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Abstract

We present a class of languages that have an interesting property: For each language L in the class,
both the classic greedy algorithm and the classic Lyndon word (or necklace) concatenation algorithm
provide the lexicographically smallest universal cycle for L. The languages consist of length n strings
over {1, 2, . . . , k} that are closed under rotation with their subset of necklaces also being closed under
replacing any suffix of length i by i copies of k. Examples include all strings (in which case universal
cycles are commonly known as de Bruijn sequences), strings that sum to at least s, strings with at
most d cyclic descents for a fixed d > 0, strings with at most d cyclic decrements for a fixed d > 0,
and strings avoiding a given period. Our class is also closed under both union and intersection, and
our results generalize results of several previous papers.

1 Introduction

1.1 Constructing de Bruijn Sequences

Let T(n, k) be the set of k-ary strings of length n. For example, T(2, 3) = {11, 12, 13, 21, 22, 23, 31, 32, 33}.
A de Bruijn sequence for T(n, k) is a sequence of length kn that contains each string in T(n, k) exactly
once as a substring when the sequence is viewed circularly.

Martin showed that a de Bruijn sequence for T(n, k) can be constructed by a simple greedy algorithm
in 1934 [23]. The algorithm starts with sequence kn−1 (where exponentiation denotes repetition) and
then repeatedly applies the following rule:

Append the smallest symbol in {1, 2, . . . , k} so that substrings of length n in the resulting linear
sequence are distinct.

As an example, let us illustrate one step of the algorithm when n = 2 and k = 3. After applying the rule
a handful of times, the partial sequence is 31121 . At this point, the algorithm does not append 1 since
11 already appears in the sequence. Similarly, 2 is not appended since 12 already appears. However,
3 can be appended and so the algorithm continues with the sequence 311213 . Martin proved that the
algorithm always terminates with a sequence that has length kn + n − 1 and suffix kn, and that a de
Bruijn sequence is obtained by removing the initial kn−1 prefix. In particular, when n = 2 and k = 3, the
algorithm terminates with 3112132233 and so 112132233 is a de Bruijn sequence for T(2, 3). We mention
that the choice of the initial sequence is critical to the success of Martin’s algorithm. For example, the
greedy algorithm for n = 2 and k = 3 will get stuck after generating 112131 if the initial sequence is the
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empty string ε or the single symbol 1. Knuth refers to Martin’s sequence as the grand-daddy de Bruijn
sequence [19].

The general term for these sequences is named after de Bruijn who showed that there are 22
n−1−n

such sequences for T(n, 2) in 1946 [6], and (k!)k
n−1

k−n for T(n, k) in joint work with Aardenne-Ehrenfest
in 1951 [35]. Later detective work by Stanley revealed that Flye Sainte-Marie proved the same formula
for k = 2 in 1894 [7, 29].

Martin’s greedy algorithm is easy to implement, but it is impractical when n is large since it requires
Ω(kn)-space. Fredricksen and Kessler [10, 11, 12] (for k = 2) and later Fredricksen and Maiorana [13] (for
k > 2) provided a beautiful alternative that generates each character in O(1)-amortized time and uses
only O(n) space. Their construction is known as the FKM algorithm and can be summarized as follows:

Concatenate the aperiodic prefixes of the necklaces in T(n, k) in lexicographic order.

A necklace is the lexicographically smallest string in an equivalence class of strings under rotation, and
its aperiodic prefix is the shortest prefix that can be repeated to create the string. For example, the
necklaces in T(2, 3) are 11, 12, 13, 23, 33 and thus the FKM algorithm creates the following sequence

1 · 12 · 13 · 2 · 23 · 3 = 112132233,

where · denotes concatenation. Interestingly, the FKM algorithm always generates the same sequence
as Martin’s algorithm and this sequence is the lexicographically smallest de Bruijn cycle for T(n, k) (see
Knuth’s discussion in [19]). The efficiency of the FKM algorithm was fully analyzed by Ruskey, Savage,
and Wang [25].

