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Abstract

An undirected simple graph G = (V, E) is called antimagic if there exists an
injective function f : E — {1,...,|E[} such that 3 c g, f(€) # X cep f(e) for
any pair of different nodes u, v € V. In this note we prove — with a slight modification
of an argument of Cranston et al. — that k-regular graphs are antimagic for k > 2.
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1 Introduction

Throughout the note graphs are assumed to be simple. Given an undirected graph G =
(V, E) and a subset of edges F' C E, F'(v) denotes the set of edges in F' incident to node
v eV, and dp(v) := |F(v)| is the degree of v in F. A labeling is an injective function
f:E—{1,2,...,|E|}. Given alabeling f and a subset of edges F',let f(F) =" f(e).
A labeling is antimagic if f(E(u)) # f(E(v)) for any pair of different nodes u,v € V. A
graph is said to be antimagic if it admits an antimagic labeling.

Hartsfield and Ringel conjectured [5] that all connected graphs on at least 3 nodes are
antimagic. The conjecture has been verified for several classes of graphs (see e.g. [4]),
but is widely open in general. In [3] Cranston et al. proved that every k-regular graph
is antimagic if £ > 3 is odd. Note that 1-regular graphs are trivially not antimagic. We
have observed that a slight modification of their argument also works for even regular
graphs!, hence we prove the following.

!The same result has been recently proved independently by Chang et al. [2].
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Theorem 1. For k > 2, every k-reqular graph is antimagic.

It is worth mentioning the following conjecture of Liang [6]. Let G = (S,T; E) be a
bipartite graph. A path P = {uv,vw} of length 2 with u,w € S is called an S-link.

Conjecture 2. Let G = (5,T; E) be a bipartite graph such that each node in S has
degree at most 4 and each node in T" has degree at most 3. Then G has a matching M
and a family P of node-disjoint S-links such that every node v € T of degree 3 is incident
to an edge in M U (Upep P).

Liang showed that if the conjecture holds then it implies that every 4-regular graph
is antimagic. The starting point of our investigations was proving Conjecture 2. As
Theorem 1 provides a more general result, we leave the proof of Conjecture 2 for a
forthcoming paper [1].

2 Proof of Theorem 1

A trail in a graph G = (V| F) is an alternating sequence of nodes and edges vy, €1, v1, . . .,
eq, vy such that e; is an edge connecting v;_; and v; for : = 1,2, ..., t, and the edges are all
distinct (but there might be repetitions among the nodes). The trail is open if vy # vy,
and closed otherwise. The length of a trail is the number of edges in it. A closed trail
containing every edge of the graph is called an Eulerian trail. It is well known that a
graph has an Eulerian trail if and only if it is connected and every node has even degree.

Lemma 3. Given a connected graph G = (V,E), let T = {v € V : dg(v) is odd}. If
T # 0, then E can be partitioned into |T'|/2 open trails.

Proof. Note that |T'| is even. Arrange the nodes of T' into pairs in an arbitrary manner
and add a new edge between the members of every pair. Take an Eulerian trail of the
resulting graph and delete the new edges to get the |T'|/2 open trails. O

The main advantage of Lemma 3 is that the edge set of the graph can be partitioned
into open trails such that at most one trail starts at every node of V. Indeed, there is a
trail starting at v if and only if v has odd degree in G. This is how we see the Helpful
Lemma of [3].

Corollary 4 (Helpful Lemma of [3]). Given a bipartite graph G = (U, W; E) with no
isolated nodes in U, E can be partitioned into subsets E7, Ty, Ty, ..., T} such that dgo(u) =
1 for every u € U, T; is an open trail for everyi=1,2,...,1, and the endpoints of T; and
T; are different for every i # j.

Proof. Take an arbitrary £’ C E with the property dg/(u) = 1 for every u € U. A
component of G — E’ containing more than one node is called nontrivial. If there
exists a nontrivial component of G — E’ that only contains even degree nodes then let
uw; € E — E' be an edge in this component with v € U and w; € W, and let uw, € E’.
Replace uww, with ww; in E’. After this modification, the component of G — E’ that
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contains v has an odd degree node, namely w;. Iterate this step until every nontrivial
component of G — E’ has some odd degree nodes. Let £ = E’ and apply Lemma 3 to
get the decomposition of £ — E? into open trails. O

In what follows we prove that regular graphs are antimagic: for sake of completeness we
include the odd regular case, too. We emphasize the differences from the proof appearing
in [3].

