networks and biological networks (see for
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example [2]). They have also shown that the average degree of the random graph can be
“tuned” through the parameter v.

Throughout the paper, we will be using the notion of the type of a vertex. For a vertex
u € Vy, its type t, is defined to be equal to R — r, where r, is the radius of u in Dg.
Similarly, a point p € Dy of radius r, has type ¢, = R —1r,. We note the following lemma,
making it easier to work with the distribution of the types.

Lemma 1.3. Uniformly for 0 <t < 0.99R we have

pt) == p(R—1t) = (1+op(1))ae . (1.2)
Proof. Using the pdf in Equation 1.1, we get
inh R—t a(R—t) _ ,—a(R+t) 2
p(R—t):ozsm (o )):ae e
cosh(aR) — 1 2 eft 4 emak — 2

B ea(th) _ efa(R+t) B (1 + 0(1))601(1%71‘/)

ot f g—aR _ 9 @ (1+o0(1))exr
= (14 o(1))ae™.

1.1.1 G(N;a,v) and the Chung-Lu model

The notion of inhomogeneous random graphs was introduced by Soderberg [21] but was
defined more generally and studied in great detail by Bollobas, Janson and Riordan in [4].
In its most general setting, there is an underlying compact metric space S equipped with a
measure p on its Borel o-algebra. This is the space of types of the vertices. A kernel k is a
bounded real-valued, non-negative function on & x S, which is symmetric and measurable.
It is assumed that the vertices of the random graph are points in §. If z,y € S, then the
corresponding vertices are joined with probability that is equal to ”(ITy) A 1, where N is
the total number of vertices, independently of every other pair. The points that are the
vertices of the graph are approximately distributed according to . More specifically, the
empirical measure induced by the N points converges weakly to u as N — oo.

Of particular interest is the case where the kernel function can be factorised and can
be written as k(z,y) = t(x)t(y) — this is called a kernel of rank 1. Here, the function t(x)
represents the weight of a vertex of type x and, in fact, it is approximately its expected
degree. The special case where t(z) follows a distribution that has a power law tail was
considered by Chung and Lu in a series of papers [8], [9] (see also [14]).

In the random graph G(N; a, v) the probability that two vertices are adjacent has this
form. The proof of this fact relies on Lemma 2.1, which we will state and prove later.
This provides an approximate characterization of what it means for two points u,v to
have hyperbolic distance at most R in terms of their relative angle, which we denote by
Ov-

As we shall see later in Lemma 2.1, two vertices u and v of types t, and ¢, are within
distance R (essentially) if and only if 6, < 2ve'/2e**/2/N. Hence, conditional on their
types the probability that v and v are adjacent is proportional to et»/2¢!*/2 /N
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But Lemma 1.3 shows that the type of a vertex is approximately exponentially dis-
tributed. Thus, if we set t(u) = /2, then P(t(u) > z) = P(t, > 2Inz) < e 20® =
1/2**. In other words, the distribution of #(u) has a power-law tail with parameter 2a.+ 1.
Thus, the random graph G(N;a, ) can be seen as a dependent version of the Chung-Lu
model that emerges naturally from the hyperbolic geometry of the underlying space. The
fact that this is a random geometric graph gives rise to the existence of local clustering,
which is missing in the Chung-Lu model. There, most vertices have tree-like neighbour-
hoods.

In fact, it can shown that the degree of a vertex u in G(N;a,v) that has type t, is

approximately distributed as a Poisson random variable with parameter proportional to
etu/2,

1.2 Component structure of G(N; a,v)

This paper focuses on the component structure of G(NV; a, v) and, in particular, the size
of its largest component. We denote by |L;] the size of a largest connected component of
G(N;a,v).

Among the key findings of Erdds and Rényi on the theory of random graphs is the
emergence of a component of linear order in a uniformly chosen random graph on N
vertices and M edges, usually denoted by G(N, M). Erdds and Rényi [13] showed that
N/2 is the critical number of edges for the appearance of a component whose number of
vertices is proportional to N. That is, with probability 1—o(1), if % < 1%5, for e > 0, then
every component of G(N, M) contains at most C'In N vertices, for some C' = C(g) > 0,
but if % > %, then there exist constants c;,co depending on € such that the largest
component of G(N, M) has at least ¢; N vertices whereas every other component contains
at most coIn N vertices. In the latter case, the largest component is also known as the
giant component. See [3] or [16] for a detailed exposition and analysis of the emergence
of the giant component.

For (euclidean) random geometric graphs it is known that there exists a critical value
¢ for the average degree such that the size of the biggest component is sublinear if the
expected average degree is less than ¢ and linear for expected average degree greater than
c. The exact value of ¢ remains unknown. For more information on giant components in
random geometric graphs see [20].

In this contribution, we show that when « crosses 1 a “phase transition” occurs. More
specifically, if o > 1, then asymptotically almost surely (a.a.s.), that is, with probability
1 —o(l) as N — oo, |L4]| is bounded by a function which is sublinear in N, whereas if
a < 1, then |L;| is proportional to N.

Theorem 1.4. Let o, v be positive real numbers. The following hold:
o ifa>1, then a.a.s. |Li| < 8R?log® R N/,
e if a < 1, then there exists ¢ = c(a,v) > 0 such that a.a.s. |Ly]| > ¢N.
Recently, Kiwi and Mitsche [18] showed that the second largest component is in fact

at most poly-logarithmic in /N, and at least logarithmic in N.
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Figure 2: Sets of the points of distance R from certain points. (Depicted in the native
model.)

The previous theorem shows there is a phase-change at o = 1. The next result shows
that inside this phase-change, when o = 1, the existence or not of a giant component
depends on the value of v.

Theorem 1.5. Assume that o = 1. There exist constants g S <y <20 such that
the following hold:

o [fv <y, then a.a.s. |Li| < —logﬁgR'

o [fv>u, then a.a.s. |Li| = N/610.

We now proceed with some auxiliary results and the proof of the above theorems.

2 Auxiliary results

We start by deriving some tools that help to approximate the probability that two points
are adjacent in the graph. Let us first remark that the shape of the set of all point of Dg
within distance R of a given point varies greatly depending on the type of the point. See
Figure 2 for a depiction.

In particular, when the type of the point is small, then the set of points of Dy at
distance R from it resembles a “long and very thin balloon” in the native model. The
following lemma is crucial to many computations in the paper.

Lemma 2.1. For any € > 0 there exists an Ny > 0 and a cg > 0 such that for any
N > Ny and u,v € D with t, +t, < R — cqo the following hold.

o If0,,<2(1—¢)exp (i(tu +t, — R)), then d(u,v) < R.

o If0,,>2(1+¢)exp (i(ty +t, — R)), then d(u,v) > R.
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Proof. We begin with the hyperbolic law of cosines:
cosh(d(u,v)) = cosh(R — t,) cosh(R — t,)
—sinh(R — t,,) sinh(R — t,) cos(6,.)-
The right-hand side of the above becomes:
cosh(R — t,) cosh(R — t,,) — sinh(R — t,,) sinh(R — t,,)) cos(6,..)

€2R—(tu+tv)
= [(1 e 2 (14 e )

4
(1 ) (1) o) o)
(2R—(tu"+tv))
- 6T [1— cos(fu,0) + (1 + cos(bu,)) (6—2(R—tu) + 6—2(R—tv))

+0 (e~2@R=(turto))] |
Therefore,

cosh(d(u,v)) <

2R—(tu 1)

y [1 — c08(0,) + 2 (6—2(R—tu) + 6—2(R—tv)) +0 (6—2(2R—(tu+tv)))} '

Since t, + t, < R — ¢y, the last error term is O(N~). Also, it is a basic trigonometric

2
identity that 1 —cos(fy,) = 2 sin? (67“7”> The latter is at most 92’“. Therefore, the upper
bound on 6, , yields:

cosh(d(u,v))

62R_(tu+tv) 95 v _9(R— —9(R— 1
T( 2 +2(6 ( tu)_|_6 ( tv))_’_O(m))

R—(tu+t.)

<

<S——F— (2(1 — g)%elttomB 4 2 (e7 2Bt 4 o72E-D)) 4 O (1)
(1 _ peft Lot | teta
=(1-¢) 2+2(e + e 4+ 0(1)
eR €R €R
1—e)?— +e— 1) < —
< ( 5)2+52+O()<2,

for N sufficiently large and ¢ such that e < %5, since t,+t, < R—cyand t,,t, > 0. This
implies that ¢, —t,,t,—t, < R—cy and, therefore, % (etuto 4 elvmtu) < % (eR_CO + eR_CO) <
S%R. Also, since cosh(d(u,v)) > e it follows that d(u,v) < R.

To deduce the second part of the lemma, we consider a lower bound on (2.1) using
the lower bound on 0, ,:

2R~ (tutty)

4
2R~ (tu+to)

> — (1 — cos (2(1 + 6)6%“"—”1’_}2))) + O(1).

cosh(d(u,v)) > (1 —cos(fy)) + O(1)

(2.2)
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Using again that 1 — cos(f) = 2sin® (£) we deduce that
2
Since t, + t, < R — ¢, it follows that ¢, + ¢, — R < —cg. So the latter is
1 2
sin (5 4(1+ 6)2€t“+t”_R) > 2 (1 + %) elutto— R,

for N and ¢y large enough, using the Taylor’s expansion of the sine function around 0.
Substituting this bound into (2.2) we have

1
1 —cos <2<1 + 5)6%@"“”7&) = 2sin® (— 4(1 + 8)26t“+t“R) :

e\2 el
cosh(d(u,v)) > (1 + 5) 5 +0(1).
Thus, if d(u,v) < R, the left-hand side would be smaller than the right-hand side which
would lead to a contradiction. O

We will define approximating areas of the circle of radius R around a given point u,
motivated by Lemma 2.1. We call these bounding areas inner and outer tube of the point
u.

Definition 2.2. For a given point u € Dgr and for € and Ny as in Lemma 2.1 we call the
sets

o I = {v €Dpr:0,, <2(1 —¢)exp ( (ty +t, — R))} the inner tube and

1
2
o I7:={vEDr:0,, <2(1+¢e)exp (:(tu +t, — R))} the outer tube
of the point u.