We note that the FKM algorithm can also be described in a slightly different, but equivalent manner.
The period of a string is the length of its aperiodic prefix. A string is aperiodic if its period equals its
length. An aperiodic necklace is a Lyndon word. The FKM algorithm can be defined as the lexicographic
concatenation of the k-ary Lyndon words whose length divides n. We will use the necklace definition
because it is better suited for generalizations, as pointed out by Ruskey, Sawada, Williams [27].

1.2 Constructing Universal Cycles

Given a set of strings S ⊆ T(n, k), a universal cycle for S is a sequence of length |S| that contains each
string in S exactly once as a substring when the sequence is viewed circularly. For example, the subset
S1 ⊆ T(4, 3) of strings that have sum at least 10 is

S1 = {1333,2233,2323,2332,2333,3133,3223,3232,3233,3313,3322,3323,3331,3332,3333}

and the lexicographically smallest universal cycle for S1 is

133322332323333.

This natural generalization of de Bruijn sequences for T(n, k) to subsets of T(n, k) was introduced by
Chung, Diaconis, and Graham in 1992 [5]. Since that time universal cycles have been proven to exist for
subsets of T(n, k) that represent a variety of combinatorial objects including permutations, partitions,
subsets, multisets, labeled graphs, various functions, and more [3, 4, 5, 15, 16, 17, 18, 19, 21, 28, 26, 32].

Given a specific set of strings S ⊆ T(n, k), the problem of finding an explicit construction (and
generation algorithm) for a universal cycle for S is generally a more difficult problem than proving that
one exists. The approach considered in this article is to generalize the greedy algorithm and the FKM
algorithm. Previous results using this approach include the following:

• Moreno proved that a generalized FKM algorithm creates universal cycles for the set of rotations
of the lexicographically largest i necklaces [24].

• Au proved that generalized FKM and greedy algorithm create universal cycles for the aperiodic
strings in T(n, k) [2].
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• The authors proved that generalized FKM and greedy algorithm create universal cycles for the
binary strings with sum at least s [31].

We will see that all three of these results can be explained using the same generalization of the FKM
algorithm and the same generalization of the greedy algorithm. To illustrate how these unified general-
izations work, let us reconsider the strings S1 in T(4, 3) with sum at most 10. Let the necklaces of a set
S be denoted by N(S). Then

N(S1) = {1333, 2233, 2323, 2333, 3333},

and the concatenation of their aperiodic prefixes in lexicographic order gives

1333 · 2233 · 23 · 2333 · 3.

This is identical to the lexicographically smallest universal cycle for S1 that we saw earlier. More broadly,
the generalized version of the FKM algorithm is stated below:

Concatenate the aperiodic prefixes of the necklaces in S in lexicographic order.

Notice that the previous FKM results use S ⊆ T(n, k) that are closed under rotation, meaning αβ ∈ S
implies βα ∈ S. To understand this fact, let Rot(S) denote closure of S under rotation. Note that the
number of distinct rotations of an individual string is equal to its period. For example, Rot({2233}) =
{2233, 2332, 3322, 3223} and Rot({2323}) = {2323, 3232}. In other words, the length of the aperiodic
prefix of α ∈ T(n, k) is equal to |Rot(α)|. Thus, the FKM algorithm creates sequences of the correct
length for each S that is closed under rotation.

Generalizing the greedy algorithm is a bit more subtle due to the choice of the initial sequence. In
this article we will be focused on S ⊆ T(n, k) that are guaranteed to have kn ∈ S (or x kn−1 ∈ S for
some x < k). Thus, kn−1 remains a reasonable choice for the initial sequence. Martin’s algorithm is then
generalized as follows

Append the smallest symbol in {1, 2, . . . , k} so that substrings of length n in the resulting linear
sequence are distinct and in S.

If we apply this greedy algorithm to S1, then it terminates with sequence

333133322332323333

and removing initial 333 results in the same universal cycle as generated by the generalized FMK approach.
Universal cycles have also been constructed using alternate approaches. For example, Ruskey and

Williams [28] and later Holroyd, Ruskey, and Williams [15] provided an efficient algorithm to construct
universal cycles for T(n−1, n). The authors also constructed universal cycles for binary strings of length
n whose sum falls within a given range [30] which extends [27] and Stevens and Williams [33].

