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Abstract

An undirected simple graph G = (V,E) is called antimagic if there exists an
injective function f : E → {1, . . . , |E|} such that

∑
e∈E(u) f(e) 6=

∑
e∈E(v) f(e) for

any pair of different nodes u, v ∈ V . In this note we prove – with a slight modification
of an argument of Cranston et al. – that k-regular graphs are antimagic for k > 2.
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1 Introduction

Throughout the note graphs are assumed to be simple. Given an undirected graph G =
(V,E) and a subset of edges F ⊆ E, F (v) denotes the set of edges in F incident to node
v ∈ V , and dF (v) := |F (v)| is the degree of v in F . A labeling is an injective function
f : E → {1, 2, . . . , |E|}. Given a labeling f and a subset of edges F , let f(F ) =

∑
e∈F f(e).

A labeling is antimagic if f(E(u)) 6= f(E(v)) for any pair of different nodes u, v ∈ V . A
graph is said to be antimagic if it admits an antimagic labeling.

Hartsfield and Ringel conjectured [5] that all connected graphs on at least 3 nodes are
antimagic. The conjecture has been verified for several classes of graphs (see e.g. [4]),
but is widely open in general. In [3] Cranston et al. proved that every k-regular graph
is antimagic if k > 3 is odd. Note that 1-regular graphs are trivially not antimagic. We
have observed that a slight modification of their argument also works for even regular
graphs1, hence we prove the following.

1The same result has been recently proved independently by Chang et al. [2].
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Theorem 1. For k > 2, every k-regular graph is antimagic.

It is worth mentioning the following conjecture of Liang [6]. Let G = (S, T ;E) be a
bipartite graph. A path P = {uv, vw} of length 2 with u,w ∈ S is called an S-link.

Conjecture 2. Let G = (S, T ;E) be a bipartite graph such that each node in S has
degree at most 4 and each node in T has degree at most 3. Then G has a matching M
and a family P of node-disjoint S-links such that every node v ∈ T of degree 3 is incident
to an edge in M ∪ (

⋃
P∈P P ).

Liang showed that if the conjecture holds then it implies that every 4-regular graph
is antimagic. The starting point of our investigations was proving Conjecture 2. As
Theorem 1 provides a more general result, we leave the proof of Conjecture 2 for a
forthcoming paper [1].

2 Proof of Theorem 1

A trail in a graph G = (V,E) is an alternating sequence of nodes and edges v0, e1, v1, . . . ,
et, vt such that ei is an edge connecting vi−1 and vi for i = 1, 2, . . . , t, and the edges are all
distinct (but there might be repetitions among the nodes). The trail is open if v0 6= vt,
and closed otherwise. The length of a trail is the number of edges in it. A closed trail
containing every edge of the graph is called an Eulerian trail. It is well known that a
graph has an Eulerian trail if and only if it is connected and every node has even degree.

Lemma 3. Given a connected graph G = (V,E), let T = {v ∈ V : dE(v) is odd}. If
T 6= ∅, then E can be partitioned into |T |/2 open trails.

Proof. Note that |T | is even. Arrange the nodes of T into pairs in an arbitrary manner
and add a new edge between the members of every pair. Take an Eulerian trail of the
resulting graph and delete the new edges to get the |T |/2 open trails.

The main advantage of Lemma 3 is that the edge set of the graph can be partitioned
into open trails such that at most one trail starts at every node of V . Indeed, there is a
trail starting at v if and only if v has odd degree in G. This is how we see the Helpful
Lemma of [3].

Corollary 4 (Helpful Lemma of [3]). Given a bipartite graph G = (U,W ;E) with no
isolated nodes in U , E can be partitioned into subsets Eσ, T1, T2, . . . , Tl such that dEσ(u) =
1 for every u ∈ U , Ti is an open trail for every i = 1, 2, . . . , l, and the endpoints of Ti and
Tj are different for every i 6= j.

Proof. Take an arbitrary E ′ ⊆ E with the property dE′(u) = 1 for every u ∈ U . A
component of G − E ′ containing more than one node is called nontrivial. If there
exists a nontrivial component of G − E ′ that only contains even degree nodes then let
uw1 ∈ E − E ′ be an edge in this component with u ∈ U and w1 ∈ W , and let uw2 ∈ E ′.
Replace uw2 with uw1 in E ′. After this modification, the component of G − E ′ that
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contains u has an odd degree node, namely w1. Iterate this step until every nontrivial
component of G − E ′ has some odd degree nodes. Let Eσ = E ′ and apply Lemma 3 to
get the decomposition of E − Eσ into open trails.

In what follows we prove that regular graphs are antimagic: for sake of completeness we
include the odd regular case, too. We emphasize the differences from the proof appearing
in [3].

Proof of Theorem 1. Note that it suffices to prove the theorem for connected regular
graphs. Let G = (V,E) be a connected k-regular graph and let v∗ ∈ V be an arbitrary
node. Denote the set of nodes at distance exactly i from v∗ by Vi and let q denote the
largest distance from v∗. We denote the edge-set of G[Vi] by Ei. Apply Corollary 4 to the
induced bipartite graph G[Vi−1, Vi] with U = Vi to get Eσ

i and the trail decomposition of
G[Vi−1, Vi]−Eσ

i for every i = 1, . . . , q. The edge set of G[Vi−1, Vi]−Eσ
i is denoted by E ′i.

