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Abstract

In this note we consider two related infinite families of graphs, which generalize
the Petersen and the Coxeter graph. The main result proves that these graphs
are cores. It is determined which of these graphs are vertex/edge/arc-transitive or
distance-regular. Girths and odd girths are computed. A problem on hamiltonicity
is posed.
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1 Introduction

All graphs considered in this paper are finite undirected with no loops and multiple edges.
A graph homomorphism between two graphs Γ and Γ′ is a map Φ : V (Γ)→ V (Γ′) between
the vertex sets such that {Φ(u),Φ(v)} is an edge in Γ′ whenever {u, v} is an edge in Γ.
In particular, Φ(u) 6= Φ(v) for any edge {u, v}. A bijective graph homomorphism such
that {Φ(u),Φ(v)} is an edge if and only if {u, v} is an edge is a graph isomorphism.
When Γ = Γ′, a graph homomorphism and a graph isomorphism are called a graph
endomorphism and a graph automorphism, respectively. Recall that a bijective graph
endomorphism is the same as a graph automorphism, since the graphs considered are
finite. A graph is a core if all of its endomorphisms are automorphisms. A subgraph Γ′

in a graph Γ is a core of Γ, if it is a core and there exists some graph homomorphism
Φ : Γ → Γ′. Though every graph has a core, which is an induced graph and unique up
to isomorphism [7, Lemma 6.2.2], it is not trivial to provide examples of cores. For some
known classes and for the general introduction to this subject we refer to [7]. Provided
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that the automorphism group of a graph acts transitively on non-edges, it was recently
shown that the graph is either a core or it has a complete core [4, Corollary 2.2]. Same
type of a result was obtained for connected regular graphs, where the automorphism group
acts transitively on pairs of vertices at distance two [8, Theorem 4.1]. This property is
shared by distance-transitive graphs. In both papers [4] and [8] it is emphasized that it is
often difficult to decide which of the two possibilities about the core occurs. For the point
graph of a classical polar space or for its complement, the problem actually translates
on deciding whether the polar space has an ovoid, spread, and a partition into ovoids [4,
Theorem 3.5]. This is a well known problem in finite geometry, which is still unsolved
in general. Nevertheless, for several classes of graphs in [4, 8] the problem of whether
the graph is a core or it has a complete core is solved. In particular, distance-regular
non-bipartite graphs with no triangles are cores [8, Corollary 4.8].

Several matrix preserver problems demand a characterization of maps, defined on a
particular set of matrices, which preserve a given binary relation. If the considered matri-
ces have coefficients in a finite field, the preservers can be interpreted as endomorphisms
of a finite graph. If it turns out that the graph is a core, its endomorphisms are bijective
and their characterization is easier to obtain. The maps Φ, defined on the set of all hermi-
tian matrices over a finite field, for which the rank rk

(
Φ(A)−Φ(B)

)
equals one whenever

rk(A − B) is one, were characterized in [12], by showing that the corresponding graph
is a core. The proof was later shortened in the thesis [16] by applying [8, Theorem 4.1].
Analogous result for symmetric matrices over a finite field was obtained in [15]. Here
the graph is a core, unless we consider 2 × 2 symmetric matrices in which case the core
of a graph is complete. Very recently, the present author showed that the graph, which
is formed by invertible hermitian matrices over a field Fq2 with q2 elements, is a core,
provided that q > 4 [13]. In this paper we prove the same result for q = 2. The proof
demands different techniques from those in [13], since the graph is without triangles when
q = 2. In contrast, when q > 3, any two adjacent vertices determine a maximal clique
on either q or q − 1 vertices. The techniques developed in this paper allows us to prove
also that the graph formed by invertible binary symmetric matrices is a core. An extra
motivation to study the two families of graphs - formed by invertible hermitian matrices
over F4 or by invertible symmetric matrices over F2 - is the fact that they generalize
the well known Petersen and Coxeter graph, respectively. These two graphs are already
known to be cores [7, p. 125].

The paper is organized as follows. In Section 2 we provide the notation and list few
auxiliary theorems that are used in the proofs. The statement and the proofs of the
main results are given in Section 3. In Section 4 we determine which of the considered
graphs are vertex-transitive, edge-transitive, arc-transitive, or distance-regular, and state
a problem on hamiltonicity that is related to a variant of the Lovász problem (cf. [9]).

2 Preliminaries

Let F4 = {0, 1, ı, 1 + ı} be the field with four elements, that is, ı2 = 1 + ı. The map
x := x2 is the unique involution on F4, which is not the identity map, i.e. x+ y = x+ y,
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Figure 1: Graph HGL2(F4) is the Petersen graph.

xy = y · x, and x = x. Maps Tr(x) := x + x and N(x) := xx on F4 have {0, 1} as their
image. Their preimages satisfy Tr−1(0) = {0, 1}, Tr−1(1) = {ı, 1 + ı}, N−1(0) = {0},
and N−1(1) = {1, ı, 1 + ı}. A n × n matrix A with coefficients in F4 is hermitian, if

A∗ := A
>

= A. Here, is applied entry-wise on A, and B> is the transpose of B. If the
rank rkA of a hermitian matrix equals r, then there is an invertible matrix P ∈ GLn(F4)
such that

A = P diag(1, . . . , 1︸ ︷︷ ︸
r

, 0 . . . , 0)P ∗

[3, Theorem 4.1], that is, A =
∑r

j=1 xjx
∗
j , where xj ∈ Fn4 is j-th column of matrix P .