1.3 New Results and Their Significance

We prove that the generalized FKM and greedy algorithms generate a wide variety of natural universal
cycles. A list of examples appear in Sections 3.3.1–3.3.11 and it includes the aforementioned results by
Moreno [24], Au [2], and the authors [31]. Furthermore, each of our examples follows from a single general
result.

Theorem 1. The greedy and FKM algorithms create the lexicographically smallest universal cycle for
any S ⊆ T(n, k) that satisfies the following closure properties:

(C1) The set of strings S is closed under rotation.

(C2) Its subset of necklaces is closed under replacing any suffix of length i by ki.
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We note that the first closure property is not sufficient for guaranteeing the existence of universal
cycles. For example, {11, 22} is closed under rotation and has no universal cycle. Our second closure
property is also insufficient for proving the existence. For example, {11, 12, 22} ⊆ T(2, 2) does not have
a universal cycle.

To underscore the significance of our results, we note that the greedy algorithm, the FKM algorithm,
and the lexicographically smallest universal cycle do not always operate in such harmony. For example,
the subset S2 ⊂ T(3, 3) that does not have 13 as a cyclic substring is

S2 = {111,112,121,122,123,211,212,221,222,223,231,232,233,312,322,323,332,333}.

In other words, S2 does not have strings in the form 13x, x13, or 3x1. Clearly S2 is closed under rotation,
so it satisfies our first condition. The necklaces in S2 are

N(S2) = {111, 112, 122, 123, 222, 223, 233, 333}.

Notice that N(S2) does not satisfy our second closure property since 111 is included but 113 is not. Thus,
our results do not guarantee that the FKM algorithm will create a universal cycle for S2. In fact, the
FKM algorithm creates

1 · 112 · 122 · 123 · 2 · 223 · 233 · 3.
This is not a universal cycle for S2 since 211 and 312 do not appear, while 212 appears twice and 311
appears when it should not. On the other hand, the greedy algorithm applied to S2 creates

221112122231232233,

which is a universal cycle for S2. However, it is not the lexicographically smallest universal cycle for S2

(when viewed linearly).
The previous example showed that the harmony produced the greedy algorithm, the FKM algorithm,

and the lexicographically smallest universal cycle does not hold for the strings in T(3, 3) that avoid 13
as a cyclic substring. Notice that in this case the avoided substring 13 contains the symbol k = 3. We
will see in Section 3.3.6 that the three interrelated results do hold when the avoided substring does not
contain the symbol k. This illustrates one way in which our result is ‘tight’.

One motivation for constructing universal cycles is so that they can be used in applications. With-
out an explicit construction it can be computationally infeasible to create these sequences when n is
large. Sample applications of de Bruijn sequences include dynamic connections in overlay networks [9],
genomics [1], software calculation of the ruler function in computer words [19], and indexing a 1 in a
computer word [20]. Our two-pronged results have an additional benefit: Those in need of one of our
universal cycles can start by implementing the simple greedy algorithm; if this proves to be infeasible due
to memory constraints, then they can implement the FKM algorithm. De Bruijn sequences are also used
as education tools (see Graham, Knuth, and Patashnik’s Concrete Mathematics [14]) and are involved
in many interesting academic papers (for recent examples, see Levine [22] and Ehrenborg, Kitaev, and
Steingŕımmson [8]).

To conclude our introduction we mention that our second closure property can be slightly relaxed
to allow kn /∈ S. For example, the constructions for S1 still work when kn is omitted from S1 and the
final k is omitted from the universal cycles generated. We use this minor generalization when considering
periodic and aperiodic strings.

Corollary 1. Theorem 1 holds if S ∪ {kn} ⊆ T(n, k) satisfies (C1) and (C2).

The main results of this paper are also found in Wong’s PhD thesis [36].

1.4 Outline

The remainder of this paper is organized as follows. Section 2 investigates our second closure property
under the name k-suffix languages. Section 3 proves that the universal cycles discussed in Theorem 1
exist, and gives a list of specific universal cycles that are constructed by it. Section 4 proves our result on
the FKM algorithm. Section 5 proves our result on the greedy algorithm and proves that our universal
cycles are lexicographically smallest. Section 6 concludes the paper with open problems and remarks.
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2 k-suffix languages and the k-suffix poset

In this section we investigate our second closure property from Theorem 1 in more detail. First we define
the k-suffix property and prove that set of all necklaces satisfies it. Then we formulate k-suffix languages
as partially ordered sets, which provides helpful visualizations and closure properties at the end of the
section.