Proof of Theorem 1. Note that it suffices to prove the theorem for connected regular
graphs. Let G = (V| F) be a connected k-regular graph and let v* € V' be an arbitrary
node. Denote the set of nodes at distance exactly ¢ from v* by V; and let ¢ denote the
largest distance from v*. We denote the edge-set of G[V;] by E;. Apply Corollary 4 to the
induced bipartite graph G[V;_1, V;] with U = V; to get EY and the trail decomposition of
G[Vi-1,Vi] — E? for every i = 1,...,q. The edge set of G[V;_1,V;] — EY is denoted by E!.
Now we define the antimagic labeling f of G as follows. We reserve the |E,| smallest
labels for labeling E,, the next |EY | smallest labels for labeling EY, the next | E}| smallest
labels for labeling £, the next |FE, | smallest labels for labeling £, 1, etc. There is an
important difference here between our approach and that of [3] as we switched the order
of labeling E¢ and E!, and we don’t yet define the labels, we only reserve the intervals to
label the edge sets. Next we prove a claim that tells us how to label the edges in E.

Claim 5. Assume that we have to label the edges of E! from interval s,s+1,...,¢ (where
|Ell =0 — s+ 1), and that we are given a trail decomposition of E! into open trails. We
can label E! so that successive labels (in a trail) incident to a node v; € V; have sum at
most s + ¢, and successive labels (in a trail) incident to a node v;_y € V;_1 have sum at
least s + (.

Proof. Our proof of this claim is essentially the same as the proof in [3]: we merely restate
it for self-containedness. Let 7 be the trail decomposition of E] into open trails. Take an
arbitrary trail 7" = ug, €1, uq, . .., e, uy of length ¢ from 7 and consider the following two
cases (see Figure 1 for an illustration).

e Case A: If ug € V;_; then label ey,...,e; by s,¢,s+ 1,/ —1,... in this order. In
this case the sum of 2 successive labels is s + ¢ at a node in V;, and it is s + ¢ + 1
at a node in V;_;.

e Case B: If ug € V; then label e1,...,¢e; by £,s,/ — 1,5+ 1,... in this order. In this
case the sum of 2 successive labels is s + ¢ — 1 at a node in V;, and it is s + ¢ at a
node in V;_;.

We prove by induction on |T]. The proof is finished by the following cases.

1. If 7 contains a trail of even length, then let 7" be such a trail (and again ¢ denotes
the length of 7). If the endpoints of 7" fall in V;_; then apply Case A. On the
other hand, if the endpoints of T' fall in V; then apply Case B. In both cases we
use % labels from the lower end of the interval, and % labels from the upper end,
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Case A Case B

Figure 1: An illustration for labeling trails.

therefore we can label the edges of the trails in 7 — T from the (remaining) interval
s+%.s+541,...,0—2% sothat the lower bound s+ £+4¢— % = s+ holds for the
sum of two successive labels at every v; 1 € V;_1, and the same upper bound holds
at each node v; € V.

2. Every trail in 7 has odd length. If 7 contains only one trail then label it using
either of the two cases above and we are done. Otherwise let T and T3 be two trails
from 7T, and let ¢; be the length of T} for both ¢ = 1,2. Label first the edges of
T} using Case A (starting at the endpoint of T} that lies in V;_;). Note that the
remaining labels form the interval s + %, N % Next label the edges of Tb
using Case B (starting at the endpoint of 75 that lies in V;). Note that the sum of
successive labels in the trail 75 becomes s + 2 + (¢ — 8-1) — 1 = s + ¢ at a node
in V;, and it is s—l—% + (¢ — %) = s+ {+1 at anode in V;_;, which is fine for us.
Finally, the remaining labels form the interval s + % + %, R % — tQ; L
therefore we can label the edges of the trails in 7 — {T3,75} from the remaining
interval so that the lower bound s + % + % +(— % — % = s+ { holds for
the sum of two successive labels at every node of V;_;, and the same upper bound
holds at every node of V;. O]