Although by our definition there is no unique inner and outer tube, we will talk of the
inner and outer tube. These should always be for suitably chosen € and Ny in the given
context. Lemma 2.1 shows that, for sufficiently large graphs, all points in the inner tube
of a typical vertex u (that is, a vertex of low type) are of distance at most R of v and all
vertices of distance at most R of u are within the outer tube of u. We will use outer and
inner tubes to derive stochastic bounds on the size of a component.

During our proofs we will also use the following lemma, which states that every vertex
in the neighbourhood of a given vertex u will still be connected to © when we increase t,,.

Lemma 2.3. Let u, v and w be points in Dg with 0,, =0 and t, < t,. If dlu,w) < R
then d(v,w) < R.

Proof. Using basic properties of the geometry of the hyperbolic plane, it follows that the
geodesic between two points of radius at most R uses only points of radius at most R.
Also note that the geodesic between the origin and any point is the ray from the origin
through the point. Let O be the origin, and consider vertices u, v, w as in the statement
of the lemma. Consider some isometric mapping which maps w to O. As w € Dg, we
have d(O,w) < R. By the requirements of the lemma, d(u,w) < R. So O and u are
within the disk of radius R around w, and so is their geodesic. Since 60, = 0, it follows
that v lies on this geodesic and therefore d(v, w) < R. O
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3 Theorem 1.4: the subcritical case

To show the first part of Theorem 1.4, we construct a process that exposes the angle that
the component of a given vertex v covers. We already discussed that vertices that are
close to the centre have a higher expected degree than those close to the periphery. The
connectivity in a hyperbolic random geometric graph highly depends on the structure
of the sub-graph that is induced by vertices of high type. When a > %, the types of
all vertices of G(N;a,v) are bounded away from R a.a.s. This is made precise in the

following lemma.

Lemma 3.1. Let w: N — N be an increasing function such that w(N) — oo as N — 0.
With probability 1 — o(1) all vertices in Vi have type at most 5= R + w(N).

The proof of this lemma can be found in [11] (Corollary 2.2). Thus, it suffices to
consider vertices of type no larger than this bound. Note that all vertices have type
smaller than and asymptotically bounded away from R/2, since o > 1. We will consider
a vertex u of type iR + w(N) and analyse a breadth exploration process, through which
we will bound the total angle of the component which contains u: if C'(u) denotes the
connected component u belongs to, we define

O(u) :=max{0,, : veClu)}.

This quantity represents the “width” of the component u belongs to from the point of view
of u itself. When working with this we generally need to double it as it only considers the
direction of maximum extent but we need to take both into account. Let 0 < 6.(u,v) < 27
be the angle between the points u and v, in clockwise direction from the point u. We
define a bounding path, which is a path on Dg that is not crossed by any edge. The length
of a bounding path essentially bounds the number of vertices of the component in which
it is rooted. In particular, if a bounding path induces a partition of Dy into two parts,
one of which covers an angle of at most o(1), then a.a.s. any component in this part will
be of sublinear size.

Definition 3.2. We call a series of points P = (p1,p2,-..,Pm) i Dg a bounding path
for G(N;a,v), if the following hold:

(i) The points py and p,, are on the boundary of Dg, i.e. their radius is R. Also,

0;01,172 = epm—l,pm =0.

(i1) For even i, we have 0.(p1,p;) < 0c(p1,pit1) and t,, =t while for odd i we have

Oc(p1,pi) = Oc(p1,piv1) and t,, # ...

Pit17

(iii) Let AU B be the partition of Dg incurred by P, using radial lines to connect vertices
that only differ in type and arcs to connect vertices that only differ in angle. Let
B be the part containing the origin and let A contain all points on the connections.
There is no pair of adjacent vertices a € A and b € B in G(N;a,v).
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Note that (ii) ensures that P does not cross itself, so it does partition the disk into
two parts and (iii) makes sense. Also, for 1 < ¢ < m and any vertex v with 6,,, = 0
and t, < t,,, the component of G(NN;a,v) that v belongs to covers an angle of at most
ec(plvpm>'

We will now proceed with the definition of the breadth exploration process that we will
use to get a short bounding path. Note that ﬁ <lasl<2a—1<%< a>1. Wechoose
¢ > 0 small enough so that % :=2a — 1 —¢ > 1. Throughout this section we will need
several small constants e. We will assume that we choose one ¢ for all these and require
N to be large enough to satisfy everything. Given some constant C' > 0, let ¢ be the
minimum 7 such that A' (;5R +w(N)) < C. Note that Cy := A (;=R+w(N)) = AC.
We partition the disk Dg into three bands:

1
B() :{UEDR%R+W<N)<15U<R}

1
BCA :{’U € Dg: Cy<t, < 2—R+W(N)}
Q
B,:{UEDR:OQtngA}
By Lemma 3.1 a.a.s. By does not contain any vertices. We define two phases for our

random process, one on B¢, and one on B_. We start the process from a point u € Dy with
0 <ty < 5= R+ w(N); in fact, due to Lemma 2.3 we may assume that ¢, = 5~ R + w(N).

Phase I Letting t; := \° (iR + w(N)), we partition B, into i bands

Bgi :{U € Dr:t; <t, <ti_1}

We know that there exists i, € {1,...,4} such that u € Bg;). We consider the
domain of attraction around wu:

o5 (tutty)
Au 2:TJQBC)\: U:9u7v<2<]—+6)l/T7U€BC>\

and fori =1,...,ip we let A denote the set of points in A, N Bgi that are in the
clockwise direction from wu.

By Lemma 2.1, the domain of attraction A contains all points of the band Bgi
that are within distance R in clockwise direction of the point u, but not every point
in A7 must necessarily be within distance R of u. We define the first phase of the
breadth exploration process in the clockwise direction started at u as follows. Note
that the auxiliary points defined in the process do not necessarily (in fact, with
probability 1 they do not) correspond to vertices of the graph.

1. v:=wu and © := 0; let i, be such that v € ng);
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2. let jo be the smallest 7 such that AP contains a vertex;
if such an index does not exist, then go to Phase II;

if jo < iy, the goto Step 5; (we then say that a backward jump occurs)

1/2(tv+tj071)

3. let ©1 := 2u(1 + ¢)¢ =
tjo—lu ‘91, — @1)
4. go to Step 2, setting v := w and O’ := O’ + O;

. Let w be the point of polar coordinates (R —

Lty +t
5. let v/ be the point of polar coordinates (R — to,0, — 2v(1 + 5)62(N+ 0)); set
V=
Phase 11
1. let v and ©" have their final values after the execution of Phase I;
2. let w € Dpg be the point of type Cy and 6,, = 2v(1 + 5)% in the

clockwise direction;
o1/2(to+Cy)

3. set O =0 +2v(l+¢) x
point u that has relative angle at most 2v(1 +¢)
direction;

and let T.F be the half-tube containing every
61/2(tu+c)\>
N

with w in clockwise
4. if T is empty, then exit;
else start the process again from Step 2 of Phase I with ©" := ©' 4+ 2v(1 +

8) el/2(tp+C)y) 61/2(t0+c>\))

~— and v of polar coordinates (R — to, 0, — 2v(1 +¢) N

Note that this process does not involve any points of type higher than ty. Indeed, this is
not necessary as by Lemma 3.1 a.a.s. all vertices in V have types no more than ¢.

We call a single execution of Steps 2-4 of Phase I a round. A maximal series of
consecutive rounds is called a cycle. Thus, if at the end of a cycle a backward jump
occurs, then Phase I proceeds to Step 5, initiating a cycle starting at a point of type
to. This ensures that no matter where the backward jump takes place, vertices that are
within distance R from the new root will be covered.

The set of rounds up to the end of Phase II is called an epoch. Hence, an epoch consists
of repeated cycles, whose repetitions stop with an execution of Phase II. The breadth
exploration process starting at a vertex/point u is the process consisting of repeated
epochs with the initial root v being the point of type ¢y and relative angle with respect to
u that is equal to 0. (Thus, in fact, the process does not start from u but at the “image”
of u that has type ty.)

Recall that ©(u) is the maximum relative angle between any two vertices in the com-
ponent that contains u. We prove the following lemma:

Lemma 3.3. For any vertex u € Vy of type less than tg, if ©" denotes the mazimum of
the angles gained during the breadth exploration process started at u in the clockwise and
the anticlockwise direction, then O(u) < 2-©'.
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Proof. Using the breadth exploration process in the clockwise direction, we get a series
of root points - these are the vertices in the beginning of Phase I. Let uq,...,u,, be
the part of this series that corresponds to the last cycle, i.e. there was a backwards
jump before u; and there is no more backwards jump from there on. Let @; be the
radial projection of the point w; to type t,, ,. The series uy, Uy, ug, Ug, . . ., Up—1, U, thus
always alters between changing the type and relative angle, as required in condition (ii).
Similarly, in anticlockwise direction, we get the series u!, u}, ub, 45, ..., 0y 4, u). Letting
U, and 1y be the radial projections of u,, and u} to the boundary of Dg, we get the path
P = (), up, Wp_y, ... Uy, Us, ..., Ump—1,Un, Uny). If the breadth exploration process only
uses a total angle that is o(1), which is the case a.a.s., then (i) and (ii) are naturally true
if u; # uy. If uy = v} (implying u; = u = u}), almost surely (with probability 1) we can
push u; in clockwise direction by some small amount to fix this problem without causing
further problems elsewhere (i.e. all the adjacencies of u; stay the same).

To prove that P is a bounding path for G(N;«a, ) we need to show that there is no
pair of vertices (v, w) such that v € A, w € B and v ~ w. Assume for a contradiction
that there is such an edge vw. Without loss of generality we only consider the series P, =
(Uy, Uy, Ug, Usy - ooy U1, Upy) . I Oo(p1,w) < 0.(p1,upm), then there are two consecutive root
points, u; and w;41 such that 0.(py, u;) < 0.(p1,w) < 0.(p1,uir1). By Lemma 2.3 and since
tus1 < tw, we have d(u;, w) < d(u;, ui41) < R, a contradiction to the choice of u;41 as the
next root vertex.

Now assume that 0.(p;,w) > 0.(p1,u,). By Lemma 2.3 and as v € A, there is an
i > 1 such that 0.(p1, U;—1) < 0.(p1,v) < 0.(p1, u;)(where, for convenience, 4y = u'). But
asv € A, we have t, < t,,, so by Lemma 2.3 and the fact that decreasing angles decreases
the distance we have that u; is adjacent to w. By the choice of w;y; in the breadth
exploration process, we thus have 0.(p1,w) < 0c(p1, uiv1) < Oe(p1,um) and t, < ty,,,
so w € A, a contradiction. Note that ¢ < m since as u; is adjacent to w the breadth
exploration process cannot have stopped at ;.