Definition 1. A k-suffix language S is a subset of T(n, k) that satisfies the following closure property:

If a1a2 · · · an ∈ S then a1a2 · · · an−iki ∈ S for all 1 6 i 6 n.

As an example, let N(n, k) denote the set of necklaces in T(n, k). It is straightforward to observe
that necklaces are a k-suffix language.

Lemma 1. The set of necklaces N(n, k) is a k-suffix language.

Proof. Let a1a2 · · · an = a1a2 · · · an−jkj ∈ N(n, k) where j > 0. By the definition of a necklace it is
easy to see that a1a2 · · · an−j−1kkj ∈ N(n, k). Thus it follows that a1a2 · · · an−iki ∈ N(n, k) for all
1 6 i 6 n.

Note that this definition of a k-suffix language implies closure under replacing any suffix of length i
by ki. Equivalently, k-suffix languages can be defined as closed under replacing the rightmost value that
is less than k by k. We next formulate this idea using a partially ordered set over T(n, k). Consider the
following definition,

τk(α) =

{
kn if α = kn;

βkkj if α = βxkj for some x < k.

In other words, kn is terminal, and otherwise τ(α) is obtained by replacing the rightmost value in α that
is less than k with k. When the context is clear we use τ instead of τk. For example, when k = 3,

τ(1122) = 1123 and τ(2313) = 2333 and τ(3333) = 3333.

This provides our cover relation, and our partial order ≺k is the non-reflexive transitive closure of τk.
Again we use ≺ instead of ≺k when the context allows. For example, when k = 3,

1123 ≺ 1122 and 1333 ≺ 1122 whereas 2313 ⊀ 2113 and 2113 ⊀ 2113.

Our partially ordered set is formally defined below.

Definition 2. The k-suffix poset Poset(n, k) has ground set T(n, k) and partial order ≺k.

Figure 1 illustrates the Hasse diagram of Poset(4, 2) and Poset(2, 3), in which each cover relation
β = τ(α) is shown as an edge from α down to β. It is easy to see that Poset(n, k) is a tree poset with
unique minimum element kn.

An ideal (also known as a lower set) of Poset(n, k) is a subset I ⊆ Poset(n, k) such that x ∈ I and
y ≺ x implies y ∈ I. Figure 1 illustrates an ideal of necklaces in both of its posets. The following theorem
proves that every k-suffix language can be visualized in this way.

Theorem 2. A set S ⊆ T(n, k) is a k-suffix language if and only if S is an ideal of Poset(n, k).

Proof. Suppose S is a k-suffix language. If s ∈ S and s 6= kn, then s = αxkj for some x < k. By the
definition of k-suffix language, αkkj ∈ S. Therefore, τk(s) ∈ S, and thus S is an ideal of Poset(n, k).
The other direction is similar.

Ideals of a given poset are closed under union and intersection, so Theorem 2 immediately gives the
following corollary.

Corollary 2. If SA,SB ⊆ T(n, k) are k-suffix languages, then SA ∪ SB and SA ∩ SB are also k-suffix
languages.
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Figure 1: The Hasse diagram of Poset(4, 2) and Poset(2, 3) respectively. In both cases the necklaces
form the ideal in bold.

3 Existence and Examples

In this section we ground our construction results with a simple existence proof. We also give a list of
interesting universal cycles constructed by our results.

3.1 Class of Strings

The class of strings covered by Theorem 1 is defined below. Recall that N(S) denotes the necklaces in
S ⊆ T(n, k). That is, N(S) = S ∩N(n, k).

Definition 3. Let C(n, k) be the set that contains precisely all S ⊆ T(n, k) that are closed under rotation,
and whose necklaces N(S) form a k-suffix language.

To prove that S ∈ C(n, k) we need to prove that S is closed under rotation and its subset of necklaces
N(S) is a k-suffix language. Sometimes it is more convenient to prove that the entire set S is a k-suffix
language rather than its necklace subset N(S). The following lemma proves that this approach is also
sufficient.

