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Abstract

In this paper, we construct new infinite families of regular graphs of girth 7 of
smallest order known so far. Our constructions are based on combinatorial and
geometric properties of (¢ + 1,8)-cages, for ¢ a prime power. We remove vertices
from such cages and add matchings among the vertices of minimum degree to achieve
regularity in the new graphs. We obtain (¢ + 1)-regular graphs of girth 7 and order
2¢% 4+ ¢° + 2q for each even prime power ¢ > 4, and of order 2¢% + 2¢®> — ¢ + 1 for
each odd prime power ¢q > 5.
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1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges
are considered. For terminology and notation not explicitly defined here, please refer
to [14]. Let G be a graph with vertex set V' = V(G) and edge set E = E(G). We
denote the subgraph of G induced by a subset U C V(G) as G[U], and it is the graph
with V(G[U]) = U and for any u,v € V(G|[U]) the edge uv belongs to E(G[U]) if and
only if uv € E(G). The girth of a graph G is the number g = ¢(G) of edges in a
smallest cycle. For every v € V| Ng(v) denotes the neighbourhood of v, that is, the
set of all vertices adjacent to v, we may denote it simply by N(v). Similarly, for each
positive integer t we denote by N;(v) the neighborhood of v at distance t, i.e. the set
Ni(v) = {z € V(G) : d(z,v) = t}, and the neighborhood of an edge uv at distance ¢ is
the set Ny(uv) = {z € V(G) : d(z,u) =t or d(z,v) = t}.

The degree of a vertex v € V is the cardinality of N(v). A graph is called regular
if all the vertices have the same degree. A (k,g)-graph is a k-regular graph with girth
g. Erdds and Sachs [16] proved the existence of (k, g)-graphs for all values of k and g
provided that k£ > 2. Thus most work carried out has focused on constructing a smallest
one [1, 3,4, 5,6,7, 8,9, 10, 11, 15, 17, 19, 20, 22, 23, 27, 28, 31]. A (k,g)-cage is a k-
regular graph with girth ¢ having the smallest possible number of vertices n(k, g). Cages
have been studied intensely since they were introduced by Tutte [35] in 1947, and their
construction is a very difficult task.

Counting the numbers of vertices in the distance partition with respect to a vertex
yields Moore’s lower bound ng(k, g) (cf. e.g. [18, Eq. (2)]) with the precise form of the
bound depending on whether g is even or odd:

(k. g) = L+k+k(E—1)+---+k(k—132 if gis odd; )
I =Y 204+ (k—1) + -+ + (b — 1)9/271) if ¢ is even.

Biggs [12] calls the excess of a (k, g)-graph G the difference |V (G)| — no(k,g). The
construction of graphs with small excess is also quite challenging. Biggs is the author
of a report on distinct methods for constructing cubic cages [13]. More details about
constructions of cages can be found in the survey by Wong [39] or in the book by Holton
and Sheehan [21] or in the more recent dynamic cage survey by Exoo and Jajcay [18].

A (k, g)-cage with ng(k, g) vertices and even girth exists only when g € {4,6,8,12}
[19]. If g = 4 they are the complete bipartite graph K}y, and for g = 6,8, 12 these graphs
are the incidence graphs of generalized g/2-gons of order k—1. This is the main reason for
(k, g)-cages with ng(k, g) vertices and even girth g are called generalized polygon graphs
[12]. In particular a 3-gon of order k — 1 is also known as a projective plane of order k — 1.
The 4-gons of order k—1 are called generalized quadrangles of order k — 1, and, the 6-gons
of order k — 1, generalized hexagons of order k — 1. All these objects are known to exist
for all prime power values of £k — 1, and no example is known when k£ — 1 is not a prime
power (cf. e.g. [30, p.25], [34]).

On the other hand, a general upper bound for n(k, g) has been given by Sauer (cf.
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e.g. [18, Thm. 7], [33]) and it states that for every k > 2 and g > 3

2(k —2)9=2) if g is odd;
n(k,g) < { 4(k — 1)) if g is even. @)

In particular, for ¢ = 7, Sauer’s bound has been the best known so far, and it gives
that n(k,7) < 2(k — 2)°.