Let F2 = {0, 1} be the binary field (sometimes we will consider F2 as a subfield in F4)
and let A be a n× n matrix with coefficients in F2. Then A is symmetric if A> = A. A
symmetric matrix is alternate if x>Ax = 0 for all x ∈ Fn2 , or equivalently, the diagonal
of A is zero. If A, of rank r, is symmetric and not alternate, then there exists an invertible
matrix P ∈ GLn(F2) such that

A = P diag(1, . . . , 1︸ ︷︷ ︸
r

, 0 . . . , 0)P>

[21, Propostion 1.35], that is, A =
∑r

j=1 xjx
>
j , where xj ∈ Fn2 is j-th column of matrix P .

If a symmetric matrix A is alternate, then rkA = r is even and there is an invertible
matrix P such that

A = P

 r/2∑
j=1

(E2j−1,2j + E2j,2j−1)

P>, (1)

where Ejk is the matrix with 1 at (j, k)-th entry and zeros elsewhere [21, Proposition 1.34].
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Figure 2: Graph SGL3(F2) is the Coxeter graph.

Let
Hn(F4), HGLn(F4), Sn(F2), SGLn(F2) (2)

denote, in the same order, the sets of all hermitian n × n matrices over F4, invertible
hermitian n × n matrices over F4, symmetric n × n matrices over F2, and invertible
symmetric n×n matrices over F2. Each of these four sets is a vertex set of a graph, where

{A,B} is an edge if and only if rk(A−B) = 1. (3)

We slightly abuse the notation and denote these graphs with the same symbols (2). Since
any symmetric matrix over F2 is also hermitian over F4, it follows that

SGLn(F2) 6 HGLn(F4) 6 Hn(F4) and SGLn(F2) 6 Sn(F2) 6 Hn(F4), (4)

where Γ′ 6 Γ means that Γ′ is an induced subgraph in Γ. Matrices A and B that
satisfy (3) are adjacent. It is well known that the clique numbers of Hn(F4) and Sn(F2)
both equal 2 (cf. [21, Propositions 5.7 and 6.7 ]), so these two graphs are without triangles.
By (4), HGLn(F4) and SGLn(F2) are without triangles as well. Graphs HGL2(F4) and
SGL3(F2) are the Petersen and the Coxeter graph, respectively, as it can be seen in
Figures 1 and 2. If k 6 n and In−k is the (n− k)× (n− k) identity matrix, then the map
A 7→ A ⊕ In−k represents both, a graph monomorphism HGLk(F4) → HGLn(F4) and a
graph monomorphism SGLk(F2) → SGLn(F2). In particular, for any n > 2 and m > 3,
graphs HGLn(F4) and SGLm(F2) contain, as a subgraph, the Petersen and the Coxeter
graph, respectively. The present author is not aware if the two representations of Petersen
and Coxeter graph are already known or how well are they known. The representation of
the Petersen graph is implicitly described in [2, p. 364], where it is mentioned that any two
vertices ofHGL3(F4) at distance two determine a Petersen graph. We were not able to find
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the present representation of the Coxeter graph in the literature. Some special attention
to the graph S3(F2) formed by all (singular and invertible) 3 × 3 symmetric matrices
was given in [22]. Some geometric properties of the set (not the graph) SGL3(F2)\{I},
where I is the identity matrix, are described in [1].

The proofs of the main results in this paper rely on the following lemma. Recall that
an s-arc is a sequence of vertices (v0, . . . , vs) such that consecutive vertices are adjacent
and vj−1 6= vj+1 when 0 < j < s. An 1-arc is simply an arc.

Lemma 1. [7, Lemma 6.9.1] Let Γ be a connected nonbipartite graph. If every 2-arc lies
in a shortest odd cycle of Γ, then Γ is a core.

The following results give an evaluation of the determinant/inverse of a rank–one
perturbation of an invertible matrix.

Lemma 2. (cf. [19]) Let F be a field, A ∈ GLn(F), and x,y ∈ Fn. Then

det(A+ xy>) = (detA) · (1 + y>A−1x).

Corollary 3. If A ∈ HGLn(F4) and x ∈ Fn4 , then A+ xx∗ is invertible iff x∗A−1x = 0.

Proof. Since x∗A−1x ∈ F2, the result follows from Lemma 2 if we choose y := x.

Corollary 4. If A ∈ SGLn(F2) and x ∈ Fn2 , then A+ xx> is invertible iff x>A−1x = 0.

Proof. Since x>A−1x ∈ F2, the result follows from Lemma 2 if we choose y := x.

Corollary 5. Suppose that A,A+ xx∗ ∈ HGLn(F4) for some x ∈ Fn4 . Then

(A+ xx∗)−1 = A−1 + (A−1x)(A−1x)∗.

Proof. By Corollary 3, x∗A−1x = 0. Since (A−1)∗ = A−1, it follows that

(A+ xx∗)
(
A−1 + (A−1x)(A−1x)∗

)
=

= I + xx∗A−1 + xx∗A−1 + x(x∗A−1x)(A−1x)∗ = I.

Corollary 6. Suppose that A,A+ xx> ∈ SGLn(F2) for some x ∈ Fn2 . Then

(A+ xx>)−1 = A−1 + (A−1x)(A−1x)>.

Proof. Replace x∗ by x> and Corollary 3 by Corollary 4 in the proof of Corollary 5.
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3 Main results

We now state the main results of this paper.

Theorem 7. HGLn(F4) is a core for n > 2.

Theorem 8. SGLn(F2) is a core n > 3.

Remark 9. Graph SGL2(F2) is just a star on four vertices, so it is not a core, since there
exists an obvious endomorphism with a path of distance two or one as its image.

To prove Theorems 7 and 8 we need few more lemmas. The proof of Lemma 10 and
some of the proofs in the sequel are written (partially) simultaneously for HGLn(F4) and
SGLn(F2). In these cases (A†, τ) denotes (A∗, ) and (A>, identity map), when consider-
ing hermitian and symmetric matrices, respectively.