So using the breadth exploration process twice we indeed find a bounding path. In
particular, the angle gained in both direction gives a slice of the disk that contains the
entire component of wu. O

We now want to bound from above the angle that can be gained during the execution
of the process. Note that increasing the type of a vertex u will keep intact all the edges
incident to w. Thus if «’ is a vertex replacing u, of type t,, > t, and with relative angle 0
to u, we have ©(u’) > O(u). This justifies the choice of the type in the following lemma.

Lemma 3.4. Let u € Dg be a point having t, = to. If the breadth exploration process
starts at point u, then by the end of it ©' < R*log® RNY/*~! with probability 1—o (N'/*~1)

Proof. Let us consider the breadth exploration process started at a vertex u having type
to = 3=R+w(N). For an ¢ > 0 we let 7. denote the first round at the end of which @ > ¢
if there is such a round, otherwise 7. = co. We also denote by ug(t) the root vertex at
the beginning of the ¢th round and let 7,,, = 0 denote the index of the band this vertex
belongs to. We will first bound from below the probability that the exploration process
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does not backtrack during the ¢th round. Let Bt(iuo) be the indicator random variable that
is equal to 1 if and only if backtracking does occur during the tth round assuming that
the root vertex is in 4,,.

Claim 3.5. For e € (0,2m), let t < T.. There exists a constant K = K(a,v) > 0 such
that for any N that is sufficiently large we have

Pr[Bfi“O) = 0] > exp (—Ke_%t%) .

Proof of Claim 3.5. Let us write ug = ug(t). For t < T. we give a stochastic upper bound
on the number of vertices that belong to U;-":‘)O 1(,,]0) Hence, we will be able to give a lower
bound on the probability that this region is empty. In other words, we will bound from
below the probability that no backtracking occurs during the tth round. Let N; denote
the number of vertices that have not been exposed at the beginning of the ¢th round.
Using Lemma 1.3, the probability that one of them will belong to U;-":OO q(fo) is bounded
from above by

2V(1 —i—e’:‘)()é /to e%(tuo—&-s) — < 21/(1 +€)Oé /to e%(tuo-l-s) o
2 - O/, N 2r —¢e  J,, N
S 41/(1 + g)a etuO/Q (1/2=a)ti,,
2r—¢)(2a—1) N
w(l+e)a g3 (tiug—1+ting ) —adting . p(iuo)
S (27 —6)(2a —1) N e

Hence, the number of vertices which during round ¢ will fall into UZ"O Aq(f;)) is binomially

(Fug)

distributed with parameters N, p, In turn, this is stochastically bounded from above

by a binomially distributed random variable with parameters N ptiuo Note also that if

the number of vertices that fall into U .Au0 is positive, then backtracking occurs. Hence,

the probability of backtracking during round ¢ is at least Pr [ Bin(V, pgl“o)) = O].

Recall that t;, _1 = §t;, = (2a — 1 —¢)t;, , whereby
1 1 1
§(tiu0—1+tiu0) = 5(2@— 1 — €+ 1)t ug = 5(20[— 1 — e+ 1)tiu0
€
= (-5+0)tur
This shows that pf"o) = O(%), justifying the following exponential approximation.
Setting K' = _dvlte)a - we obtain an asymptotic estimate on the probability of

(2r—e)(2a—1)"
backtracking:

Pr[Bin(N, ") =0] = (1 - <iuo>)N
) =0 =(1-p

= exp <_K/e%(tiu0*1+tiuo)_Oétiuo (1 + 0(1))) .
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Hence, we obtain

. 4 N )
Pr[Bin(N7 p§ZUO)) = O} - (1 - p§1u0)> = exp <_(1 + 0(1))K/e_5tiuo>

> exp <—2K’e_§t""0> ,

for any N sufficiently large, uniformly over all possible values of i,,. (The latter is the
case since always t;, < R/2.) Taking K = 2K’, the claim now follows. O

Now, observe that the above claim implies that the probability of no backtracking at
a certain round can become very close to 1. Indeed, note that ¢,, > AC' and, therefore,
the exponent on the right-hand side of the bound obtained in Claim 3.5 can be made as
close to 0 as we want, provided we choose C' large enough. Moreover, if ¢,, is bounded
from below by a function of N that increases as N — oo, then the probability of no
backtracking is in fact 1 — o(1). These observations are key to the deduction of the first
part of the lemma.

We first show that provided that © is much less than e, the number of cycles within
an epoch is essentially stochastically dominated by a geometrically distributed random
variable that has probability of success 1 — ¢, provided that the parameter C' = C(g) is
large enough. Suppose that an epoch starts with ©’ < g(IN) where g(N) = o(1).

Recall that a cycle starts at a vertex that has type ¢y = %R + w(N). Let T¢, denote
the random variable that is the length of a cycle. We say that a cycle is successful if it
exits to Phase II. Note that a cycle is successful, that is, no backtracking occurs, if and
only if BEZ“O) =0, forall t <Tg,.

We will bound the probability that, conditional on ©’ < g(V) at the beginning of the
epoch, the number of cycles is at least R. In particular, we will show that for every e
there exists a C' such that this probability is at most ef*~1.

Claim 3.6. Let g(N) = o(1). For everye > 0 there exists a C = C(e) such that for any N
sufficiently large, conditional on © < g(N) at the beginning of an epoch, with probability
at least 1 — e~ the total angle gained during the epoch is at most 2Rlog? RNY*~1,

Proof. To bound this probability, we will repeatedly apply Claim 3.5. However, in order
to this we need to ensure that ©" does not exceed € whenever at most R cycles have been
executed.

Hence, we first need to give an upper bound on the angle that is gained during the
execution of a cycle. If @’TCA denotes this angle, then

W o (tittitr)
O, <2142y = n

i=0
But for all i we have t; < ;- R+ w(N). Hence, t; + t;11 < £ R+ 2w(N), whereby
o3 (tittiv1) ezl §Hw(N)

_ w(V) 1
< - Nal,
N N ¢

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.24 16



Using this with w(V) = log log% R, the above sum can be further bounded from above by

1 ip=0(log R) N1/a
e < 20(1 4 €)(ip + 1)e 88 B N1 log? R —

(3.1)

if N is larg;e enough. Therefore, after » < R cycles the angle gained will be at most
Rlog? R% < g, for any N that is sufficiently large. Note also that this quantity bounds
the total angle that is gained during an epoch consisting of at most R cycles.

Hence, applying Bayes’ rule repeatedly, Claim 3.5 implies that

. iO
Pr[Bt(zuo) =0, Vt < TCA] > Hexp (—Ke_gti) , (3.2)
i=0

t;

Let a; := e~ 3% and note that since t; = \'tq we have for i < ig

;-1 Sto(NT1=)) Stox’(3-1)

— e 2 — e 2 7%250”0(%71)
a;

<e

Thus, if C' is large enough, then

20 [e'e)
tio >AC
_E¢. _E¢. _ 4. _ *0 _E
2 :6 =t <e ZtZOE :6 2zC’(l A) < %¢ 2>\C’_
=0 i=0

Substituting this bound into the right-hand side of (3.2) we obtain
Pr[Bgiuo) =0, Vt < TCA} > exp (—QKG_%/\C) >1—2Ke 22 > 1 —¢, (3.3)

choosing C' large enough so that the last inequality holds. Hence, the probability that
backtracking occurs before T¢, is at most ¢, for C' = C(e) that is sufficiently large. In
other words, the probability that the cycle is not successful conditional on ©" < g(N) at
the beginning of the epoch is at most €. Therefore, the conditional probability of having
R cycles during the epoch is at most 71,

As we pointed out above the total angle that was gained above during the execution
of the R cycles is no more than Rlog® RNY/*~!. During Phase II, the angle gained is at
most

$(to+Ch) +1iR
(1 + s)eQT < dv(l+ g)e%“‘ﬁw(N))eQTz — 0 ( é—l) .
Hence, an epoch having at most R cycles adds at most 2R log? RN'/*~! to @', provided
that N is sufficiently large. O

Now, we will show that as long as ©' has not grown too much, the probability that an
epoch is the final one is asymptotically bounded away from 0. To see this, we will bound
from above the probability that 7.7, that was defined in Step 3 of Phase II, contains at
least one vertex conditional on ©" < e. In particular, conditional on this, the probability
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that a given vertex whose exact position in Dy has not been exposed yet belongs to T,
is at most

2va(l +¢) /to e2(CatD) ot = va(l +¢) e/? [ (2
1/a<z  4va(l +e¢) eCr/2 1

Go_Don—g ~ =0y

2m — ¢

Under the above conditioning, the number of vertices that belong to 7T, is stochastically
bounded from above by a binomially distributed random variable with parameters N, p;;
Hence, the probability that T." is empty conditional on ©’ < ¢ is at least

(1) = exp (- T o))
dv(l+¢) AN
> exp (—m eCr/ ) =:9,

provided that ¢ < 7w and N is sufficiently large.
Now, weset E := | — 1;11(4& R|. We will finish the proof by showing that the probability
that less than E epochs take place each having at most R cycles is 1 — o (Nl/o‘*l). This
together with Claim 3.6 imply that with this probability the total angle gained during
the process is at most 2E R log® RN'/*~1,

Indeed, the probability of having E epochs each one having at most R cycles is at

least

§F > §ImE R = exp ((1/a — 1) R) = O(N?W/a=b),

and the latter is o (Nl/a_l). Also, arguing as in the proof of Claim 3.6, we deduce that
the probability that there exists one among the first E cycles having more than R cycles
is at most Ee® = o(NY/*~1)  provided that ¢ is chosen small enough. O

The above lemma together with Lemma 3.3 imply that

Lemma 3.7. For any u € Vy we have O(u) < R%log® RN'Y*=1 with probability 1 —
o (NYer1y,

We will now deduce the first part of Theorem 1.4 from Lemma 3.7. Let B denote the
set of vertices u for which ©(u) > 2R?log® RN'/*~1 - we call these vertices bad. Thus,

Lemma 3.7 implies that
E[|B|] = o(N"®).
Markov’s inequality in turn implies that for any § > 0 we have that with probability
1—o0(1)
|B| < 6NV, (3.4)
Assume now that G(N;a,v) has a component C of order greater than 8R?log® RN/,

Hence, on the event (3.4), there is at least one (in fact, many) vertex u € C in this
component that is not bad.
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A sector of Dpg is the area between two radii of Dy of relative angle which is less than
7w - we call this angle the angle of the sector. Hence, since u is not bad, it turns out that
there is a sector of angle at most 2R? log® RN/*~! which contains at least 4R? log® RN/
vertices (in fact, our assumption implies that it contains almost twice as many vertices as
this). But the next lemma shows that this is not the case with probability 1 — o(1) and
the first part of Theorem 1.4 follows.