In this paper, we construct new infinite families of small regular graphs of girth 7.
Our constructions are based on combinatorial and geometric properties of (¢+ 1, 8)-cages,
for ¢ a prime power, which are summarized in Section 2. We remove vertices from such
cages and add matchings among the vertices of minimum degree to achieve regularity in
the new graphs (cf. Definitions 2 and 9). In Section 3 we construct (¢ + 1, 7)-graphs of
order 2¢® + ¢* + 2q for each even prime power ¢ > 4 (cf. Construction 1 and Theorem 7).
In Section 4 we construct (g + 1,7)-graphs of order 2¢® + 2¢® — ¢ + 1 for each odd prime
power ¢ > 5 (cf. Construction 2 and Theorem 15). All these graphs are the smallest
(¢ + 1,7)-graphs known so far, for each prime power ¢ > 5.

Indeed, for ¢ = 4 our graph matches the order of the known (5,7)—graphs of order
152 [26, 32]. For ¢ = 5 there are smaller known (6, 7)—graphs of order 294 [26, 32] (our
(6, 7)—graph has 296 vertices). However, for prime powers ¢ > 5, our graphs improve
Sauer’s upper bound (2), and their order lies within a constant factor of Moore’s lower
bound which equals (1 + o(1))g®. Specifically, we prove that

(k.g) < 2(k — 1)+ (k—1)*+2(k — 1) for each even prime power k — 1 > 4;
MIIS Y 20k =12 +2(k—1)2 = (k—2)  for each odd prime power k — 1 > 5.
(3)

2 Preliminaries

It is well known [24, 30] that Q(4,¢) and W(3,q) are the only two classical generalized
quadrangles with parameters s =t = q.

The generalized quadrangle W (3,¢) is the dual generalized of Q(4,q), and they are
selfdual for ¢ even.

In 1966 Benson [11] constructed (¢ + 1,8)—cages from the generalized quadrangle
Q(4,q). He defined the point/line incidence graph I'; of Q(4,q) which is a (¢ + 1)-
regular graph of girth 8 with ng(¢+ 1, 8) vertices, hence I'; is a (¢+ 1, 8)—cage. Note that,
I', is also the point/line incidence graph of W (3, ¢q).

For any generalized quadrangle Q of order (s,t) and every point z of @, let + denote
the set of all points collinear with z. For a nonempty set X of vertices of (), we define
X+ = Neex z+. Note that Ny(z) in the incidence graph T';, corresponds in the geometry
to xt for a point x € Q.

The span of the pair (z,y) is sp(z,y) = {z,y}*t ={ue P:ueztVzeatnyt},
where P denotes the set of points in Q. If z and y are not collinear, then {z,y}** is also
called the hyperbolic line through x and y. If the hyperbolic line through two noncollinear
points = and y contains precisely ¢t 4+ 1 points, then the pair (z,y) is called reqular. A
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point z is called regular if the pair (z,y) is regular for every point y not collinear with .
It is important to recall that the concept of being regular also exists for a graph. Hence,
we will emphasize when the word “regular” refers to a point of a geometry or to a graph.

Remark 1. [30, p.33, dual of 3.3.1(i)] Every point in W (q) is regular (i.e. |sp(z,y)| = q¢+1
for all non-collinear z,y).

There are several equivalent coordinatizations of these generalized quadrangles (cf.
[29], [36], [37], see also [24]) each giving a labeling for the graph I',. In Section 4 we
present a further labeling of I';, equivalent to previous ones (cf. [1, 2]), which will be
central for our constructions since it allows us to keep track of the properties (such as
regularity and girth) of the small regular graphs of girth 7 obtained from I',.

3 Construction of small (¢ + 1, 7)-graphs for even prime powers

In this section we construct a family of (q + 1, 7)-graphs of order 2¢* + ¢* + 2q obtained
from a (¢ + 1,8)-cage I, for each even prime power ¢ > 4. In general terms, we proceed
by removing, from a (q + 1, 8)-cage, a subgraph H consisting of a distinguished vertex =,
its neighbours, and almost all its second neighbours (the neighbourhoods of all but two
of the neighbours of x). The resulting graph is not regular, indeed the neighbours of the
subgraph H in the cage, are left with degree ¢q. So we add appropriate matchings among
such vertices to restore the (¢ + 1)-regularity of the graph. The constructed graph has
girth at most 7 by Equation (1). The details in this Section are devoted to choosing the
matchings in an appropriate way to obtain girth exactly 7 in the graph.