Lemma 10. Graphs HGLn(F4) and SGLn(F2) are connected for n > 2.

Proof. If A ∈ SGLn(F2) is alternate, then there exists B ∈ SGLn(F2), which is not alter-
nate and is adjacent to A. In fact, if A is of the form (1), then B := A+PE11P> has the
mentioned properties. So for graph SGLn(F2) it suffices to find a walk between symmetric
matrices that are not alternate. More generally, for Γ ∈ {HGLn(F4), SGLn(F2)} we need
to find a walk in Γ between any A =

∑n
j=1 xjx

†
j and B =

∑n
j=1 yjy

†
j that are invertible.

We split the proof in two steps.

Step 1. If A =
∑n

j=1 xjx
†
j and B = y1y

†
1 +
∑n

j=2 xjx
†
j are invertible, then there exists a

walk in Γ from A to B.

We may assume that A 6= B. Choose the invertible matrix P with xj as the j-th column,
that is, xj = Pej for all j, where ej = (0, . . . , 0, 1, 0, . . . , 0)> is the j-th vector of the
standard basis. Denote (z1, . . . , zn)> = z := P−1y1. Since C := P−1A(P−1)† = I and
D := P−1B(P−1)† = E22 + . . . + Enn + zz† are invertible and distinct, it follows that
z1 6= 0 and zk 6= 0 for some k > 2. Consequently, z1z

τ
1 = 1 = zkz

τ
k .

If z†z = 0, then I + zz† is invertible by Corollary 3/Corollary 4, so C, I + zz†, D is a
walk from C to D and A, P (I + zz†)P †, B is a walk from A to B.

Assume now that z†z 6= 0, i.e., z†z = 1. Matrices A1 := I + (z1e1 + zkek)(z1e1 + zkek)
†

and A2 := I + (z1e1 + zkek)(z1e1 + zkek)
† + E11 are invertible. Moreover,

z†
(
I + (z1e1 + zkek)(z1e1 + zkek)

† + E11

)−1
z

= z†
(
I + (z1e1 + zkek)(z1e1 + zkek)

† + Ekk
)
z

= z†z + (z1z
τ
1 + zkz

τ
k)2 + zkz

τ
k = 0,

so A3 := I + (z1e1 + zkek)(z1e1 + zkek)
† +E11 + zz† is invertible and C,A1, A2, A3, D is a

walk from C to D. Consequently, A, PA1P
†, PA2P

†, PA3P
†, B is a walk from A to B.
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Step 2. If A =
∑n

j=1 xjx
†
j and B =

∑n
j=1 yjy

†
j are invertible, then there exists a walk in

Γ from A to B, so Γ is connected.

Denote A1 := A. Obviously, x1, . . . ,xn are linearly independent. The same holds for
y1, . . . ,yn. There exists j1 such that yj1 is not in the linear span Lin{x2, . . . ,xn}.
Then yj1 ,x2, . . . ,xn are linearly independent, so A2 := yj1y

†
j1

+
∑n

j=2 xjx
†
j is invertible.

There exists j2 such that yj2 /∈ Lin{yj1 ,x3, . . . ,xn}. Obvioulsly j2 6= j1. Consequently,

yj1 ,yj2 ,x3, . . . ,xn are linearly independent, so A3 := yj1y
†
j1

+ yj2y
†
j2

+
∑n

j=3 xjx
†
j is in-

vertible. There exists j3 such that yj3 /∈ Lin{yj1 ,yj2 ,x4, . . . ,xn}. Obvioulsly j3 6= j1, j2.

Consequently, yj1 ,yj2 ,yj3 ,x4, . . . ,xn are linearly independent, so A4 := yj1y
†
j1

+ yj2y
†
j2

+

yj3y
†
j3

+
∑n

j=4 xjx
†
j is invertible. We continue in the same way and obtain invertible ma-

trices A5, . . . , An+1 = B with Ak =
∑k−1

i=1 yjiy
†
ji

+
∑n

j=k xjx
†
j. By Step 1 there exists a

walk from Ak to Ak+1 for each k, so we obtain a walk from A = A1 to B = An+1.

We now provide a proof of the first main result. In Section 4 we present a shorter but
more involved proof, which relies on additional results.

Proof of Theorem 7. Recall from preliminaries that HGLn(F4) has no triangles. By
Lemma 10 it is connected. We will show that any 2-arc in HGLn(F4) lies in a 5-cycle.
This will end the proof by Lemma 1, since a graph with a 5-cycle has the chromatic
number at least three and it is therefore nonbipartite.

Assume that B1, B2, B3 is a 2-arc in HGLn(F4), that is, Bj is invertible with rk(Bj −
Bj+1) = 1 and B3 6= B1. Then there exist two nonzero column vectors x and y such that
B2 = B1 + xx∗ and B3 = B1 + xx∗ + yy∗. Vectors x and y are linearly independent,
since the contrary would imply that xx∗ = yy∗, i.e., B3 = B1. Consequently, there is an
invertible matrix P such that Pe1 = x and Pe2 = y. Let A := P−1B1(P−1)∗. We will
first show that the 2-arc A, A+ E11 = P−1B2(P−1)∗, A+ E11 + E22 = P−1B3(P−1)∗ lies
in a 5-cycle.