Now we define the antimagic labeling f of G as follows. We reserve the |Eq| smallest
labels for labeling Eq, the next |Eσ

q | smallest labels for labeling Eσ
q , the next |E ′q| smallest

labels for labeling E ′q, the next |Eq−1| smallest labels for labeling Eq−1, etc. There is an
important difference here between our approach and that of [3] as we switched the order
of labeling Eσ

i and E ′i, and we don’t yet define the labels, we only reserve the intervals to
label the edge sets. Next we prove a claim that tells us how to label the edges in E ′i.

Claim 5. Assume that we have to label the edges of E ′i from interval s, s+1, . . . , ` (where
|E ′i| = `− s + 1), and that we are given a trail decomposition of E ′i into open trails. We
can label E ′i so that successive labels (in a trail) incident to a node vi ∈ Vi have sum at
most s + `, and successive labels (in a trail) incident to a node vi−1 ∈ Vi−1 have sum at
least s+ `.

Proof. Our proof of this claim is essentially the same as the proof in [3]: we merely restate
it for self-containedness. Let T be the trail decomposition of E ′i into open trails. Take an
arbitrary trail T = u0, e1, u1, . . . , et, ut of length t from T and consider the following two
cases (see Figure 1 for an illustration).

• Case A: If u0 ∈ Vi−1 then label e1, . . . , et by s, `, s + 1, ` − 1, . . . in this order. In
this case the sum of 2 successive labels is s + ` at a node in Vi, and it is s + ` + 1
at a node in Vi−1.

• Case B: If u0 ∈ Vi then label e1, . . . , et by `, s, `− 1, s+ 1, . . . in this order. In this
case the sum of 2 successive labels is s + ` − 1 at a node in Vi, and it is s + ` at a
node in Vi−1.

We prove by induction on |T |. The proof is finished by the following cases.

1. If T contains a trail of even length, then let T be such a trail (and again t denotes
the length of T ). If the endpoints of T fall in Vi−1 then apply Case A. On the
other hand, if the endpoints of T fall in Vi then apply Case B. In both cases we
use t

2
labels from the lower end of the interval, and t

2
labels from the upper end,
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Case A Case B

u1

u2

u3

u0 u4

u5
u0 u2 u4Vi

Vi−1

` − 2` − 1`

s s + 1s + 2s + 1s

` − 1

u1 u3 u5

`

Vi−1

Vi

Figure 1: An illustration for labeling trails.

therefore we can label the edges of the trails in T −T from the (remaining) interval
s+ t

2
, s+ t

2
+ 1, . . . , `− t

2
, so that the lower bound s+ t

2
+ `− t

2
= s+ ` holds for the

sum of two successive labels at every vi−1 ∈ Vi−1, and the same upper bound holds
at each node vi ∈ Vi.

2. Every trail in T has odd length. If T contains only one trail then label it using
either of the two cases above and we are done. Otherwise let T1 and T2 be two trails
from T , and let ti be the length of Ti for both i = 1, 2. Label first the edges of
T1 using Case A (starting at the endpoint of T1 that lies in Vi−1). Note that the
remaining labels form the interval s+ t1+1

2
, . . . , `− t1−1

2
. Next label the edges of T2

using Case B (starting at the endpoint of T2 that lies in Vi). Note that the sum of
successive labels in the trail T2 becomes s+ t1+1

2
+ (`− t1−1

2
)− 1 = s+ ` at a node

in Vi, and it is s+ t1+1
2

+ (`− t1−1
2

) = s+ `+ 1 at a node in Vi−1, which is fine for us.
Finally, the remaining labels form the interval s + t1+1

2
+ t2−1

2
, . . . , ` − t1−1

2
− t2+1

2
,

therefore we can label the edges of the trails in T − {T1, T2} from the remaining
interval so that the lower bound s + t1+1

2
+ t2−1

2
+ `− t1−1

2
− t2+1

2
= s + ` holds for

the sum of two successive labels at every node of Vi−1, and the same upper bound
holds at every node of Vi.

Now we specify how the labels are determined to make sure f(E(u)) 6= f(E(v)) for
every u 6= v. We label the edges of every Ei arbitrarily from their dedicated intervals.
Label the edges of every E ′i in the manner described by Claim 5. For any node v ∈ Vi with
i > 0, let σ(v) denote the unique edge of Eσ

i incident to v. Let p(v) = f(E(v))− f(σ(v))
for every v ∈ V − v∗. We label the edges in Eσ

q , E
σ
q−1, . . . , E

σ
1 as in [3]: if we already

labeled Eσ
q , E

σ
q−1, . . . , E

σ
i+1 then p(vi) is already determined for every vi ∈ Vi. So we order

the nodes of Vi in an increasing order according to their p-value and assign the label to
their σ edge in this order. This ensures that f(E(u)) 6= f(E(v)) for an arbitrary pair
u, v ∈ Vi.
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We have fully described the labeling procedure. This labeling scheme ensures that
f(E(vi)) < f(E(vj)) if vi ∈ Vi, vj ∈ Vj and i > j + 2 since G is regular and the edges
in E(vj) get larger labels than those in E(vi). Similarly, f(E(v∗)) > f(E(v)) for every
v ∈ V − v∗ for the same reason. It is only left is to show that f(E(vi)) 6= f(E(vi−1)) for
arbitrary vi ∈ Vi, vi−1 ∈ Vi−1 and i > 2.