Let x € V(I'y) and N(x) = {xo,...,2,}. Label X; = N(x;) —x = {1, ..., x;} for all
i€{0,...,q}. We denote X;; = N(x;;) \ {x;} fori € {0,...,¢q} and j € {1,...,q} and
observe that the sets X;; have even cardinality. Let Z = {Xo, X1, X;; : 1 =2,...,¢,j =
1,...,q}. For each set Z € Z, M, will denote a perfect matching of Z. Let

q
H = N(z)U| JN(z;) c V(T (4)
i=2
To obtain a small regular graph of girth 7, we consider the graph I'j — H and then add
matchings My between the remaining neighbors of the vertices in H.

Definition 2. Let I'; be a (¢ + 1, 8)-cage for an even prime power ¢ > 4 and H as in (4).
We define I'} to be the graph with: V/(T'}) := V(Cy—H) and E(T}) := E(I;—H)U U My.

ZeZ

Remark 3. The graph T has order |V/(T'y)| — (¢°+2) and all its vertices have degree ¢+ 1.
Furthermore, the girth of I’}] is at most 7 by Equation (1).

Remark 4. Let v and v be distinct vertices of a graph G of girth 8 such that there is a
uv-path P of length ¢ < 8. Then every uv-path P’ such that F(P)NE(P’) = () has length
|[E(P")| > 8 —t.
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Proposition 5. Let I'; be a (¢ + 1,8)-cage for an even prime power ¢ > 4 and Fl as in
Definition 2. Then F; ha,s girth 7 if the following condition holds:

For each wv € M, and each Xy, where i,k € {0,...,q—2}, j,l € {1,...,q}

E(TL[Ny(uv) N Xpa]) N My, = 0. (*)

Proof. By Remark 3 the graph F; has girth at most 7. From Remark 4, the distances in
I'; — H between the elements in the sets Z € Z satisfy the following:

(i) If u,v € Z, then dp,_g(u,v) > 6 because they have a common neighbor z in I'.
(ii) If u € Xo and v € Xy, then dr,_p(u,v) > 4.

(iii) If v € X; and v € Xj;, then dp,_g(u,v) > 3, for i € {0,1}, k € {2,...,q} and
je{l,...,q}.

(iv) If v € X35 and v € Xy, then dp,_g(u,v) >4, forl € {2,...,q} and j, k € {1,...,q}.

(v) f v € Xy and v € Xy, then dp _g(u,v) = 2, for t # [, t,1 € {2,...,q} and
Jhke{l,....q}.

Let C be a shortest cycle in T'j. If E(C) C E(I'y — H), then |C| > 8. Suppose C' contains

edges in M = U My. 1If C contains exactly one such edge, then by (1), |C| > 7. If C

ZeZ
contains exactly two edges e, es € M, we have the following cases:

e If both ey, 5 lie in the same My, then by (i), |C] > 14 > 7.

o If ¢y € My, and e; € My,, then |C] > 10 > 7 by (ii).

o Ife; € My, i=0,1, and ey € My, then |C] > 8 > 7 by (iii).
o If e; € My, and ey € My, , then [C] > 10 > 7 by (iv).

o If e, € Mx,, and ey € My, then |C| > 7 for t # I, by condition (*).

If C' contains at least three edges of M, then |C| > 9 > 7 since dp, (u,v) = 2 for all
u,v € {Xo, X1, Xy} with i € {2,...,¢} and j € {1,...,¢} by (i)- (v) From the above
and Remark 3 it follows that F; has girth 7. O

Lemma 6. There exist ¢* — q matchings M, satisfying condition (*) in Proposition 5.

Proof. Let Q; ﬂ N(Xj;) for j=1,...,q. Let wj; € Q;. As dp (2, wj;) = 4 there exist

other ¢ — 1 elements in 2; mutually at distance four, since I'; is the incidence graph of a
generalized quadrangle W( ). Label Q; = {wj, .. w]q}
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Figure 1: The dashed edges and their lower end-vertices illustrate the subgraph H, re-
moved from I';, when ¢ = 4. Above, find the choice of the matchings that lead to a
(5, 7)—graph of girth exactly 7 and order 152.