Let cjk denote the (j, k)-th entry of the inverse A−1. Then

ckj = cjk. (5)

Since A+ E11 = A+ e1e
∗
1 is invertible, it follows from Corollary 3 that

0 = e∗1A
−1e1 = c11. (6)

Since A+ E11 + E22 is invertible, it follows from Corollary 3, Corollary 5, and (5) that

0 = e∗2(A+ E11)−1e2 = e∗2(A−1 + (A−1e1)(A−1e1)∗)e2 = c22 + c12c12. (7)

From preliminaries we know that there exists a nonzero a ∈ F4 such that

N(c12) = Tr(ac12). (8)

From (6)-(8) we deduce that

(e1 + ae2)∗A−1(e1 + ae2) = c12c12 + ac12 + ac12 = 0, (9)
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so matrix A+ E11 + aE12 + aE21 + E22 = A+ (e1 + ae2)(e1 + ae2)∗ is invertible. Define

b :=

{
a(ac12 − 1) if c12 6= 0
ıa if c12 = 0

. (10)

Note that a 6= b. Moreover, (8) implies that b 6= 0. Recall that N(x) = 1 for all nonzero
x ∈ F4. Hence, Corollary 5, a straightforward computation, and (6)-(10) show that

(e1 + be2)∗
(
A+ (e1 + ae2)(e1 + ae2)∗

)−1

(e1 + be2) =

= (e1 + be2)∗
(
A−1 +

(
A−1(e1 + ae2)

)(
A−1(e1 + ae2)

)∗)
(e1 + be2) = 0,

so

A+ (e1 + ae2)(e1 + ae2)∗ + (e1 + be2)(e1 + be2)∗ = A+ (a+ b)E12 + (a+ b)E21

is invertible with a+ b 6= 0. Hence, A, A+E11, A+E11 +E22, A+(a+ b)E12 +(a+ b)E21,
A+E11 + aE12 + aE21 +E22, A is a 5-cycle. Since rk(PXP ∗) = rkX for all X, the map
X 7→ PXP ∗ is an automorphism of graph HGLn(F4), so B1, B2, B3, P (A+ (a+ b)E12 +
(a+ b)E21)P ∗, P (A+ E11 + aE12 + aE21 + E22)P ∗, B1 is a 5-cycle as well.

To prove Theorem 8 we need an additional technical lemma.

Lemma 11. Let n > 3.

(i) If A ∈ SGLn(F2), then |{x ∈ Fn2\{0} : x>Ax = 0}| > 3. Equality holds iff n = 3.

(ii) If A, A+ xx>, A+ xx> + yy> ∈ SGLn(F2) are distinct, then there is z ∈ Fn2 such
that x,y, z are linearly independent and A+ xx> + yy> + zz> ∈ SGLn(F2).

Proof. (i) If A is alternate, then n is even and x>Ax = 0 for all x. If A is not alternate,
then A = PP> for some invertible matrix P , so x 7→ (P>)−1x is a bijection between the
sets {x ∈ Fn2\{0} : x>x = 0} and {x ∈ Fn2\{0} : x>Ax = 0}. Since x>x = 0 iff even
number of coordinates of x equal 1, we deduce that

|{x ∈ Fn2\{0} : x>Ax = 0}| =
bn/2c∑
k=1

(
n

2k

)
> 3 (11)

with equality iff n = 3.
(ii) The assumptions imply that x and y are linearly independent. Let B := A+xx>+

yy>. If n > 4, then |{z ∈ Fn2\{0} : z>B−1z = 0}| > 3 by (i). Since Lin{x,y}\{0} =
{x,y,x + y}, there is z /∈ Lin{x,y} such that z>B−1z = 0. By Corollary 4, B + zz> is
invertible, so the proof ends. Let n = 3, so |{z ∈ Fn2\{0} : z>B−1z = 0}| = 3. Assume
for a contradiction that there is no z /∈ Lin{x,y} such that z>B−1z = 0, that is,

{z ∈ Fn2\{0} : z>B−1z = 0} = {x,y,x + y}. (12)
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Since A+ xx> and A+ xx> + yy> are invertible, Corollaries 4 and 6 imply that

0 = x>A−1x (13)

and

0 = y>(A+ xx>)−1y = y>A−1y + y>
(
(A−1x)(A−1x)>

)
y = y>A−1y + y>A−1x. (14)

Corollary 6 shows that

B−1 = (A+ xx>)−1 +
(
(A+ xx>)−1y

)(
(A+ xx>)−1y

)>
= A−1 + (A−1x)(A−1x)> +

(
A−1y + A−1xx>A−1y

)(
A−1y + A−1xx>A−1y

)>
.

(15)

Since x>B−1x = 0 by (12), equations (15), (13), and (14) imply that

y>A−1x = 0 = y>A−1y. (16)

Choose Q such that A−1 = QQ>. If u := Q>x and v := Q>y, then (13) and (16) force

0 = u>u = v>v = (u + v)>(u + v) and 0 = u>v. (17)

The first three equations of (17) shows that {u,v,u+v} = {(1, 1, 0)>, (1, 0, 1)>, (0, 1, 1)>},
which contradicts the fourth equation in (17).

Proof of Theorem 8. From preliminaries we know that there are no triangles in SGLn(F2).
We now show that neither 5-cycles exist. Assume that A1, A2, . . . , A5, A6 = A1 is a
5-cycle. Then Aj = A1 +

∑j−1
k=1 xkx

>
k for some nonzero column vectors x1, . . . ,x5, so∑5

k=1 xkx
>
k = 0. Consequently,

x1x>1 + x2x>2 = x3x>3 + x4x>4 + x5x>5 . (18)

Since A3 6= A1, we deduce that x1 6= x2 and the matrix in (18) is of rank two. Therefore
x3,x4,x5 are all distinct and span a 2-dimension vector subspace in Fn2 , that is, x5 =
x3 + x4, so the matrix on the right side of equation (18) equals x3x>4 + x4x>3 , which is
an alternate matrix. We are in contradiction, since the matrix on the left side is not
alternate.