Claim 6. For arbitrary vi ∈ Vi, vi−1 ∈ Vi−1 and i > 2 we have

1. p(vi) 6 k−2
2

(s+ `) + ` and p(vi−1) > k−2
2

(s+ `) + s, if k is even, and

2. p(vi) 6 k−1
2

(s+ `) and p(vi−1) > k−1
2

(s+ `), if k is odd.

Proof. Assume first that k is even. In this case p(v) is the sum of an odd number of
labels. We pair up all but one of these labels using the trail decomposition of E ′i to get
the bounds needed.

1. Take a node vi ∈ Vi. Note that f(e) < s for every e ∈ E(vi)− E ′i. Let t = dE′i(vi).

(a) If t is even then
∑

e∈E′i∩E(vi)
f(e) 6 t

2
(s + `) by Claim 5, giving p(vi) 6 t

2
(s +

`) + (k − 1− t)s 6 k−2
2

(s+ `) + `.

(b) If t is odd then
∑

e∈E′i∩E(vi)
f(e) 6 t−1

2
(s + `) + ` by Claim 5, giving p(vi) 6

t−1
2

(s+ `) + `+ (k − 1− t)s 6 k−2
2

(s+ `) + `.

2. Now take a node vi−1 ∈ Vi−1. Note that f(e) > ` for every e ∈ E(vi−1) − E ′i. Let
again t = dE′i(vi−1).

(a) If t is even then
∑

e∈E′i∩E(vi−1)
f(e) > t

2
(s + `) by Claim 5, giving p(vi−1) >

t
2
(s+ `) + (k − 1− t)` > k−2

2
(s+ `) + s.

(b) If t is odd then
∑

e∈E′i∩E(vi−1)
f(e) > t−1

2
(s+ `)+s by Claim 5, giving p(vi−1) >

t−1
2

(s+ `) + s+ (k − 1− t)` > k−2
2

(s+ `) + s.

This concludes the proof of (i).

Although the proof of (ii) can be found in [3], we also present it here to make the
paper self contained. The proof is very similar to the even case. So assume that k is odd.
In this case p(v) is the sum of an even number of labels. We pair up these labels using
the trail decomposition of E ′i to get the bounds needed.

1. Take a node vi ∈ Vi. Note that f(e) < s for every e ∈ E(vi)− E ′i. Let t = dE′i(vi).

(a) If t is even then
∑

e∈E′i∩E(vi)
f(e) 6 t

2
(s + `) by Claim 5, giving p(vi) 6 t

2
(s +

`) + (k − 1− t)s 6 k−1
2

(s+ `).

(b) If t is odd then
∑

e∈E′i∩E(vi)
f(e) 6 t−1

2
(s + `) + ` by Claim 5, giving p(vi) 6

t−1
2

(s+ `) + `+ (k − 1− t)s 6 k−1
2

(s+ `).
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2. Now take a node vi−1 ∈ Vi−1. Note that f(e) > ` for every e ∈ E(vi−1) − E ′i. Let
again t = dE′i(vi−1).

(a) If t is even then
∑

e∈E′i∩E(vi−1)
f(e) > t

2
(s + `) by Claim 5, giving p(vi−1) >

t
2
(s+ `) + (k − 1− t)` > k−1

2
(s+ `).

(b) If t is odd then
∑

e∈E′i∩E(vi−1)
f(e) > t−1

2
(s+ `)+s by Claim 5, giving p(vi−1) >

t−1
2

(s+ `) + s+ (k − 1− t)` > k−1
2

(s+ `).

This concludes the proof of (ii), and we are done.

The assignment of the labels implies f(σ(vi)) < s and f(σ(vi−1)) > ` for vi ∈ Vi and
vi−1 ∈ Vi−1. Claim 6 yields f(E(vi)) < f(E(vi−1)), finishing the proof of Theorem 1.

Remark 7. Observe that the proof of Theorem 1 does not really use the regularity of the
graph, it merely relies on the fact that the degree of a node vi ∈ Vi is not smaller than
that of a node vj ∈ Vj where i < j. Hence the following result immediately follows.

Theorem 8. Assume that a connected graph G = (V,E) (|V | > 3) has a node v∗ ∈ V of
maximum degree such that dE(vi) > dE(vj) whenever vi ∈ Vi, vj ∈ Vj and i < j, where V`
denotes the set of nodes at distance exactly ` from v∗. Then G is antimagic.
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