Lemma 3.8. Let  : N — R be a non-negative function such that O(N) = o(1) but
% — 00 as N — 0o. Then a.a.s. there is no sector of angle O(N) that contains at
least 2NO(N) vertices.
Proof. Consider a partition P of Dg into 27/0(N) sectors of angle 6(N). If Dg contains
a sector as in the statement of the lemma, then one of the sectors in P must contain at
least NO(N) vertices. Now, note that the number of vertices is a sector ¢ € P, which
we denote by N, is binomially distributed with parameters N and 6(N)/27. Hence,
E(N,) = 5= NO(N) and since NO(N) — oo and applying a Chernoff-type bound we
deduce that
Pr[Ng > NG(N)] = exp (—Q(NO(N))).

Therefore, using Markov’s inequality we obtain:

2

Pr[EI seP : N, > N@(N)] < W;\T[)exp (—Q(NO(N))) = o(1),

which concludes the proof of the lemma. O

4 Theorem 1.4: the supercritical case

In this section, we will show the second part of Theorem 1.4. Namely, we shall assume
that a < 1 and with |L;| denoting the size of a largest component of G(N; «, v), we will
show that there exists a ¢ = ¢(a, v) such that a.a.s. |Li| > ¢N.

4.1 Proof overview

We will consider a set of homocentric bands in Dr. The innermost band consists of those
vertices of type at least R/2. Note that the subgraph of G(V;«,v) that is induced by
the vertices which belong to this part of Dg is a clique. This follows from the triangle
inequality, which implies that the distance between any two vertices there is at most R.
The remaining bands are determined by a sequence of numbers ¢;, with t, = R/2 and t;
defined by the following recursion:

47
: (um o) ) ! (4.1)

if 0 <t; < t;_1. where now \ := 2 (a — %) — we assume that o > % The bands are now
as follows:

BOZ{UEDRZR/2<tU<R}andBi:{UEDthi<tU<ti_1}.
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We shall assume that ¢ < T, where T' = T'(a, v, ¢) and € is a positive real number which
we will assume to be small enough for the purposes of our calculations. We will determine
T in Subsection 4.2. Observe that (4.1) implies that provided that ¢; > v(1 —&)*/(4n),

t;, > )\ito for 7 > 0. (42)

We denote by N; the set of vertices which belong to the ith band, for 7 > 0, and let N;
denote its size. Furthermore, for i > 0 we denote by N/ the set of vertices in B; that
have at least one neighbour in N/ ; — here we set N} = Ny. We say that these belong to
the active area of B;. This definition together with the fact that a clique is formed in N
imply that the graph induced by |J_, NV is connected and contains 3. |N?| vertices.
Our aim is to show that a.a.s. this quantity is linear in N. We let N = |NV/|.

More specifically, we show that the number of vertices in N/ stochastically dominates
the number of vertices in a subset of B; that has arc ©;. This makes working with sizes
a lot easier, as implications for the size of N/ can be deduced from the angle ©; ;. In

particular, with probability 1 — o ()

0,
N! | > N, %1 (1—e). (4.3)

The proof of this can be found in Section 4.4. Next we argue (cf. Section 4.4) that
conditional on N/_; as above and ©;_; > 7 with high probability ©; is at least a certain
fraction of ©;_;.

Lemma 4.1. Conditional on N;_1 € (1 £&)E[N;_41], on ©;_1 > m as well as on N]_,
satisfying (4.3) with probability 1 — o (L) we have

In N
@i 2 62'71 (1 — eﬂti) s (44)
for some constant v = y(a,v,e) > 0, uniformly fori=1,...,T.

Note that we take ©g := 27.
To derive the stochastic domination we will assume that the following conditions hold:

e any vertex of type ¢t with ¢; > R/2 is of type R/2;
e any vertex of type ¢t with ¢; <t <t;_; is of type ;.

Lemma 2.3 ensures that for a vertex v € B;_; the area consisting of all points that belong
to B; and have distance R from v becomes smaller, if the type of v within the bounds of
B;_1 decreases. Now, using the first part of Lemma 2.1, we can use the inner tubes to
obtain a further lower bound on this area. In particular, we will consider only vertices
that fall within the inner tube of v € N_; assuming that the type of v is #;_; and deduce
a stochastic lower bound on the size of N/.

Using concentration arguments we will show that a.a.s. N/ > % N % (emoti — gmati-1),
Hence, if T' is such that

) (4.5)

N | —

ﬁ (1—e) >

=0
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and for some C' > 0

tT < O?
then it will follow by (4.4) that
T 1 T
ZN{ > 3 N (e*atT — e*“to) H (1 — e*m) > cN,
i=0 i=0

for some ¢ = ¢(a, v).

4.2 The definition of T

Firstly, we will require that t; > B; where By = Bj(a,v,€) > e is large enough so that

we have

21n (V(4—7Tt~) <(1—a)t,.

1—g)t"

This condition implies that

4 ti<ti 4
t; < )\ti—l + 21n —th < ' /\ti—l +21In T
v(l—e)?

(4.7)
< (A—f— 1-— Oé) ti1 = (20& —14+1- Oé) ti1=at;_1 <t;_1.

We use (4.8) in order to deduce that if ¢; > By, then

e—a(tifl—ti) < e—tifloé(l—a) )

Given € > 0, let C'= C(«,v,e) > B be such that

e—Ca(l—a) <e,
v(l—e)*
—<C
4dr =&
) 4dm '
47 1 -«
for all t > C' we have 21n t) < t,
v(l —e)t 2
e*'y/\C/Z 1

[—e0-aC =73

where v = y(a, ¢) > 0 will be specified later. Let
T:=min{i : t; <Cor ©; <}

Thus, by (4.8) we deduce that
T = O(log R).
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(4.8)

(4.9)

(4.10)

(4.11)
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Hence, (4.9) implies that for any ¢ < 7" we have

_1=2C

t;
emolti-i=t) T g (4.12)
The definition of T" also implies that for ¢ < T
v(1—e)t
4
as required above. Recall that this ensures that the second term in the left-hand side of

(4.1) is positive as
47
In{ ——t;] >0,
! <u<1 — ey )

and thereby (4.2) holds for all ¢ < T
Secondly, we will require that

t; >

T

[[a—e) > % (4.13)

i=1

As we shall see in the next section, this will imply that
T
0,260 [[(1-e) > (4.14)
j=1

As Oy = 27 we need that the product on the right-hand side of the above is at least 1/2.
This will be the case if .
1
7 Z
Z e <
7=1

To bound the above sum, we will give an upper bound on the difference of t; —¢,_;. We
have

tj,1>C,Oc<1

(4.8)
tj — tj—l < (Oé — 1)tj_1 < (Oé — 1)0

Hence, we can write

T oo
§ e Vi < T § :efﬂ(lfa)c_
j=1 7=0

Also by the third condition in (4.10)

ANC < Mp_y =ty —2In <ﬁtT> < tr, (4.15)
whereby
tr > M\C. (4.16)
Therefore,
ie‘”tﬂ' < e url
1 — e(1=a)C 2’

j=1
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4.3 Some concentration results

In this sub-section, we will show that the number of vertices that belong to each band
is almost determined. Note that by Lemma 1.3 (since t; < R/2, for all i > 0) we have
uniformly for all ¢

E[N] = (1 — 0(1))N@/t Tttt = (1 o(1))N (e — etin1) (4.17)

i

(Here we take t_; = R.) We need to show that this quantity grows fast enough as a
function of N. To see that this is indeed the case, we write

4.12
E[N] = (1 — o(1))Ne % (1 — e-oti1=t) ‘¥ yeati(p ¢ (4.18)
Hence, since t; < R/2, it follows that
E[N;] > (1 — &)pez(-0F = Q(N'-), (4.19)

which tends to infinity as N grows, since o < 1.
Hence, applying a standard Chernoff bound we deduce that with probability 1 —
exp (—Q (N17%)) we have
N;=(1xe)E[N].

Hence, since ' = O (In R) (cf. (4.8)), a simple first-moment argument shows that with
probability 1 — exp (—Q (N'7%)) we have

N, = (L+2)E[N], (4.20)

for all 0 < ¢ < T. In what follows, we shall condition on this event, which we denote by
Cyn.

4.4 The inductive step

Throughout this section, we will have ) = 2(1 — g)eztittii=B) for 0 < i < T and
0 = 2(1 — ). Assume that there are N/ , vertices in the active area of B;_;. For a
vertex in v € N7, let S(v) denote the arc of angle #%) around the projection of v on the

circle of radius R — ¢; (in other words, the set of points of type t;) - we denote this circle
by C;. We call this the shadow of v. Let

Si= |J S

UG/\/;-’_I

denote the union of the shadows of the vertices in N _; — this is the active area of the
band B;. Let ©; be the total angle of S;.

We will determine ©; conditional on ©,_;, assuming that we have not specified which
vertices among those in N;_; belong to S;_;. Let S/ ; denote the projection of S;_; on
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the circle C;. Note that S;_; is the disjoint union of arcs each of them having angle which
is at least 80—, Moreover, the total angle covered by Si_,is ©;_; as well.

Assuming that the vertices of N;_; have all type ¢;_;, we expose their positions on
C;,—1 and consider the shadows of those points that will fall into S;_;. Recall that this
number is a stochastic lower bound on N/_;, whereby

©;_1
or

Furthermore, since ©; ; > m as i — 1 < T and N;_; = Q(N'"?), as the event Cy is
realised, an application of the Chernoff bound implies that with probability 1 — o ( 1 )

InN
O;_1
N/, > N,y 2Z7T

E [Ni/_l | Ni—1, 9141] 2 Niq

5 (1—c¢). (4.21)
We will show that conditional on N/ ; as above and ©;_; with high probability ©; is at
least a certain fraction of ©,_;.