Every vertex wj, is adjacent to exactly one vertex in X;; since the girth of I'; is 8.
Denote {5} = N(X;;) " N(w;p,) for each i € {2,...,¢} and j,h € {1,..., ¢} (see Figure

q
1). Note that z;;;, is well labeled, because if z;;, had two neighbors w;, w;y € ﬂ N(Xi),
then I'; would contain the cycle x;;nw;p @i jn Ty 2 pwjp of length 6. =

Therefore, take the complete graph K, label its vertices as h € {1,...,¢q}. We know
that it has a 1-factorization with ¢ — 1 factors Fy,..., F,_; since ¢ is even (cf. e.g. [38]).
For each i = 2,...,q, let wypwin € My, if and only if hh' € Fj_;.

To prove that the matchings My,; defined in this way fulfill condition (*), suppose
that zypxin € Mx,, and xyjpximn € M Xy, for i’ # i. Then F; and F; would have the
edge hh' in common contradicting that they come from a 1-factorization.

To conclude, notice that for uv € Mx,, and a,b € X}y with [ # j and possibly k = i,
the distances d(u,a) and d(v, b) are at least 4.

Therefore, there exist ¢> — ¢ matchings M x;; with the desired property. O

CONSTRUCTION 1: Let ¢ > 4 be an even prime power. Let 1"31 be the (¢ + 1)-regular
graph of order 2¢* + ¢ + 2¢ from Definition 2 with M x;; as in the proof of Lemma 6,
fori € {2,...,¢} and j € {1,...,q}; and with My, and My, matchings of X, and
X, respectively, chosen arbitrarily. Then, the graph F; obtained with such a choice of
matchings has girth 7 by Proposition 5.

As a consequence we have the following theorem.
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Theorem 7. Let g > 4 be an even prime power. Then, there is a (q + 1)-regular graph
of girth 7 and order 2¢® + ¢* + 2q. O

Figure 1 illustrates this construction for ¢ = 4. Note that this (5, 7)—graph has 152
vertices, as the two found in 2001 by McKay and Yang [26, 32].

4 Constructions of small (¢ + 1,7)-graphs for an odd prime
power.

In this section we construct an infinite family of (¢ + 1, 7)-graphs of order 2¢° +2¢*> —q+1
for odd prime power ¢ > 5. Analogously to Section 3, we will delete a set H of vertices
from a (¢ + 1,8)-cage I'; and add matchings M, between the remaining neighbors of H
to obtain a small regular graph of girth 7. In general terms, the subgraph H consists of
two distinguished vertices  and y at distance 4 in I'y; their neighbours and all but three
of the common second neighbours of x and y (see Figure 2). The removal of H from I';
leaves a non regular graph. Thus, we add appropriate matchings among the vertices of
lesser degree, and three sporadic 2-paths, to restore the (¢ + 1)-regularity of the graph
(cf. Definition 9). The constructed graph has girth at most 7 by Equation (1). As in
Section 3, the details that follow are devoted to choosing the matchings in an appropriate
way to obtain girth exactly 7 in the graph. In particular, some of the matchings can be
chosen combinatorially, as for the even case (cf. Lemma 12). However, for the remaining
ones, we rely on an algebraic coordinatization of the (¢ + 1, 8)-cage (cf. Definition 13 and
Lemma 14).
Specifically, the set H and matchings M, are defined as follows.

Figure 2: Subgraph of I'; used to define H and Z. The subgraph H is highlighted by the
dashed line.
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Definition 8. Let x,y € V(I';) be vertices at distance 4 in I';, and let zz;s;y;y be the
internally (vertex) disjoint zy-paths for i« = 0,...,¢ (which exist since I'; is (¢ + 1)-
connected, see [25]). We define the following sets (see Figure 2):

~—

H = {z,y,83,51,...,5. UN(z) UN(y) C V(I'p);
X; = N@)nV{I,—H), i=0,...,¢
Y, = Nuy)nV{I@,—H), i=0,...,¢
Si = N(Si)ﬂV(Fq—H), 223,,q

Notice that the vertices of I'y — H have degrees ¢ —1, ¢ and ¢+ 1. The vertices sg, 51, 2
have degree ¢ — 1, those in X; UY; U S; have degree g and all the remaining vertices of
Iy, — H have degree ¢ + 1. Therefore, in order to obtain a (¢ + 1)-regular graph, we need
to add edges to I'y — H in such a way that cycles of length smaller than 7 are avoided.