The proof will end by Lemma 1 and Lemma 10 if we show that any 2-arc A, A+xx>,
A + xx> + yy> lies in a 7-cycle. By Lemma 11 there is z such that x,y, z are linearly
independent and A+xx>+yy>+zz> is invertible. Pick an invertible matrix P such that
x = Pe1, y = Pe2, and z = Pe3 and let B := P−1A(P−1)>. Since the map X 7→ PXP>

is an automorphism of SGLn(F2), it suffices to show that the 3-arc

B,B + e1e>1 , B + e1e>1 + e2e>2 , B + e1e>1 + e2e>2 + e3e>3 (19)

lies in a 7-cycle. Let bjk denote the (j, k)-th entry of the inverse B−1. Then bjk = bkj.
Since matrices in (19) are invertible, Corollary 4 shows that

0 = e1B
−1e1 = b11, (20)
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equality 0 = e2(B + e1e>1 )−1e2 = b22 + b2
12 forces

b22 = b12, (21)

and

0 = e>3 (B + e1e>1 + e2e>2 )−1e3

= e>3 (B + e1e>1 )−1e3 + e>3
(
(B + e1e>1 )−1e2

)(
(B + e1e>1 )−1e2

)>
e3

= b33 + b2
13 + (b23 + b13b12)2

forces
b33 = b23 + b13(1 + b12). (22)

Consequently, (20)-(22) show that there are only 23 = 8 possibilities for the upper-left
3 × 3 block of B−1, which we denote by C. We define matrices B = B1, B2, . . . , B7, B8

with Bj := B1 +
∑j−1

k=1 xkx
>
k , where vectors xk depend on C and are as in the table below

C x1 x2 x3 x4 x5 x6 x7(
0 1 1
1 1 0
1 0 0

)
e1 e2 e3 e1 + e2 e2 + e3 e1 + e2 + e3 e1 + e3(

0 1 0
1 1 0
0 0 0

)
e1 e2 e3 e2 + e3 e1 + e2 e1 + e2 + e3 e1 + e3(

0 1 1
1 1 1
1 1 1

)
e1 e2 e3 e2 + e3 e1 + e3 e1 + e2 e1 + e2 + e3(

0 1 0
1 1 1
0 1 1

)
e1 e2 e3 e1 + e3 e1 + e2 + e3 e1 + e2 e2 + e3(

0 0 0
0 0 1
0 1 1

)
e1 e2 e3 e1 + e3 e1 + e2 + e3 e2 + e3 e1 + e2(

0 0 1
0 0 0
1 0 1

)
e1 e2 e3 e2 + e3 e1 + e2 + e3 e1 + e3 e1 + e2(

0 0 1
0 0 1
1 1 0

)
e1 e2 e3 e1 + e2 + e3 e2 + e3 e1 + e3 e1 + e2(

0 0 0
0 0 0
0 0 0

)
e1 e2 e3 e1 + e2 e1 + e3 e2 + e3 e1 + e2 + e3

.

Observe that
∑7

k=1 xkx
>
k = 0, so B8 = B1 and it is easy to see that Bj 6= Bk for

1 6 j < k 6 7. Hence, to prove that B1, . . . , B8 is a 7-cycle with required properties we
need to show that matrices Bj are invertible. We already know that B1, B2, B3, B4 are
such, since they form the 3-arc (19). Since B7 = B1 + x7x>7 and x>7 B

−1
1 x7 = x>7 (C ⊕

0)x7 = 0 is satisfied in all eight cases, Corollary 4 shows that B7 is invertible. Since
B6 = B1 + x7x>7 + x6x>6 and

x>6 (B1 + x7x>7 )−1x6 = x>6 B
−1
1 x6 + (x>6 B

−1
1 x7)(x>7 B

−1
1 x6)

= x>6 (C ⊕ 0)x6 + x>6 (C ⊕ 0)x7 = 0

it follows that B6 is invertible. Finally, B5 = B1 + x7x>7 + x6x>6 + x5x>5 and

x>5 (B1 + x7x>7 + x6x>6 )−1x5 = x>5 (B1 + x7x>7 )−1x5 + (x>5 (B1 + x7x>7 )−1x6)2

= x>5 B
−1
1 x5 + (x>5 B

−1
1 x7)2 + (x>5 B

−1
1 x6 + x>5 B

−1
1 x7x>7 B

−1
1 x6)2

= x>5 B
−1
1 (x5 + x6 + x7) + x>5 B

−1
1 x7x>7 B

−1
1 x6

= x>5 (C ⊕ 0)(x5 + x6 + x7) + x>5 (C ⊕ 0)x7x>7 (C ⊕ 0)x6 = 0
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show that B5 is invertible.

4 Other properties and a problem on hamiltonicity

A graph Γ is vertex-transitive, edge-transitive, and arc-transitive, if its automorphism
group acts transitively on the set of vertices, edges, and arcs of Γ, respectively. Recall
that any arc-transitive graph is also vertex-transitive and edge-transitive. Let d(u, v)
denote the distance between two vertices u, v of a connected graph Γ and let d :=
maxu,v∈V (Γ) d(u, v) be its diameter. A connected graph Γ is distance-regular if there exist
numbers pkij (i, j, k ∈ {0, 1, . . . , d}) such that for any pair of vertices (u, v) with d(u, v) = k
the number of vertices w ∈ V (Γ) with d(u,w) = i and d(w, v) = j equals pkij. We refer
to [7, 2] for more on vertex/edge/arc-transitive graphs and distance-regular graphs.

The number of matrices in HGLn(F4) is computed in [20, Corollary 5.32]. As observed
in [6, Lemma 2.12], it can be also deduced from [2, Theorem 9.5.7]. In fact, graph Hn(F4)
is distance-regular with known parameters and distance d(A,B) = rk(A−B), so

|HGLn(F4)| =
n−1∏
j=0

22n − 22j

2j
(
2j+1 + (−1)j

) = 2
n(n−1)

2

n∏
j=1

(
2j + (−1)j

)
.