Lemma 4.2. Conditional on N;_y satisfying Cn, on ©;_; as well as on N]_; satisfying

(4.21), with probability 1 — o (lnlN) we have

©; > 0, (1 — 6_7“) )
for some constant v = y(a,v,e) > 0, uniformly fori=1,...,T.
Proof. To show this statement, we divide each subinterval of S!_; into segments of angle

Oi1
by = ——.
1 NZ,

It is possible that each of these subintervals contains at least one segment of smaller angle.
However, each subinterval of S]_; contains many segments of angle ¢;_;. We denote by
P the collection of all those segments. We will use a bounded-differences concentration
inequality in order to show that with high probability most of them are contained in S(v)
for some v € N/_;.

Firstly, let us bound from below the size of P. Recall that each subinterval of S]_;
has angle at least #¢~1). Therefore, there are at most ©;_; /00~ subintervals. Each such
subinterval contains at most one segment of angle less than ¢; ;. Hence,

@i—l @i—l ©;-1<2m 9 2T
But
. 1 ti_o>t; 1 1 ti—1
0D = 2(1 — e)edtimittiaR) =S (1 )3 @R = 9p(1 ) oo (423)

and also since Cy is realised (4.18) implies that

Ni_1 > (1 —¢)2Ne it = (1 — e)?pelt/2-oti-1,
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Thus, in this case

2 i—1 i1 3 (1 . ti_12R/2 3 (1 R/
Ni—le(l_ ) 2 Ni—le(z_ ) — 2]/(1 —_ 5) e( _a) i—1 2 21/(1 _ 5) 6( _a) / )

This together with (4.22) imply that
P> N2, (1- O (N ). (42

It is now immediate that the total angle covered by the union of the segments in P, which
we denote by Op, satisfies

Op > 0,1 (1-0(N*)). (4.25)

To be more precise, recall that each subinterval has angle that is at least 7~ . Since
the event Cp is realised, we have

@ifl (4.18) 2T €2ati
CONZ T (1-e2 NP

Now, (4.23) implies that

lioy (1 —e)m eVt 1<2at<to=R/2 (1 — )1 ea—DE/2
= < b

0(1) 1% N v N

(]‘ - 8)71- oa— a<l

T 6( R ‘< 0(1)

In other words, uniformly for all i < T, we have 80~ > 60 > ¢, ;.
For a segment o € P, let £, denote the event that the segment o is not covered by
S(v), for all v € N/ ;. The probability that the segment is indeed covered for a certain

v e N/ | is at least % > % Hence
g\ Vit 00 N
Pr[é}, | N{_l,@i_l] < (11— Lexp | — =
2T 2m (4.26)
(4.21) 000, N, |\ (®i-1>m) 0O N, '
< exp (—(1—8)#> < exXp (_(1_8) Ar 1) )

Now, on the event Cy, the following holds through (4.18) and (4.20)
ODN,_, > 20(1 — ¢)3esltitti-n—ation

But by (4.1) we have

Lt ti) —atig =1 ir__,
S+ ti) —atig =In | o———1;
2 ! ! 2w(l —e)t
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which, if substitute in (4.26) implies that
Pr[é’g | N,{,l,(ai_l] <et, (4.27)

Let P’ denote the subset of segments of P that are covered by S(v), for some v € N/_;.
Therefore,
pp =B [|P|| N_,0:1] > |P| (1—e"). (4.28)

For any vertex v € N/ _;, S(v) covers at most 20 /{;_; segments by Lemma 2.1. Thus
changing the position of one vertex in N ; changes the number of covered segments by
at most 209 /¢; ;. Hence, applying the Hoeffding-Azuma concentration bound (cf. [16]
Theorem 2.25 p. 37) we deduce that

2 o—(l—a)ti—1/4p2
, _ —(l—a)ti_1/8 , / ‘ . i /’LP/e i—1
Pr[|73 |<(l—e V) | Nzela@z—l} = eXp ( L < N! (6®)2 >) '

(2

We will show now that

2

—(l—a)ti,1/4€2
Hp€ i-1 _ ( §(1—a)>
4 =Q (N1 . 4.29

N, @07 429

We will estimate the above quantity up to absolute multiplicative constants — we write
A 2 B to denote that A/B is bounded from below by some constants that depend only
on a, v and . To derive the above lower bound we will need to deduce a stronger upper
bound on ¢; in terms of ¢; 1. By (4.1) we have

47
v “(wl—@4)

ti<ti—1 47 t;—1>C, (4.10) 11—«
< A 21 —t;_ < A ti 1.
) )

(4.30)

Now, we have
N%le—(l—a)ti_1/4£?_l (4.15),(4;8),(4.24) N e~ (ati/agz |

N/_1(6®)2 ~ Ni_1(6®)2

2 2 (413 2
> N3 e (lme)tia/4 O N ( >1 : _N e~ (5=a)ti—1/4—t;
~ il Ni{l etitti-1 ™~ i1
(4.18), ti<ti—1 (4.30)
Z Ne_(5_a)ti71/4_ti+ati71 Z Ne(—(5—a)/4—>\+(1—a)/2+a)ti,1 )

But
—-G6-—a)/i-A+(1-a)2+a=—-50—-a)/4—2a+1+(1—a)/24+a=1/4—5a/4.
Hence,

Iu/%/e_(l_o‘)ti—l/4£2

i—1<SR/2,a>1/2
. i—1 > N€(175a)ti,1/4 fimis /> >1/
N (00)2 ™

eill=a)g > Ni(l-a), (4.31)

~J
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Now,

@,’ 2 B,’_1|’Pl|.
1

Hence, conditional on N/_; and ©,;_; with probability 1 — o (m) we have

0; > &'-1#73/(1 — e*(a*%)tiﬂ/Z)‘

We will bound the right-hand side of the above from below as follows:

(4.28)
Coap (1 — e (m2)5/2) P57 g p|(1 — ety (1 — e (o 2)tar)
(4.24

2 ) gi_le_l (1 —0 (Na—l)) (1- e_t")(l . e—(a—%)ti_l/Q)
=0, (1 -0 (Na—l)) (1- e_t")(l _ ef(af%)ti,l/Q)
>0, , (1 —_0 (Na—l)) (1 et a—%)ti,1/2> ‘

(4.32)

But by (4.1) we have

1 Ny, 11 dr_ \emem L,
sla—5 ) tiaa=-ti—sn| ———t —(L =)t
o\ T 2) T T e M b — e TN

We substitute this bound into the last expression of (4.32) and deduce the following: there
exists a constant v = y(¢) > 0 such that for all V sufficiently large and for alli =1,...,T
we have

@i 2 @ifl (1 — eﬂti) . ]
4.5 Proof of Theorem 1.4

Fori=1,...,T let & denote the event that for all 0 < j < 4, we have
0; 20,1 (1—e)
and

9,

Note that conditional on Cy, the latter inequality together with (4.17) and (4.20)
implies that for any NV sufficiently large

0.
N>z (1—¢)’N (e —e 1) 2—;

Now by (4.21) and Lemma 4.2, we have

Pr[& ] & Oy | =10 (}%) .
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But as the sequence {¢;}i—1. 7 decreases exponentially fast (cf. (4.8)), we have T' =
O(In R). Hence, since the events {&;},—1 7 form a decreasing sequence, we deduce that

Pr[gT | CN} =1-o(1).
On the event &r, we have ©; > 7w for all i = 1,...,T (cf. (4.14)). Therefore,

N>

(2

(1—e)’N (e —e ).

DO | —

which in turn implies that

T

S

i=1

(1—e)®N (77 —e70) > — (1 — )N (e7*/2 — o(1)) .

N | —
N | —

5 Proof of Theorem 1.5

In the critical case, that is, when o = 1, the probability of having a giant component
turns out to depend on the value of v. It will be convenient to work with the Poisson
model P(N;a,v) in which the vertex set is the set of points of a Poisson point process
inside Dg. In Lemma 5.1 below, we show that for certain graph properties, if they hold
a.a.s. in P(N; a,v), then this is also the case in the G(N; a, ) model.

5.1 Poissonisation

Sometimes it is easier to work under the setting where instead of N (fixed) random points,
our vertex set consists of Po(N) points on Dy — of course still sampled independently
according to (1.1). We denote the resulting graph by P(NV; o, ). The benefit is that in this
way our vertex set consists of a Poisson point process (see for example [17]). In particular,
the numbers of points in any finite collection of pairwise disjoint measurable subsets of Dy
are independent Poisson-distributed random variables. The term asymptotically almost
surely (a.a.s.) has the same meaning in this context as before. We prove the following
lemma that allows us to transfer results from the Poisson model into the G(N; v, v) model.
Let A,, denote a set of graphs on V,, := {1,...,n} that is closed under automorphisms.
We call a family A = {A,}.en of graphs (vertex-) non-decreasing, if G —v € A,_; for
any v € V(G) implies G € A,. Similarly, we call the family (vertez-) non-increasing, if
G—-vé¢ A, for any v € V(G) implies G ¢ A,,.

Lemma 5.1. Assume that o > 0 is fized. Let A be a (vertex-) non-decreasing family of
graphs. For N large enough we have P(G(N;a,v) ¢ A) < AP(P(N;«,v) ¢ A). The same
holds if A is (vertex-) non-increasing.
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Proof. Denote by Ep, and E the events that P(N;«o,v) ¢ A and G(N;a,v) ¢ A, respec-
tively. We write

P(Ep,) = Y P(Ep,|Po(N) = N') - P(Po(N) = N')
> 3" B(Ep | PolN) = N') - P(Po(N) = N')

> 3" B(Ep ] Po(N) = N) - B(Po(N) = N'),

where we have used in the last line that, since A is non-decreasing, we have P(Ep,|Po(N) =
N') = P(Ep,|Po(N) = N) for N’ > N. Let us also note that P(Ep,|Po(N) = N) = P(F).
Thus,

P(Er) > 3 P(E) - P(Po(N) = N)
N'=N
=P(E) -P(Po(N) > N)
1
> — - P(F
4 ( )7
where the last line holds N large enough (by an application of, say, the central limit
theorem). The second part of the lemma follows similarly, bounding the sum by taking
only the terms where N’ > N. ]

This implies that if P(P(N;a,v) ¢ A) = o(1), then P(G(NV; o, v) ¢ A) = o(1). The
families we consider will be A = {G : G has a component of order at least C'} or B =
{G : @G has no component of order at least C'}, where C' does not depend on the number
of vertices in G. In particular, in the second part of Theorem 1.5, having chosen the
parameter N, we consider the family {G : G has a component of order at least N/65},
where |G| = N is not required.