Similarly as before, let Z be the family of all the sets X;,Y;, S;. Note that, all sets in
Z have even cardinality. For each Z € Z, M, will denote a perfect matching of V(7).

Definition 9. Let I'; be a (¢ + 1, 8)-cage for odd prime power ¢ > 5.

e Let T'} be the graph with: V/(I'}) := V(I, — H) and E(T}) := E(T, — H)U | M.

zZeZ

o Define I'2 as V/(I'2) := V(I'}) and E(I2) := (E(T}) \ {uovo, u1v1, ugvs }) U{sou, sovo,
S1u1, S1U1, Salia, S22}, the deleted edges u;v; belong to My, in Fé and they are re-
placed by the paths of length two w;s,v;, i € {0,1,2}.

Remark 10. Note that [V/(I'})| = [V(T?)] = [V(I'y)| = 3(¢+ 1) + 1. All vertices in I'} have
degree q + 1 except for sg, s1, so which remain of degree ¢ — 1. Hence, by Definition 9, in
I'2 all vertices are left with degree ¢ 4+ 1. From Equation (1) the girth of both I'} and I";
is at most 7.

Proposition 11. Let I'; be a (¢ + 1, 8)-cage for odd prime power ¢ > 5 and F;, Fg be as
in Definition 9.

(a) F; has girth 7 if the matchings Mg,, Mx, and My, have the following properties:

(a1) For all uv € Ms,, E(T'}[Ny(uv) N .S;]) N M,, = 0.
(a2) For all uv € My,, E(L}[Ny(uv) NY;]) N My, = 0.

(b) If both conditions (al) and (a2) hold, the graph I} also has girth 7.

Proof. By Remark 10 the graphs I'} and I'2 have girth at most 7. From Remark 4, the
distances in I') — H between the elements in the sets Z € Z satisfy the following (see
Figure 2):

(i) If u,v € Z, then dp,_g(u,v) > 6.

(ii) If u € X; and v € X, then dr g (u,v) > 4.
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(iii) If w € Y; and v € Y}, then dp g (u,v) > 4.

(iv) f w € S; and v € S, then it may exist w € I'y — H such that u,v € N(w), that is,
dpq,H(u,’U) = 2.

(v) fu € S; and v € X; UY], then dp,_pg(u,v) > 3.
(vi) If u € X; and v € Y}, then dp,_g(u,v) > 2.

Let C be a shortest cycle in Ty. If E(C) C E(I'y — H), then |C| > 8. Suppose C' contains

edges in M = U My. If C contains exactly one such edge, then by (i), |C| > 7. If C

ZeZ
contains exactly two edges ey, es € M, the following cases arise:

e If both ey, eq lie in the same My, then by (i), |C| > 14 > 7.
o If ey € My, and e, € My, for i # j, by (ii), |C| > 10 > 7.
o If ey € My, and ey € My, for i # j, by (iii), |C| > 10 > 7.
o If ey € Mg, and ey € Mx, U My,, by (v), |C| >8> 7.

o If ey € Mg, and e; € Mg, for i # j, by item (al), |C] > 7.
o If ey € My, and ey € My,, by item (a2), [C] > T.

If C contains at least three edges of M, since d(u,v) > 2 for all u,v € {X;UY; }r_ U{S;}F,,
|C| > 9 > 7. Hence T'j has girth 7, concluding the proof of (a).
To prove (b), let C be a shortest cycle in 2. If E(C) € E(Iy— H)UM, then |C| > 7

e If C contains exactly one edge s;u; or s;v;, then |C| > 7since dr, (s;, u;) = dr,(si,v;) =
2 which implies dpé(sl, u;) = 6 and dp}z(sl, v;) = 6.

e If C contains a path u;s;v;, then (C' — {s;}) + u;v; is a cycle in F; with one vertex
less than C|, therefore |C] > 8.

o If C contains two edges sju;, sju;, for i # j, their distances dri(s;,u;) > 4,
dF}I(Si’ S]> > 4, and d[‘é(uz,u]) 2 4