The cardinality of SGLn(F2) is computed in [2, Lemma 9.5.9], which tells that

|SGLn(F2)| =

{
2

n2−1
4

∏(n+1)/2
j=1 (22j−1 − 1) if n is odd,

2
(n+1)2−1

4

∏n/2
j=1(22j−1 − 1) if n is even.

This number can be obtained also by combining Corollaries 3.31 and 4.10 in [20]. The
graph, which has the vertex set formed by all (singular and invertible) alternate matrices
and edges {A,B} formed by matrices with rk(A−B) = 2, is distance-regular with known
parameters. Moreover, the distance between any A and B is given by d(A,B) = rk(A−
B)/2. Hence, if n is even, it is easy to deduce from [2, Theorem 9.5.6] that precisely

n/2−1∏
j=0

22j(2n−2j−1 − 1)(2n−2j − 1)

22j+2 − 1
= 2

(n−1)2−1
4

n/2∏
j=1

(22j−1 − 1) =
|SGLn(F2)|

2n

matrices in SGLn(F2) are alternate. This is computed also in [20, Corollary 3.31].

Proposition 12. Let n > 2. Graph HGLn(F4) is arc-transitive of degree(
2n − (−1)n

)(
2n−1 − (−1)n−1

)
3

. (23)

If n is odd, then SGLn(F2) is arc-transitive. If n is even, then SGLn(F2) is not vertex-
transitive. It is not edge-transitive unless n = 2. Nonalternate and alternate matrices
have vertex degree 2n−1 − 1 and 2n − 1, respectively.
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To prove Proposition 12, we need an additional lemma.

Lemma 13. Let n > 3 be odd and assume that nonzero x,y ∈ Fn2 satisfy x>x = 0 = y>y.
Then there is an invertible matrix P such that P> = P−1 and Px = y.

Proof. It suffices to consider the case, where x = e1 + e2. In fact, then there are matrices
P1 and P2 such that P1(e1 + e2) = y, P2(e1 + e2) = x and P>j = P−1

j , so P := P1P
−1
2

solves the original problem.
Let x = e1 + e2 and y =: (y1, . . . , yn)>. Since y is nonzero, y>y = 0, and n is

odd, there are j1, j2 such that yj1 = 1 and yj2 = 0. Let z := ej1 . Then z>z = 1 =
z>y, so vectors x1 := y − z and x2 := z satisfy x>1 x1 = 1 = x>2 x2 and x>1 x2 = 0.
Let ρ : Fn2 → Fn2 be the identity map, f : Fn2 × Fn2 → Fn2 a bilinear map defined by
f(w1,w2) := w>1 w2, h :=

∑n
j=1 ej, and σ : Lin{e1, e2} → Fn2 an injective linear map

defined by σ(a1e1 + a2e2) := a1x1 + a2x2. Then f
(
σ(w1), σ(w2)

)
= f(w1,w2) for all

w1,w2 ∈ Lin{e1, e2}. Since vector h = ρ(h) has nonzero third and j2-th coordinate,
we deduce that h /∈ Lin{e1, e2} and ρ(h) /∈ σ(Lin{e1, e2}) = Lin{x1,x2}. By a version
of Witt’s theorem for fields of characteristic two [17, Theorem 3], σ can be extended
to a bijective linear map σ : Fn2 → Fn2 such that f

(
σ(w1), σ(w2)

)
= f(w1,w2) for all

w1,w2 ∈ Fn2 . Let xj := σ(ej) for j > 3. Then x>i xi = 1 and x>i xk = 0 for all distinct
i, k 6 n, so matrix P with xj as the j-th column satisfies P>P = I and Px = y.

Proof of Proposition 12. We start with graph SGLn(F2). If A ∈ SGLn(F2) is alternate,
then x>A−1x = 0 for all x, so by Corollary 4 any nonzero x generate a neighbor A+xx>.
Hence the degree of A equals 2n − 1. For nonalternate A ∈ SGLn(F2) we have computed
the number of nonzero column vectors x, that satisfy x>A−1x = 0, already in (11), so

the degree of A equals
∑bn/2c

k=1

(
n
2k

)
=
∑n

j=0

(
n
j

)(1j1n−j+(−1)j1n−j

2

)
− 1 = 2n−1− 1. Therefore

the graph SGLn(F2) is not regular for even n, since then both alternate and nonalternate
matrices exist in SGLn(F2). Consequently it is neither vertex-transitive. The graph
SGL2(F2) is a star on four vertices, so an edge-transitive graph. Let n > 4 be even,

A :=
∑n/2

j=1(E2j−1,2j + E2j,2j−1), B1 := A+ E11, and B2 := A+ E11 + Enn. Then {A,B1}
and {B1, B2} are both edges in SGLn(F2). Since A is alternate, while B1 and B2 are
not, no automorphism which maps {A,B1} to {B1, B2} exists, i.e., the graph is not edge-
transitive.

We next prove that graph SGLn(F2) for n odd and graph HGLn(F4) are arc-transitive.
Let (A1, B1) and (A2, B2) be two arcs. Then Bj = Aj + xjx

†
j for some nonzero xj with

x†jA
−1
j xj = 0. There is an invertible matrix Qj such that A−1

j = QjQ
†
j. Then yj := Q†jxj

satisfies y†jyj = 0. By Lemma 13 in case of symmetric matrices, and by [13, Lemma 2.3]
applied at 1×n matrices y∗1,y

∗
2 in hermitian case, there is an invertible matrix P such that

P † = P−1 and Py1 = y2. If R := (Q−1
2 )†PQ†1, then the automorphism Φ(X) = RXR†

satisfies Φ(A1) = A2 and Φ(B1) = B2, so the graph is arc-transitive.
Finally we compute the degree in HGLn(F4). By vertex-transitivity, it suffices to count

the neighbors of I. By Corollary 3, any such matrix is of the form I+xx∗, where x∗x = 0
and x 6= 0. Moreover, if x and y are linearly dependent and nonzero, then xx∗ = yy∗, so
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the degree of I equals the cardinality of the hermitian variety {Lin{x} : x∗x = 0,x 6= 0},
which equals (23) by [3, Theorem 8.1].