5.2 The subcritical case

We prove the first part of Theorem 1.5 for P(V; i, v) by contradiction. Assuming we have
a component of size @, then at least m vertices of type at most T = loglog R
must be contained in that component as a.a.s. at most ﬁ
glog
than T'.
We will use a smooth breadth exploration process starting at a point vy of type at most

loglog R, a continuous-type version of the process defined in Section 3:

vertices have type larger

o Let Ty =t,,.
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e Recursively for ¢ > 1, if v;_; has a neighbour in clockwise direction, let v be the
neighbour of v;_; of highest type in clockwise direction and let T; be the type of v.
Let 6; be the maximum relative angle between v;_; and any adjacent point of type
T;. Define v; as the point of type T; with relative angle ¢; from v;_; in the clockwise
direction. We call this the ¢th root vertex.

e There are three stopping conditions for the process:

(i) v; has no neighbour in the clockwise direction;
(i) T; > log R;

(iii) i = log”log R or the angle between v; and vy exceeds 7.

We define stopping times 7; and 7, as the stopping times that correspond to the first
and the second stopping conditions, respectively. Because of the third stopping condition,
we know that 0 < 7; <loglog R or 7; = oo for ¢ = 1, 2.

The following two lemmas show that the process stops quickly for a suitable choice of
V.

Lemma 5.2. Forv < %,

loglog R\ “
P(T1<OO)=1—O((%> > for some ¢ > 0.

starting at a vertex of type at most loglog R, we have

Lemma 5.3. Forv < Z

5, starting at a verter of type at most loglog R, we have

log”1
P(72<oo):0(OgT2gR> for some 0 < ¢ < 1.

The above process is repeated in the clockwise as well as in the anticlockwise direction.
Parametrising with respect to the initial vertex v, we denote the above stopping times by
717 (v) (11 (v), respectively) and 75" (v) (75 (v), resp.). Let also 77 (v) and 7_(v) denote the
stopping times of the two processes.

Using the two lemmas we can prove the first part of Theorem 1.5.

Proof of the first part of Theorem 1.5. In what follows, we assume that NN is large enough
for all our estimates to hold. For simplicity, we shall denote the set of vertices by Vy -
note that this is now a random set of vertices as described above. Let Vg = {v € Vn
t, > loglog R} and Vi, = Vi \ Viign. In other words, we partition the set of vertices into
two parts: that of vertices of low type and that of vertices of high type. Now, we set

Vimat = {0 € Vigw : 71 (v) < 00,75 (v) = 00 and 7, (v) < 00,7, (v) = o0},

and Vigrge = Viow \ Vimau. The smooth breadth exploration process started at a vertex
v € Vymaen terminates after at most log2 log R steps and has only had root vertices of type
at most log R. In this case, by Lemma 2.1 the angle gained at every single step is at most
2.5exp(log R — R/2). Hence, the total angle gained during the process in both directions
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is at most 5exp(log R — R/2)log®log R. (This justifies the name Viq.;: the total angle
of the component of v is bounded by this expression which is a decaying function of N.)
Now, Lemmas 5.2 and 5.3 imply that there exists a positive constant ¢ such that for

C
a vertex v € Vi, we have P(v € Vigrge | v € Vipw) =0 <(%) > Thereby;,

loglog R\ “
E =o|N|—= :
(Viera) O< ( log R ))

Hence, by Markov’s inequality, a.a.s.

N

< —.
[Viarge! 2loglog R

Also, using Lemma 1.3 and the concentration of the Poisson distribution, we can deduce
that a.a.s.

N
Viign| < ———.
[Vaignl 2loglog R
Thus, a.a.s.
N
Var eUVi < T 1 Aare
[Viary high| log log N

Now, by Lemma 3.8, a.a.s. every vertex in V. is contained in a component with at
most 10N exp(log R — R/2)log?log R < 10vRlog®log R vertices. Hence, any component

of large size must be induced by vertices in Vigyge U Viign, whereby |L;| < %. O

To prove the lemmas, we simplify the process in a way that allows for any real types,
dropping the 0 < t < R requirement. We use the following cdf and pdf for the type T; of
v; given the type t;_1 of v;_1:

1.01
Fr.(t) = exp (—41/ 0 eé(til_t)) (5.1)
™
1.01 . 1.01 .
fr.(t) =2v 0 e2(ti-17D exp (—41/ 0 62(ti1t)) : (5.2)
T 77

Claim 5.4. Lemmas 5.2 and 5.3 hold if they hold for the extended and simplified dis-
tribution of types in Equation (5.1), where not finding a next neighbour in the original
distribution corresponds to a negative type in the extended one.

Proof. We prove the result by showing that the given cdf is a lower bound on the actual
cdf at any point. This means there is a coupling in which any vertex of the actual distri-
bution is coupled with a vertex of higher or equal type and same angle in the simplified
distribution. We later prove that the distance we change the type by does not depend on
the type of the active vertex for the vertices that we consider, so a higher type cannot
have a negative influence on the result we want to prove. If the type of a vertex is less
than log R, we can use Lemma 2.1 with € = 0.009 to get a bound on the relative angle for
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possibly adjacent vertices up to type R — 2log R < R — log R — ¢,(0.009) for sufficiently
large N. Note that the expected number of vertices of type larger than R — 2log R is
cosh(2log R) — 1 (1),
cosh(R) — 1

Thus the probability of having such a vertex is o(1) and we can condition on no such
vertex existing. We use outer tubes to estimate the expected value of Nfo, the number
of neighbours of type at least ¢ of a vertex of type ¢, < log R, using the outer tubes for
¢ = 0.009 as an upper bound, taking N large enough and using Lemma 1.3:

R—2log R
EN! <N / ©T L1009 sor—) v gy
t

t
0 Y T

R—2log R
< I/eéR/ QEG%(tOJFt/,R)e—t/dt/
t 7T

. R—2log R
= 2V1.01 e? / e 2" qt!
¢

T

1.01 & /

< 2u 0 etg/ e=a'at’
T t

= 4V—1'Ole%(t0’t).
T

With this, as we are using the Poisson distribution, we get the following cdf for the
distribution of the next type, given we are at step ¢ with type t:

Fr,(t) = P(T; < t|Tiey = to) = P(|V},| = 0)

1.01
= exp(—E(N},)) = exp (—4V = e%(to_t)) :

O

To prove the two lemmas we need to introduce new notation. Instead of looking at
the types of the vertices at some step, we analyse the jump J; = T; — T;_; in some step,
the difference in types from one step to the next. This makes sense as Fr,(t) only depends
on the difference of T; and ¢, each jump is distributed as

)

1.01 1.01
fr(j) =2v——-e"2exp (—41/—62) )
T T

1.01
Fj(j) = exp <—4I/—6_
s

NI

Starting at a vertex of type Ty(= loglog R), we write

T,=To+ Y Ji,

k=1
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where we couple with a sequence of independent random variables having as their cdf the
function F';. The type T; is thus coupled with the sum of independent copies of the jump.
We are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. We first calculate the following expectation: for s > 0 we have

o0 1.01 . 1.01
Ees/k = / e 2v——e" 2 exp ( dv——e~ 2> dx
_ T T

1.01 [ 1.01 .
=2v— els—3)w exp ( dp——e~ 2) dx.
T ) T
2s
Changing variables y = 410t Ole %, dy = — pl Ole Sdr we get €5 (4’/1%_2,1) and

0 1.01 1.01 >
Ees/x = —/ <4V—> e Vdy = (41/—) / y_2se_ydy
0 Y ™ 0
1.01 o° 1.01
= (4y—> / (129" 1emy gy — (4V—> ['(1—2s).
T 0 T

Given a starting vertex of type loglog R, we calculate, for large NV, the probability of
reaching type at least log R in any step ¢ < loglog R. For s > 0 arbitrary we have

P(T; > log R) = P(Ty + Z Ji > log R) Z Jp > log R)

— P(eszk:l Jk > 65 logR)

< ]Eesz%:l JkefélogR
%
_s
—e QIOgRHEGSJk,
k=1

using Markov’s inequality. Choosing 0 < s < % arbitrarily, we get some constant C' > 1
such that Ee*/* = C'. Thus

]P)(T'Z > lOgR) < efglochi < ef%lochlogQIOgR _ O(Ric),

for some 0 < ¢ = ¢(s) < 1. With this, we can use the union bound to bound the
probability that the smooth breadth exploration process has type at least log R at one of
the first log® log R steps:

log?log R

log” 1
P(30 < i <log’logR: T; > log R) < Z P(T, logR)zo(OgT(ZgR>. O

We use the same technique to prove Lemma 5.2
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Proof of Lemma 5.2. We would like to determine the probability that the process (7});>0
crosses 0 by step M := log® log R. We have

M M
P(Tyr > 0) =P(Ty+ Y Ji 2 0) < PO Jp > —loglog R)
k=1 k=1

5>0 M _
> ]P’(eSZk:l Ji > e sloglogR)

M
< (log R)® H Ees/x,

k=1

again using Markov’s inequality. As v < ¢ and using the calculations from the proof of
Lemma 5.3, Wecanﬁnd0<s<%and0<é<1suchthat for1<k<<M

1.01
Ee*/r < (41/—) [(1-2s)=¢<1.

™

With this we have

. loglog R\ “
P(T > < 1 R)® log? log R
(T 2 0) < (log R)" 0(( log R >)’

for some ¢ > 0. Thus P(Tyy < 0)=1-o0 ((10{%)?1%]%)0)' -

5.3 The supercritical case

For the second part of Theorem 1.5, we split the disk Dy into cells so that the expected
number of vertices in each cell is constant. Furthermore, the cells are defined so that if
two neighbouring cells contain at least one vertex each, then these vertices are adjacent.
With some rules for adjacencies of the cells we can then explore possible components and
estimate the number of vertices in them by the number of cells that correspond to them.

For the discretisation, we define the sequence t; = ilog?2 for 0 < 7 < {WI;—‘ =T.