Lemma 2. Let S ⊆ T(n, k). If S is closed under rotation and S is a k-suffix language, then S ∈ C(n, k).

Proof. Recall that N(n, k) is a k-suffix language by Lemma 1. Therefore, if S is a k-suffix language, then
so is N(S) = S ∩N(n, k). Therefore, if S is also closed under rotation, then S is a k-suffix language by
Definition 3.

We note that Lemma 2 does not cover all sets in C(n, k). For example,

S3 = {1111,1112,1121,1211,2111,1122,1221,2211,2112,1222,2122,2212,2221,2222},

is in C(4, 2). However, since 1211 ∈ S3 and 1212 /∈ S3, the set S3 is not a k-suffix language by itself.

3.2 Existence

Stevens and Williams [34] characterized the existence of universal cycles for subsets of T(n, k) that are
closed under rotation. We now use one of their results to prove that every set in C(n, k) has a universal
cycle. First we recount a definition from [34]. A set S ⊆ T(n, k) is increasable if the following is true:

If α ∈ S and α is not equal to kn, then there exists a symbol in α that can be increased and
the resulting string is also in S.

More precisely, S is increasable if a1a2 · · · an ∈ S and a1a2 · · · an 6= kn, then there exist i and b > ai such
that a1 a2 · · · ai−1 b ai+1 ai+2 · · · an ∈ S.
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Theorem 3 ([34]). If S ⊆ T(n, k) is increasable and closed under rotation, then S has a universal cycle.

Corollary 3. Every S ∈ C(n, k) has a universal cycle.

Proof. By Definition 3, each S ∈ C(n, k) is closed under rotation. Consider an arbitrary α ∈ S with
α 6= kn, and let β ∈ S be its smallest rotation in lexicographic order. By Definition 3, there is at least
one symbol in β that is less than k that can be increased to k so that the resulting string is also in S.
Since S is closed under rotation, the same statement is true for α. Thus, S is increasable. Hence, S has
a universal cycle by Theorem 3.

3.3 Examples

In Sections 3.3.1–3.3.11 we describe interesting members of C(n, k), including the sets of strings considered
by Moreno [24], Au [2], and the authors [31]. Figure 2 illustrates the lexicographically smallest universal
cycles for each example over T(4, 4). When considering periodic and aperiodic strings we prove that
S∪{kn} ∈ C(n, k); our constructive results from Theorem 1 will still apply in these cases by Corollary 1.

3.3.1 Minimum Sum

Let S ⊆ T(n, k) contain the strings with sum at least s. This set is closed under rotation since rotation
does not change a string’s sum. Also, S is a k-suffix language by Theorem 2 since replacing any symbol
x < k with k increases the sum of the string. Therefore, S ∈ C(n, k) by Lemma 2. The authors previously
considered sets of this type when n = 2 [31].

3.3.2 At most d > 0 cyclic descents

A descent in a string a1a2 · · · an is a pair of consecutive elements ai, ai+1 such that ai > ai+1. A cyclic
descent is a descent or the pair an, a1 where an > a1. Let S ⊆ T(n, k) contain the strings with at
most d cyclic descents for some fixed d > 0. This set is clearly closed under rotation. Also, N(S) is a
k-suffix language since replacing any suffix of length i by ki will increase the number of descents only in
the special case where a necklace is of the form xn for x < k. For these strings the number of descents
increases from 0 to 1, which does not violate the upperbound since d > 0. Therefore, S ∈ C(n, k).

3.3.3 At most d > 0 cyclic decrements

A decrement in a string a1a2 · · · an is a pair of consecutive elements ai, ai+1 such that ai = ai+1 + 1. A
cyclic decrement is a decrement or the pair an, a1 where an = a1 +1. Let S ⊆ T(n, k) contain the strings
with at most d cyclic decrements for some fixed d > 0. This set is clearly closed under rotation. Also,
N(S) is a k-suffix language since replacing any suffix of length i by ki will only increase the number of
decrements in the special case of the necklace (k−1)n. For this string the number of decrements increases
from 0 to 1, which does not violate the upperbound since d > 0. Therefore, S ∈ C(n, k).