It is well known that graphs HGL2(F4) and SGL3(F2), that is, the Petersen graph
and the Coxeter graph are distance-regular. Graph HGL3(F4) is distance-regular as
well [2, p. 364]. Moreover, these three graphs are all distance-transitive. It is obvious that
SGLn(F2) is not distance-regular for n even, since it is not regular. The counterpart for
n odd is shown below.

Proposition 14. Let n > 4. Then HGLn(F4) and SGLn(F2) are not distance-regular.

Proof. Pick x1,y1,x2,y2 such that xj and yj are linearly independent, x†jxj = 0 = y†jyj,

x†1y1 = 0, and x†2y2 = 1. For example, we can take x1 = x2 := e1 + e2, y1 := e3 + e4, and
y2 := e2 + e3. Then I + xjx

†
j and I + yjy

†
j are invertible by Corollary 3/Corollary 4, and

are at distance two. We will show that I is their unique common neighbor if j = 2, while
in case j = 1 there is an additional common neighbor, given by the matrix I+xjx

†
j+yjy

†
j ,

so the graph is not distance-regular.
Let A 6= I be a common neighbor of I+xjx

†
j and I+yjy

†
j . Then A = I+xjx

†
j+zjz

†
j =

I + yjy
†
j + wjw

†
j for some nonzero column vectors zj,wj such that {xj, zj} and {yj,wj}

are both pairs of linearly independent vectors. Consequently,

xjx
†
j + yjy

†
j + zjz

†
j + wjw

†
j = 0. (24)

The linear span of xj,yj, zj,wj is two-dimensional, since the opposite would mean that a
sum of rank-three and rank-one matrix vanish in (24). Consequently, zj,wj ∈ Lin{xj,yj},
so zjz

†
j, wjw

†
j are among matrices xjx>j ,yjy

>
j , (xj +yj)(xj +yj)> in symmetric case, and

among xjx
∗
j ,yjy

∗
j , (xj+yj)(xj+yj)

∗, (xj+ıyj)(xj+ıyj)
∗, (xj+ıyj)(xj+ıyj)

∗ in hermitian

case. It is now easy to see that only zjz
†
j = yjy

†
j and wjw

†
j = xjx

†
j meet the criteria given

by (24) and A 6= I. Hence, A = I+xjx
†
j+yjy

†
j . Since y†j(I+xjx

†
j)
−1yj = y†j(I+xjx

†
j)yj =

y†jxj · x
†
jyj, Corollary 3/Corollary 4 implies that A is invertible if and only if j = 1.

It follows from the proof of Proposition 14 that the girth of HGLn(F4) and SGLn(F2)
equals 4 when n > 4. Recall from the proof of Theorems 7 and 8 that their odd girth,
i.e. the length of the shortest odd cycle, equal 5 and 7, respectively. It is well known
that the girth of the Petersen and the Coxeter graph, that is the girth of HGL2(F4)
and SGL3(F2), equal 5 and 7, respectively. The graph HGL3(F4) has girth 5. In fact,
by [2, Theorem 11.3.7] its intersection array equals {9, 8, 6, 3; 1, 1, 3, 8}, so two vertices at
distance two have just one common neighbor. Hence, there are no 4-cycles in HGL3(F4),
while it contains 5-cycles, since it contains the Petersen graph HGL2(F4) as a subgraph.

When proving that a particular graph is a core, it is often useful if the automorphism
group act transitively on pairs of vertices at distance two (cf. Lemma 1 and [8, Theo-
rem 4.1]). This is not the case for graphs HGLn(F4) and SGLn(F2) if n > 4. In fact,
it follows from the proof of Proposition 14 that the automorphism groups have at least
two orbits if n > 4, since the vertices at distance two have either one or two common
neighbors. For hermitian case we give a precise description of these orbits.
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Proposition 15. Let n > 4. The automorphism group of HGLn(F4) has two orbits on
2-arcs, which are given by

O1 =
{

(A+ xx∗, A,A+ yy∗) : A ∈ HGLn(F4), x,y ∈ Fn4 are linearly independent,

x∗A−1x = 0 = y∗A−1y, x∗A−1y 6= 0
}

and

O2 =
{

(A+ xx∗, A,A+ yy∗) : A ∈ HGLn(F4), x,y ∈ Fn4 are linearly independent,

x∗A−1x = 0 = y∗A−1y, x∗A−1y = 0
}
.

Proof. It follows from Corollary 3 that any 2-arc is of the form (A+ xx∗, A,A+ yy∗) for
some A ∈ HGLn(F4) and nonzero x,y such that x∗A−1x = 0 = y∗A−1y. Moreover, x
and y are linearly independent, since A+ xx∗ 6= A+ yy∗.

Assume firstly that lj := (Aj + xjx
∗
j , Aj, Aj + yjy

∗
j ) ∈ O1 for j = 1, 2. Pick an

invertible matrix Qj such that A−1
j = QjQ

∗
j . Then zj := Q∗jxj and wj := Q∗jyj satisfy

z∗jzj = 0 = w∗jwj and z∗jwj 6= 0. By [13, Lemma 3.10] there exist an invertible matrix P

and nonzero b ∈ F4 such that P ∗ = P−1, Pz1 = z2, and Pw1 = bw2. Since bb = 1, the
matrix R := (Q−1

2 )∗PQ∗1 induce an automorphism Φ(X) := RXR∗, which maps l1 to l2.
If l1, l2 ∈ O2, then we produce an automorphism Φ that satisfies Φ(l1) = l2 in the

same way as above. We just replace [13, Lemma 3.10] by [13, Lemma 3.9].