Using this, we define the bands B; = {p € Dg : t;-1 < t, < t;}, for 1 < i < T. Let
M = 2" [5=2E4|. For each i, we split band B; into M /27" cells C , starting at
angle 0 with j = 1. Note that the definition of M implies that the prOJectlon of a cell in
B; is exactly split into two in B; ;. See Figure 3 for an example of the discretisation. As

2T = o(e?), it follows that M = 2 o7 (1 + o(1)), whereby the number of cells in

band i is (1 + 0(1))%. We claim the following property:

Lemma 5.5. Any vertex in cell C](-i) 1s adjacent to any vertex in any of the cells C’j@l,
Oy, O3, OS5 and Oy, where we let CFY = Cf) y— cl) =W,

J J M/2i=141

Proof. This configuration of cells is illustrated on the left part of Figure 4. As we consider
vertices of type at most R/4 + log2, Lemma 2.1 implies that any two of these vertices
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Figure 3: The discretisation of Dg.

are connected if their relative angle is at most 1.92¢!/2(tutto=F) provided that N is large
enough. .

The vertices in C]@ have type at least ¢;_; = (i — 1)log2 and the relative angle of
a vertex v in CJ(-i_)l and u in C’J@ is at most 271 2. 0.96 e /2 = 1.92¢ F/2H(i-1log2
1.92¢!/2(twtt=R) "50 v and u are adjacent. The same bounds on the maximum relative
angle and minimum type hold for vertices u’ in C']@ and v’ in CF;.J;;]), so v and v are
adjacent. By simple change of variables we get all the desired adjacencies. O

We define two auxiliary graphs, a blue graph G, and a red graph G,. The vertices of
the blue graph will be those cells that contain at least one vertex, whereas the vertices
of the red graph are those that contain no vertex. Two vertices of G, are connected
if the corresponding cells share an edge. This means that vertices of P(N;«,v) in the
cells corresponding to adjacent vertices in G, are themselves adjacent by Lemma 5.5.
Two vertices of GG, are connected if their corresponding cells share at least a point. This
corresponds to the same adjacency as in G, but with added “diagonal” edges. These
adjacencies are illustrated in Figure 4. We denote by G. the union of the two graphs.
For the graph resulting from the example in Figure 3, see Figure 5. Whenever necessary
we will refer to the vertices of the graphs as cells. A blue component is a component of
(G, that consists of blue vertices. A red path is a path in G, that consists of red vertices.
These are the main structures we use, but we also use the red/blue notation for other
structures. Because of the adjacency rules, a blue component is always surrounded by a
red path or a collection of red paths, the periphery and the inside of the disk. We are
now interested in the probability of a vertex being blue or red. Note that

(5.3)

M =27 { 21 "‘ 21 r 2m 4 2Te /2

< S o5
2T0.95e—F/2 0.95¢—F/2 * 0.95e—F/2
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Claim 5.6. The probability of a vertex in G, being red is at most e"5=, the probability of
being blue is at least 1 — e~ 5r .

Proof. Let v;; be a vertex of G, that corresponds to C’i(j). Let Pi(j ) be the number of
vertices in C’i(j ), Using Lemma 1.3 and the above upper bound on M (5.3), we have for
large N

2i—1
i (14 o(1))e"dt

) ti
]E(Pi(j)) — N/
ti—1

9i—1,—R/2 t;
20.94V€R/2;/ e tdt

2w+ 2Te"R/2 [,
2i—1 . ;
> 0.94v e Tl —eTh
SRS =—y )
i—1
_ e o—(G-1)log2  _—ilog2
= ().941/27T Gy (e e )
i—1
=094y—— 2792 -1
V27r + 2e—R/4 ( )
v
~ 5’

for N large enough. Since the number of vertices in Cz-(j ) follows the Poisson distribution

(J))

with parameter E(P;”’), we have

v

P(vy red) = P(PY) = 0) = e =77 < o7
P(v;; blue) = P(PY > 0) = 1 — ¢ BF) > 1 — %
]

Our aim is now to show that there is a blue component of e N cells for some € > 0.
Note that this implies that a giant component in P(N; a, v) exists as each of the e N cells
contain at least one vertex and the adjacency rules of the vertices of G imply that these
vertices induce a connected component in P(N;«,v). Or main tool for proving this is
the following lemma that bounds the maximum length of a red path, using an argument
similar to Peierls” argument from percolation theory(see [15] [20]).

Lemma 5.7. Let v > 20mw. A.a.s. all red paths have length at most L == T — 1 =
[L .
410g2-‘

Proof. Note that any cell in the red graph has at most 8 neighbours. The number of cells

: 3 4r Ry2 R/2 SN

is at most M(1+1/2+1/4+--+)=2M < 2ef/2 < 5mef/2. As v > 20, this implies
that the number of cells is at most N. Let p = P(v; ; blue) > 1 — e 5 >1—e 3% >0.98
by Claim 5.6. Thus 8(1 — p) < 0.2. Let P.(¢) be the number of red paths starting at cell

c and having length ¢. We have
E(P.(0) < 8(1—p)" = (8(1 —p)) <0.2".
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Figure 6: Blue lollipop.

Since the number of cells is at most N we thus can bound the expected number of red
paths of length ¢ by 0.2°N. Let ¢ be such that 14c¢ = 21?(;5;2 ~ 1.16. The expected number
of paths of length at least L is

N3 02 =0 (N 025) =0 (202w

=L
-0 <6R/26710g5($)>
=0 (eR/Qe’(HC)g) =0 (ye’%) = o(1).
This means the probability of having a red path of length at least L is o(1). O

With this we are able to make statements on the structure of G.. We prove that a.a.s.
there is a blue lollipop Ly: a blue cycle surrounding the origin of Dy that contains a cell
in By or is connected to such a cell by a blue path (see Figure 6). We call the relevant
cell of B; the base of the lollipop.

Claim 5.8. Let v > 20mw. A.a.s. G, contains a blue lollipop.

Proof. By Lemma 5.7, a.a.s. there is no red path of length L. The number of bands is
T > L, so a.a.s. there is no red path connecting B; and By. This implies that there must
be a blue cycle C' surrounding the origin of Dg. Now, the number of cells in any band is

at least
21 2

=
_ R
2T€ R/2 2410g2+1e—R/2

M/2T > =qmef/* > L

for N sufficiently large, as L = O(R). Thus any red cycle surrounding C' would have
length at least L. But by Lemma 5.7 a.a.s. there is no such cycle. This implies that C'
must either contain a cell of B; or there must be a blue path P connecting C' and some
cell in B;. In either case we have a blue lollipop. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.24 38



Starting at the base ¢; of the lollipop we will consider the following process traversing
the band B; in clockwise direction:

e Starting with ¢ = 1, do the following steps until ¢; is reached again.

o Let ¢, be the first red cell in By in clockwise direction from ¢;. Let S; be the number
of blue cells from ¢; to ¢}, including c¢;.

e Let r; be the red cell on By that is farthest away from ¢, in clockwise direction and
that is connected to ¢, via a red path - if such a cell does not exist, then r; = /.
Denote by R; the number of cells of By between ¢, and r; in clockwise direction,
including these two. Let ¢;11 be the cell succeeding r;.

The process will end at some index i = K. Assume that S is the number of blue cells
between cx and c; in clockwise direction, including cx if cx # ¢; but excluding ¢;. Note

that the number of cells in By is M = 2T (2%925%} > 27”]\/ . This means we have

Sk + >0 (S + Ri) = M > 2*N. We will prove that a.a.s. K is linear in N. We begin
with the following properties:

Claim 5.9.
1. Any two cells ¢; and c; are connected by a blue path for 1 <1i,j < K.
2. If the red path connecting ¢; and r; has length ¢, then R; < 2¢/2+2,
Proof.

1. Let ¢ be the blue cell preceding ¢. If there was no blue path connecting ¢ to co then
there would be a red path originating at a red cell between ¢ and ¢y and ending
in a red cell 7; that is farther in the anticlockwise direction from ¢ than cg, thus
also farther than r;. But this means this red path must meet the path from ¢ to
r1, creating a path from ¢| to 7y — a contradiction. This means that ¢ is connected
to ¢ via a blue path. But all the cells between ¢; and ¢ are blue, so there is a blue
path from c; to co. Similarly, we can show that ¢; is connected to c¢;y;.

2. We fix ¢ and want to find the path of length ¢ between ¢, and r; that “encloses” most
cells in By. Note that the cells in a band become half as many when we increase the
index of the band by one. We claim that the optimal path for this choice increases
the band by one with each of its first |¢/2] edges, stays in the same band for one
edge if £ is odd, and then decreases the band by one for the remaining |¢/2] edges,
such as the one in Figure 7. Assume this is not the case, then at least one of the
following must be true:

e There is an edge between two cells at the same band that is not of the highest
index among all cells in the path. Then, taking away this edge and instead
inserting one at the highest index, thus shifting the remaining path, means that
at least one more cell is covered with a path of the same length, a contradiction.
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Figure 7: Red path of length 9 covering the maximum number of cells.

e There is an index i such that there are two cells ¢; and ¢y, both in the band B;,
that are connected on the path via a subpath of length at least 2 using only
cells in the bands B; — B;. In this case we can create a new subpath of the
same length that just uses cells in the band B;,; as inner vertices and leading
to a new cell ¢,. Because the number of cells doubles in each band this new
subpath must cover more cells than the old one and thus we can create a path
of length ¢ that covers more cells, a contradiction.

So the optimal path has the desired form, as shown in Figure 7. Note that each cell
in band 7 covers 2¢~! cells in band By. If £ is odd, this yields 4—71 upward /downward

edges each and one edge (2 cells) staying at the same level, yielding Z,El:ll)/ 29i-1 4
2. 2070/2 = 3. 2U=D/2 1 < 2822 covered cells. If £ is even, the path uses %
upward /downward edges each and no edge (one cells) staying at the same level,

yielding Zfi 2271 9l/2 = 9t/2H1 _ 1 < 9U/2+2 covered cells. O

Let ¢; be the length of the red path connecting ¢, and r;. We define independent
random variables K; distributed as Geom(1 — 8¢~*/5"). Note that this independence can
only make the bound larger as no two of the corresponding paths can meet, so a path
cannot use anything that has been exposed already by a different path. Also, the number
of available next cells in any step can only go down if we consider the dependent case.
Because every red cell has at most 8 neighbours and every cell is red with probability at
most e /5" we have

P(ﬁl = kz) < (86_V/57r)ki .
In other words, ¢; is stochastically bounded from above by K;. Also, by Claim 5.9(ii) R;

is stochastically bounded by 2%/2*2 which in turn is stochastically bounded from above
by 25:/242 We denote the latter by Y;.
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We define independent random variables X; and Y;, where X; = Geom(e*”/ 5T) and
Y, = 2Ki/242 With this S; is stochastically bounded by X; and R; is stochastically
bounded by Y;. Define

t
Li=) (Xi+Y)

i=1
and let 7 := max{t : L, < 22N}. As the number of cells in B is at least 22N and
with Claim 5.9, T is a stochastic lower bound on the number of steps we need to take to
cover By with S; and R;, which we denoted by. K. But the latter is also a bound on the
vertices of P(N;«,v) which belong to the component that contains the vertices induced
by the lollipop. With p; = E(X;) = €*/°™ and py = E(Y}) we have E(L;) = t(u; + po).