Since in either case C' has length at least 7 and by Remark 10, the result holds. O]

The following lemma states the existence of the matchings Mg, for the sets .S;, which
fulfill condition (al) from Proposition 11. Notice that in the incidence graph of a general-

ized quadrangle {z, y}*++ = (NseNs (2)nNa(y) NV2(8), thus Remark 1 implies that | m N(S
1= 0

q— 1, recalling that {s;}?_, = No(x) N Na(y). Since N | is contained in N(S.
=0
=0 =3

and | ﬂ N(S;)| = ¢ — 1, then the condition for the following lemma holds.
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Lemma 12. There exist matchings Msg,, for i = 3,...,q, such that condition (al) in
Proposition 11 holds.

Proof. From the regularity of W(q) we know that (_, N(S;) = {w1, ..., w,—1}, and since
S; has ¢—1 vertices, every vertex w; is adjacent to exactly one vertex in s;; € .S;. Moreover,
note that s;; is well labeled, because if s;; had two neighbors w;,w; € N, N(S;), I,
would contain the cycle (s;;w;sk;skskw;) of length 6.

Therefore, take the complete graph K4, label its vertices as j € {1,...,¢ —1}. We
know that it has a 1-factorization with ¢ — 2 factors Fi,..., F,_5 since ¢ — 1 is even. For
each i =3,...,q+1, let 5,55y € Mg, if and only if jl € F;_,.

To prove that the matchings Mg, defined in this way fulfill the desired property suppose
that s;;sy € Mg, and sy ;s € MSZ{ for ¢/ # 4. Then F; and Fj would have the edge jl in
common contradicting that they were a factorization. O]

So far, our construction has been independent from the coordinatization of the chosen
(¢ + 1,8)-cage, however, in order to define My, and My, satisfying condition (a2) of
Proposition 11, we need to fix all the elements chosen so far. To this purpose we use the
following convenient description of a (q + 1, 8)-cage.

Definition 13. [1, 2] Let F, be a finite field with ¢ > 2 a prime power and g a symbol
not belonging to F,. Let I', = I',[Vb, V1] be a bipartite graph with vertex sets V; =
FZ’ U{(e,b,¢)i,(0,0,¢); : b,c € F} U{(0,0,0)i}, i =0,1, and edge set defined as follows:

For all a € F, U {p} and for all b,c € F, :

{(w, aw+b, a*w+2ab+c)y:w € F,} U{(g,a,¢)o} if a € Fy;

Nr,((a,b,¢)1) = {

{(e,b,w)o :w e F,}U{(0,0,¢)0} if a = o.

NFq((Q? 0, C)l)
Nr,((0,0,01) =

{(0.c,w)o : w e Fg} U{(0,0,0)0}
{(0,0,w)o : w € Fg} U{(0,0,0)0}-
Or equivalently
For all i € F, U {p} and for all j.k € F,:
{(w, j —wi, w* —2wj+k):weF,}U{(g,7,i)1} ifieF

qu((i,j, k)O) = {

{(jawak)l :wEFq}U{(Q,Q,j)l} le:Q

Nr,((0, 0.k)0) = { (0, w, k)1 : w € F} U{(0, 0,001 };
NFq((Q’ 0, Q)O) = {(Q7 Q?w>1 w e Fq} U {(Qa 0, Q)l}