Now we specify how the labels are determined to make sure f(E(u)) # f(E(v)) for
every u # v. We label the edges of every E; arbitrarily from their dedicated intervals.
Label the edges of every E! in the manner described by Claim 5. For any node v € V; with
i >0, let o(v) denote the unique edge of EY incident to v. Let p(v) = f(E(v)) — f(o(v))
for every v € V' —v*. We label the edges in E7,E7_|,..., E{ as in [3]: if we already
labeled E7, E7 |, ..., EY,, then p(v;) is already determined for every v; € V;. So we order
the nodes of V; in an increasing order according to their p-value and assign the label to
their o edge in this order. This ensures that f(F(u)) # f(F(v)) for an arbitrary pair

u,v € V;.
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We have fully described the labeling procedure. This labeling scheme ensures that
f(E(v)) < f(E(v)) if v; € Vi,v; € V; and i > j + 2 since G is regular and the edges
in E(v;) get larger labels than those in E(v;). Similarly, f(E(v*)) > f(E(v)) for every
v € V —v* for the same reason. It is only left is to show that f(E(v;)) # f(E(vi—1)) for
arbitrary v; € V;,v;_1 € V;_1 and 1 > 2.

Claim 6. For arbitrary v; € Vi,v;_1 € V;_1 and v > 2 we have
1. p(v) < 52 (s +0) + L and p(vi—1) = 52(s + ) + s, if k is even, and

2. p(v;) < B2 (s+0) and p(vi_1) = B2 (s + 0), if k is odd.

Proof. Assume first that k is even. In this case p(v) is the sum of an odd number of
labels. We pair up all but one of these labels using the trail decomposition of E! to get
the bounds needed.

1. Take a node v; € V;. Note that f(e) < s for every e € E(v;) — Ej. Let t = dp/(v;).

(a) If ¢ is even then ZeeE,nE f(e) (5 + ¢) by Claim 5, giving p(v;) < %(s +
O+ (k—1-1)s <k 2(s+ 0) + L.
(b) Ift is odd then ), €BINE(w ) fe) < (s + ) 4+ £ by Claim 5, giving p(v;) <
(s+£)+€+(k—1—t) E2(s40) + L.

2. Now take a node v;_; € V;_;. Note that f(e) > ¢ for every e € E(v;_;) — El. Let
again t = dp/(v;1).

(a) If ¢ is even then ZeeE;mE(ui,l) f(e)
Ls+0+(k—1—t)0>52(s+0)

(b) If ¢ is odd then ) c g, fl€) 2 = (s+€) + s by Claim 5, giving p(v;_1) =
%(s+£)+s+(k;—1—t)£/ E2(s40) +s.

> £(s+ () by Claim 5, giving p(v;—1) >
+

This concludes the proof of (7).

Although the proof of (i7) can be found in [3], we also present it here to make the
paper self contained. The proof is very similar to the even case. So assume that k is odd.
In this case p(v) is the sum of an even number of labels. We pair up these labels using
the trail decomposition of E! to get the bounds needed.

1. Take a node v; € V;. Note that f(e) < s for every e € E(v;) — Ej. Let t = dg(v;).

(a) If ¢ is even then ZeeE,mE wn J(€) < L(s +¢) by Claim 5, giving p(v;) < £(s+
O+ (k—-1-1t)s <k 1(s+ 0).
(b) Ift is odd then ZeeE,mE ) fle) < (s + ) 4+ £ by Claim 5, giving p(v;) <
(s+€)+£+(kz—1—t) EL(s 4 0).
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2. Now take a node v;_; € V;_;. Note that f(e) > ¢ for every e € E(v;—1) — E}. Let
again t = dg/(v;_1).

(a) If t is even then 37 cpi g, ) fl€) 2 £(s + ) by Claim 5, giving p(v;—1) >
Ls+0)+(k—1—-t)>ELs+0).
(b) If t is odd then ZeeEng(vi,l) f(e) = 5+ (s+()+s by Claim 5, giving p(v;—) >

Es+0+s+(k—1-0)0 > (s+0).

This concludes the proof of (ii), and we are done. O

The assignment of the labels implies f(o(v;)) < s and f(o(v;—1)) > ¢ for v; € V; and
v;—1 € V;—1. Claim 6 yields f(F(v;)) < f(E(v;i—1)), finishing the proof of Theorem 1. [J

Remark 7. Observe that the proof of Theorem 1 does not really use the regularity of the
graph, it merely relies on the fact that the degree of a node v; € V; is not smaller than
that of a node v; € V; where ¢ < j. Hence the following result immediately follows.

Theorem 8. Assume that a connected graph G = (V, E) (|V| = 3) has a node v* € V' of
mazimum degree such that dg(v;) > dg(vj) whenever v; € Vi,v; € V; and i < j, where V,
denotes the set of nodes at distance exactly ¢ from v*. Then G is antimagic.
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