If n ∈ {2, 3}, then O2 = ∅ by [3, Theorem 9.1]. Proposition 15 shortens the proof of
Theorem 7, since to apply Lemma 1 we only need to check that the two 2-arcs(

I + (e1 + ıe2)(e1 + ıe2)∗, I, I + (e1 + e2)(e1 + e2)∗
)
∈ O1,(

I + (e3 + e4)(e3 + e4)∗, I, I + (e1 + e2)(e1 + e2)∗
)
∈ O2

lie in 5-cycles. These are generated by matrices

[ 0 ı
ı 0 ]⊕ In−2, [ 1 0

0 1 ]⊕ In−2, [ 0 1
1 0 ]⊕ In−2, [ 1 1

1 0 ]⊕ In−2, [ 0 ı
ı 1 ]⊕ In−2

and[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
⊕ In−4,

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
⊕ In−4,

[
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

]
⊕ In−4,

[
1 0 ı ı
0 1 ı ı
ı ı 0 1
ı ı 1 0

]
⊕ In−4,

[
0 1 1 1
1 0 1 1
1 1 1 0
1 1 0 1

]
⊕ In−4,

respectively.
There are only five known connected vertex-transitive graphs without a Hamilton

cycle: the complete graph on two vertices, the Petersen graph, the Coxeter graph, and
two graphs derived from the Petersen and Coxeter graphs by replacing each vertex with
a triangle (see the survey paper [9] and the references therein). It is believed by many
mathematicians that no other exist. Since the graphs HGLn(F4) and SGL2n−1(F2) are
vertex-transitive by Proposition 12 and they generalize the Petersen and the Coxeter
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graph in a natural way, it seems worthwhile to check if these graphs have a Hamilton cycle.
Unfortunately we did not succeed in this task. With an application of the Concorde TSP
Solver [5] we were able to find a Hamilton cycle in HGL3(F4), SGL4(F2), and SGL5(F2),
which are graphs on 280, 448, and 13888 vertices, respectively. We state the general case,
which include non-vertex-transitive graphs SGL2n(F2), as an open problem.

Open Problem 16. Do graphs HGLn(F4) and SGLn(F2) contain a Hamilton cycle? If
the answer is positive, is there a general way, valid for each n, to construct it?

The corresponding problems for graphs Hn(F4) and Sn(F2), which are formed by all
singular and invertible matrices, is much easier. In fact, these graphs are Cayley graphs
over abelian groups

(
Hn(F4),+

)
and

(
Sn(F2),+

)
, respectively, where the generating set is

formed by all matrices of rank one. Hence, these graphs contain a Hamilton cycle by [11,
Corollary 3.2] or by [10, Exercise 12.17].

Unlike the graph SGL2n(F2), its subgraph that is induced by nonalternating matrices
is vertex-transitive. So studying the hamiltonicity of these subgraphs seems meaningful
as well. We mention here just that in the case of 4× 4 matrices we obtain a graph on 420
vertices, which has a Hamilton cycle.

Since the problem of whether connected Cayley graphs (other than the complete graph
on two vertices) are Hamiltonian is also well studied (cf. [9]), another interesting question
is whether HGLn(F4) and SGL2n−1(F2) are Cayley graphs. Though we believe that
this is not the case, the problem seems nontrivial. Since a vertex-transitive graph is a
Cayley graph if and only if its automorphism group contains a regular subgroup [18],
a related problem is to find a characterization of all automorphisms = endomorphisms
(= adjacency preservers in the language of matrix theory) of graphs HGLn(F4) and
SGLn(F2). More precisely, the question is whether an analogous result to [14] holds, and
the only automorphisms of SGLn(F2) are those of the form

A 7→ PAP> or A 7→ PA−1P>, (25)

and the only automorphisms of HGLn(F4) are those of the form

A 7→ PAϕP ∗ or A 7→ P (Aϕ)−1P ∗, (26)

where P is an invertible matrix and ϕ ∈ { , identity map} is applied entry-wise. For the
Coxeter graph SGL3(F2) and the Petersen graph HGL2(F4) this is indeed the case. In
fact, it is not difficult to see that all maps in (25) are distinct if n > 3. Since there are
precisely 168 invertible matrices P over F2 of size 3×3 (cf. [20, Theorem 1.6]), there are in
total 2 ·168 = 336 maps of the form (25), which is the same as the order of the well known
automorphism group of the Coxeter graph. In the case of HGL2(F4) it is easy to see that
A−1 = QAQ∗ for Q = [ 0 1

1 0 ], and two maps A 7→ P1A
ϕ1P ∗1 , A 7→ P2A

ϕ2P ∗2 are the same
if and only if ϕ1 = ϕ2 and P1 ∈ {P2, ıP2, ıP2}. Since there are 180 invertible matrices P
over F4 of size 2 × 2 (cf. [20, Theorem 1.6]), there are in total 2·180

3
= 120 maps of the

form (26), which is the same as the order of the well known automorphism group of the
Petersen graph. To see that all the maps in (25) and (26) are automorphisms indeed, note
that A−1−B−1 = A−1(B−A)B−1 for invertible matrices, so rk(A−1−B−1) = rk(A−B).
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Remark 17. Open Problem 16 was firstly posed by the present author at Joint Mathe-
matical Conference CSASC in June 2013, in Koper, Slovenia.
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