Lemma 14. There exist matchings Mx, and My,, for @ = 0,...,q, such that condition
(a2) in Proposition 11 holds.
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Proof. Let x = (p, 0,0)1 and y = (0,0,0);.
We will distinguish two cases, when ¢ = p is a prime or when ¢ = p®, a > 1 is a prime
power.
Case 1: ¢ = p a prime.
Let z; = (0, 0,7)0, ¥i = (4,0,0)g for ¢ = 0,...,p—1, and =z, = (o, 0, 0)o, Yp = (0,0, 0)o.
N(z;) ={(o,t,i)1 : t=0,...,p—1}U{x}, 1 ={0,...,p— 1},
N(l'p) :{(Qagat)l t:O,,p—l}U{f},
N(y;) ={(t,—it,it*); : t =0,....,p— 1} U{(0,0,9)1 }, i ={0,...,p — 1},
and N(y,) = {(0,t,0); : t=0,...,p—1} U{(0,0,0)1}.
Hence, we have the sets:
X: = {(o,t,i)1 : t = 1,...,p— 1} and Y; = {(t,—it,it*), : t = 1,...,p — 1} for
i=0,...,p—1.
X, ={(0,0,t)1:t=1,....p—1}and Y, = {(0,¢,0); : t =1,...,p—1}.
Define the following matchings, depicted in Figure 3:
My, ={(0,¢,i)1(0,—(£+2),i); : £ =1,...,(p—3)/2} U{(0,—2,7)1(0, —1,i)1 }, and
My, = {(t, —it,it?)1 (=t it,it?), : t =1,...,(p—1)/2}, for i =0,...,p — 1.
MXp - {(97 0, 6)1(97 0, _(€+ 2))1 tl= 17 cto (p - 3)/2} U {(Q: o, _2)1(97 o, _1)1}’ and
My, = {(0,t,0)1(0,—t,0)y : t =1,...,(p—1)/2}.

0N N

(P, 1,01 (0,201 (p,3,i)1 (p4,0)1 (p,5,0)1 (p,6,i)1 (1,—i,9)1 (2,—2i,40); (3,—34,2i) (4,—4i,23)1 (5, —5i,4i); (6,—61,%)

MXi Myl.

Figure 3: The matchings Mx, and My, for ¢ =0,...,p — 1 and p = 7, determined by the
2" and the 17 coordinates of the vertices in X; and Y; respectively.

Claim: Matchings Mx, and My, for 4,5 € {0,...,p}, satisfy property (a2).
To prove it we must analyze the intersection of the second neighborhood of X; with Y;.
Recall that the vertices in Y; are in N((7,0,0)9) = N(y;), the vertices in X; have
coordinates (o,¢,7); for ¢ =1,...,p— 1. We will show that there exists a unique vertex

Wiy € Y; N NQ(XJ) N NQ(XP)

and to this purpose we describe the coordinates of the vertices in X, in terms of the
subscripts of wy; as (o, 0, siej)1 where s;; € {1,...,p — 1} and where the relationship
between w;¢; and s;; is highlighted in what follows:

Note that Wiy = (CL, b, C)l S N((Z, O, 0)0) N NQ((Q, g,j)1> N NQ((Q, 0, Sigj)1>.

Since N((i,0,0)0) = {(¢, —it,it>); : t = 0,...,p — 1} U (p,0,i)1, then a = t, b = —it,
and ¢ = it%. Also, Na((0, 0, 5i;)1) = N({(0, 8itj,x)o : x € 0,...,p—1}) = {(sir, u, )1 :
z,u € 0,...,p—1}. Hence, sy4; = a =t and (a,b,c); = (Si@j,_iswj,'l.s,?éj)l. Moreover,
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N((o:6;3)1) =104, 4,5)0: s =0,...,p=1}U{(0, 0,5)0}; andNa((0, £, j)1) = N({ (5, £, )o :
s=0,...,p—1HU{N(0,0,7)0)} = {(z, 0—xj, lx*—2xj+5): }U{(0, ¢, j)1 }. By substitution
in the first and second coordinates we obtain the following equation:

Sij(j—i) =L fori 0,j €Fpl#0,5—1i+#0. (5)

Notice that this equation is undefined for 7 = i, otherwise it would mean that y; has
a neighbor at distance 3 from z; and this would imply the existence of a cycle of length
6 in I'.

By equation (5) we have s;_y; = —si; implying, for fixed 7 and j, that the vertices
Wigj = (Sigj,—’l'sigj,l'.s?[j)l and w;_p; = (—sigj,isigj,isfgj)l in Y; are at distance two, re-
spectively, only from the vertices (o, ¢, j); and (0,—¢,7); in X; for j = {1,...,p}; and
to the vertices (o, 0,¢) and (o, 0, =) in X,. Therefore the matchings My, and M, for
ie{l,...,p—1}and j € {1,...,p} satisfy property (a2).

Finally, also the matchings My, and My, satisfy property (a2), since for all (g, ¢, j); €
Xj it holds that Y, N Na((0,4,5)1) = (0,£,0);; and the edge (o,¢,7)1(0, —, j)1 & Mx;.
This ends the proof of the claim.

Case 2: ¢ a prime power.