Let t = V(JI'Z’TM)N. Note that gy + pg > 1 as pg > 0 and py = /" > 1. Hence,

E(L;) < ¥2EN. If P(L; > 2N) = o(1), it follows that a.a.s. T > t. Hence, by the
stochastic domination we deduce that a.a.s. K > t.

Claim 5.10. Let v > 20m. We have
P (L > 2—7TN> = o(1).
Proof. We have
Var(L;) = t(Var(X;) + Var(¥1)),

1— —v /b7 .
Var(X;) = Var(Geom(e /™)) = L e and

e—2v/5m
Var(Y) = E(V?) — EX(V3).

But

= 64.

2) — Z 2k+4(86—u/57r)k‘ < 16 2(166—1//571')]{; V><207T 16 2(2/6>k
k=1 k=1 k=1
Thus Var(Y;) < 64 and Var(L;) < (64 + e27 )t = O (N). By Chebyshev’s inequality,

P (L > 2—7TN) = O(1/N). 0

Note that E(X;) = e and

00 00 k
v 207r 1
Vi) 1+ Y (8ev/om)tok/2e2 72 Z e™) 2k/2<1+42( ) < 3.
k=1 k=
Sot > %N . We can now prove the second part of the main theorem.
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Proof of the second part of Theorem 1.5. Let v > 207 and let GG, be defined as above. By
Claim 5.8 there is a blue lollipop a.a.s. By Claims 5.9.1 and 5.10 a.a.s. the blue lollipop

extends into a blue component of order at least ¢ > %N . Setting v = 207, this
1.97

quantity is at least m]\f > N/610. Note that increasing v can only stochastically
increase the order of the largest connected component. Thus, for any such v > 207, the

order of the largest component is a.a.s. at least N/610. O

6 Conclusion

In this paper we have studied the component structure of the KPKVB-model, a geometric
model of random graphs on the hyperbolic plane. This can be viewed as a dependent
version of the well-known Chung-Lu model of inhomogeneous random graphs. The model
was recently introduced by Krioukov et al. [19], whose aim is to develop a geometric
framework for the study of complex networks. We determine the critical parameters
which control the typical component structure of such a random graph. Namely, we
determine the critical parameter which controls the emergence of a giant component. We
show that in the regime where the random graph exhibits power law degree distribution
with exponent greater than 3, all components are sub-linear. On the other hand, when
the exponent of the power law is less than 3, then a component that contains a positive
fraction of the vertices exists with high probability.

However, our results are not precise as far as the size of the giant component is
concerned. Showing, for example, a law of large numbers seems to be a challenging
problem, mainly due to the dependencies that are present in this model. Also, for the
case « = 1, we conjecture that there is a critical value for v above which the giant
component emerges.
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A  Proof of Lemma 1.1

Proof of Lemma 1.1. Note that R = (2/()log(N/v) and R' := (2/(’) log(N/v) are chosen
such that N = veff/2 = ped'f'/2,

The desired coupling is constructed as follows. We pick 6y, ...,60y i.i.d. uniform on
[0,27) and we pick Uy, ..., Uy ii.d. uniform on [0, 1].

We now let p1,...,pnx and pf, ..., p)y be defined by the equations:

Fa,R(,Oi) = Fa’,R’(pé) = Ul (fOI' 1= 1, Ce ,N,) (Al)
where F, g is the cdf that goes with the pdf (1.1). That is:
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0 it r <0,

Fun(r) = ¢ Sed— if0<r< R (A.2)
1 otherwise.

(Note that in this way the p;s have exactly the distribution with pdf (1.1) and the pls
have the same pdf but with o/, R' in place of «, R.) The points used in the construction
of G(N;(,a,v) will be (01, p1),..., (0N, py) while the points used in the construction of
G(N; (', o v) will be (01, p)),..., (0N, py).

It remains to be seen that this way we get two isomorphic graphs.

Claim A.1. We have p}, = (a/a’)p; for alli.
Proof. Observe that
R =d - ((/¢)R=0d"(a/d)R = aR.
Thus, the equation (A.1) defining p; and p/ yields:
cosh(ap;) = cosh(/p}).
Since cosh(z) is strictly increasing for « > 0, it follows that we must have ap;, = o/p. O

Let us write d;; for the distance between (6;, p;) and (6}, p;) in the curvature-(-surface,
and let dj; be defined analogously.

Claim A.2. For all i, j we have di; = (a/a’)d;;.
Proof. By the hyperbolic cosine rule we have that

cosh(Cdy;) = cosh(Cpy) cosh(Cpy) — sinh(Cpr) sinh(Cpy) cos([6; — 6y)).
and

cosh(¢'d};) = cosh(¢'pt) cosh(C's!,) — sinh(¢'pl) sinh(¢'p}) cos(16; — 6;1).
Now observe that

i =a (¢fa) = a- (¢ [)p =
using Claim A.1, and similarly (p; = (' p;,. It follows that
COSh(C/d;j) = COSh(Cdij).
d

Again using that cosh(z) is strictly increasing for x > 0 (and the distances dy;, d;; are
nonnegative), we see that dj; = (¢/(¢")dy; = (a/a’)d;;. O

Since R’ = (¢/¢")R = (a/’) R, we see that

di; < R if and only if dj; < R,

which proves the lemma. O
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B The proof of Lemma 1.2

Very similarly to the proof of Lemma 1.1, the coupling is constructed as follows. We pick
01,...,0y i.i.d. uniform on [0, 27) and we pick Uy, ..., Uy i.i.d. uniform on [0, 1]. We now
let p1,...,pn and pl, ..., ply be defined by the equations:

For(pi) = Fu r(p;) = U; (fori=1,...,N.) (B.1)

(F,.r is as defined in the proof of Lemma 1.1, and R := 2log(N/v), R’ := 2log(N/V').)
Again, we note that in this way the p;s have exactly the distribution with cdf F, g
and the ps have cdf F, r. The points used in the construction of G(N;a,v) will be
(p1,601),...,(pn,0n) while the points used in the construction of G(N;da/,v") will be

(p/h 91)7 DI (pE\H QN)
We need the following geometric fact.

Lemma B.1. Suppose that p = (r,60),q = (s,9) are two points in the hyperbolic plane
satisfying distg(p, O), distg(q, O),distu(p,q) < R and let p' = (",0),¢ = (s',9) with
' <r,s <s. Then disty(p,¢') < R.

Before giving the proof of this lemma, let us remind the reader that disks are convex,
also in the hyperbolic plane. This means that if D is a disk in the hyperbolic plane and
x,y € D then the geodesic between x,y is contained in D. One way to see this is by
noting that every disk can be isometrically mapped to a disk with origin O, and that
in the projective disk model of the hyperbolic plane (a.k.a. the Beltrami-Klein model) a
hyperbolic disk with origin O looks like a Euclidean disk, while geodesics are just line
segments in the projective disk model. (See for instance Section 4.8 of [22] for a description
of the projective disk model.)

Proof of Lemma B.1: It is enough to consider the case when ' < r and s = s.
(Another application of this case will then give the full result.) Observe that the geodesic
between O and p is just the line segment between them. So in particular, p’ lies on the
geodesic between O and p. Since O,p € B(q; R) it follows that also p’ € B(q; R), as
required. [ |

We also need the following observation, which can be rephrased as stating that the
radius under the (o, R)-quasi uniform distribution stochastically dominates the radius
under the (o', R)-quasi uniform distribution if o > ¢’

Lemma B.2. If a > o and v =V then F, g(r) < Fy g(r) for every r € R.

Proof. Note that v = v/ implies that also R = R’. Let us thus fix R > 0 and 0 < r < R,

and define p(a) := F, g(r) for every a > 0. Our aim will be to show that %ﬁ is non-
positive for every a > 0, which will clearly yield the result.
We obtain:

dp rsinh(ar)(cosh(aR) — 1) — Rsinh(aR)(cosh(ar) — 1)
do (cosh(aR) — 1)?
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Observe that this is non-positive if and only if

aRsinh(aR) < arsinh(ar)

cosh(aR) —1 ~ cosh(ar) — 1
We claim this is the case for all 0 < r < R. To see this, it suffices to show that
(xsinhz)/(coshz — 1) is nondecreasing for x > 0. Let us thus compute

zsinhz ]’ (sinhz + x coshz)(coshx — 1) — xsinh®
coshz — 1

(coshx —1)2
sinh 2 cosh z +  cosh? z — sinh & — x coshx — xsinh®z
(coshx —1)2
sinh z cosh z 4 z(cosh? z — sinh® ) — sinh 2 — z cosh z
(coshx —1)2
sinh z coshz +  — sinhx — x coshx

(coshx —1)2
(sinhz — x)(coshz — 1)

(coshx —1)2

= 0.

So our claim holds, and we see that indeed j—i < 0 for all @« > 0. This proves the
lemma. 0

Lemma B.3. Ifa=d and v <V, then F, g(r) < Fy g/(r) for every r € R.

Proof. Observe that v < v/ implies that R > R’. This also gives cosh(aR) — 1 >
cosh(aR') — 1, and hence the lemma. O

Combining the last two lemmas gives:
Corollary B.4. Ifa > o/ and v < V', then Fy g(r) < Fy r/(r) for every r € R.
Together with the definition of p;, p; this immediately gives:

Corollary B.5. If a > o/ and v < V', then, in the coupling described above, we have that
pi=pi foralll <i< N.

Corollary B.5 together with Lemma B.1 yield Lemma 1.2.
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