Let a be a primitive root of unity in GF(q) ={a":i=0,...,q—2}U{0}.

In this case, 7; = (0, 0,a" ), yi = (a*1,0,0), for i = 1,...,¢— 1, 29 = (0, 0,0)o,

=(0,0,0)0, 74 = (Q,Q,Q%)and.yq==(9,0,0)a

( ) {(Q7 Z )1. :O '-7q_2}U(Q7070/—1)1U$a
N(zo) = {(0,a ) 1t=0,...,4—2}U(0,0,0); Uz,
N@OZ{@,7) t=0.....g— 2} U(2,0,0)s Uz,

N(y) = {(at, =t o712 1t =0,...,¢—2} U (0,0,a' )y,
N(yO):{(at ) t_oa"wq_Z}U(QvO)O)l)
Hen we have the sets

= {(g,a ™ it=0,...,g=2}and Y; = {(af, —a' 1 72 1t =0,... q—
2} forz-l,...,q—l.
Xo={(0,0",0)1:t=0,...,qg—2} and Yy = {(c},0,0); : t =0,...,q — 2}.
X,={(0,0,0")1:t=0,...,g—2} and Y, = {(0,0%,0); : t =0,...,q — 2}.
In order to define the matchings My, and My, we proceed as above, but in this case
we obtain the following equations:

asiti (ad =1 — ai_l) =af fori,j>1;
a0t (it for 1 = 0; (6)
asioo (—at 1) o/ for j = 0.

Notice that equation (6) is undefined for j = i, otherwise it would mean that y; has a
neighbor at distance 3 from z; and this would imply the existence of a cycle of length 6
in I'y.

Define the following matchings, depicted in Figure 4:

Mx, ={(0.a*,i)1(0,0®,i)1 : £ =0,...,(q+1)/2}; and
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= {(a, —aiT12 i1t (o243 Qi) i) = ) (g —
)/2}U {(a, =, ’“)1(0/1’3, —aitamt o2 for 4 =0,...,q — 1.

My, = {2 2.0%)1(2, 0,07 ) £ €= 0,....,(g-+ 1)/2}; and
My, = {(0,0%,0),(0,a%%3,0), 1 t = 0,..., (g — 1)/2} U {(0, @, 0)1, (0, a3, 0, }.

— o — o — o ——o
(p.a%i)  (p.ahi) (p,0?)i) (p.a®0) (pa®))  (p.a%) (pa%i)  (p.alli)
My,

Figure 4: The matchings My, and My, for i =0,...,¢ — 1 and ¢ = 9, determined by the
2" and the 17 coordinates of the vertices in X; and Y; respectively.

On the other hand, we obtain that s;e11; = s;; + 1, multiplying the equation (6) by
«, which implies that the matchings My, and My, satisfy property (a2), because the two
vertices (i, —aq'~1Hsits o 71F25i5) ) and (ot —qiTIH G D i m 4200+ in Y] are
at distance two in X; only from the vertices (g, j); and (g, @™, j);, concluding the
proof. O

CONSTRUCTION 2: For ¢ > 5 an odd prime power let F2 be the graph of order 2¢* +
2¢? — ¢ + 1 given in Definition 9, with the choice of matchlngs as in Lemmas 12 and 14.
Then, the graph Fg is a (q + 1)-regular graph of girth 7 with 2¢® + 2¢*> — ¢ + 1 vertices as
we prove in the following theorem.

Theorem 15. Let ¢ > 5 be an odd prime power. Then, there is a (q + 1)-regular graph
of girth 7 and order 2¢> +2¢*> — q + 1.

Proof. Consider the graph in Construction 2, obtained with the choice of matchings from
Lemmas 12 and 14. Then, condition (a) in Proposition 11 holds, and by Proposition 11(b)
the graph Fg has girth 7. By Remark 10, the order of Fg 2@+ +q+1)—(g—3+
2(q+2)) =2¢° + 2¢*> — q + 1, as required. O

Note that for ¢ = 5, McKay and Yang found eighty-seven (6, 7)—graph has 294 vertices,
in 2001 [26, 32]. Our (6, 7)—graph has 296 vertices, but for ¢ > 5, Theorem 15 improves
the previously known upper bounds from Sauer (cf. [33]).
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