3.3.4 Frequency of k

Let S ⊆ T(n, k) contain the strings with at least `k copies of k. This set is closed under rotation since
rotation does not change a string’s symbol frequencies. Also, S is a k-suffix language by Theorem 2 since
replacing any symbol x < k with k increases the frequency of k in the string. Therefore, S ∈ C(n, k) by
Lemma 2.

3.3.5 Frequency of i < k

Let S ⊆ T(n, k) contain the strings with at most ui copies of i < k. This set is closed under rotation
since rotation does not change a string’s symbol frequencies. Also, S is a k-suffix language by Theorem
2 since replacing any symbol x < k with k does not increase the frequency of i in the string. Therefore,
S ∈ C(n, k) by Lemma 2.
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Figure 2: The lexicographically smallest universal cycles for a variety of 4-ary strings of length four. Each
set S is in C(4, 4) (or S ∪ {4444} ∈ C(4, 4)) and hence can be generated by the generalized FKM and
greedy algorithms. The outermost ring is a universal cycle for all strings T(n, k). The remaining rings
from outer-to-inner are for subsets that (i) have sum at least 5, 6, . . . , 15; (ii) have at most 2, 1 cyclic
descents; (iii) have at most 2, 1 cyclic decrements; (iv) have frequency for symbol k = 4 at least 1, 2, 3;
(v) have frequency for symbol 1 at most 3, 2, 1; (vi) do not have 11, 22, 33 as a cyclic substring; (vii) are
rotations of the largest 50, 30, 10 necklaces; (viii) are not rotations of the periodic necklace 1212, 3434;
(ix) are in the intersection of the previous two universal cycles (i.e. not rotations of 1212 or 3434); (x)
are aperiodic; (xi) have period in {1, 4}, {1, 2}. Each universal cycle starts from 12 o’clock and proceeds
in clockwise order, with a gap between the examples of each type. For example, the fourth ring from the
outside gives the universal cycle 1114 1123 1124 · · · 3444 4 which contains all strings in T(4, 4) with sum
at least 7.
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3.3.6 Avoiding a Substring

Let S ⊆ T(n, k) contain the strings that do not contain β ∈ T(m, k − 1), for some m > 1, as a cyclic
substring. This set is closed under rotation since rotation does not change a string’s cyclic substrings.
Also, S is a k-suffix language by Theorem 2 since replacing any symbol x < k with k cannot create a new
cyclic substring in T(m, k − 1). Therefore, S ∈ C(n, k) by Lemma 2.

3.3.7 Rotations of Large Necklaces

Let S ⊆ T(n, k) contain the strings that are rotations of the largest i necklaces in N(n, k) in lexicographic
order. This set is closed under rotation by its definition. If α ∈ N(S), then replacing its rightmost symbol
x < k with k will create another necklace by Lemma 1, and this necklace is larger in lexicographic order.
Therefore, N(S) is a k-suffix language. Hence, S ∈ C(n, k). Moreno previously considered sets of this
type [24].

3.3.8 Avoiding the Rotations of a Periodic Necklace

Let S ⊆ T(n, k) contain the strings that are not rotations of a fixed periodic necklace β ∈ N(n, k).
That is, S = T(n, k) − Rot({β}). This set is closed under rotation by its definition. If β = kn, then
S ∪ {kn} = T(n, k) ∈ C(n, k). Otherwise, consider β 6= kn. Let αxkj ∈ N(S) with x < k be an arbitrary
necklace in S that is not equal to β (where j = 0 is possible). We know that αkkj is a necklace by Lemma
1. Suppose that αkkj = β. Since β is periodic and β 6= kn, we can write β as β = (γkj+1)t where γ 6= ε
and t > 1. Observe that αxkj = (γkj+1)t−1γxkj is not a necklace since x < k, which contradicts αxkj

being a necklace. Thus αkkj 6= β and N(S) is a k-suffix language. Therefore S ∈ C(n, k).

3.3.9 Unions and Intersections

If SA and SB are closed under rotation, then both SA∪SB and SA∩SB are closed under rotation. Thus,
Corollary 2 gives the following.

Lemma 3. If SA,SB ∈ C(n, k), then SA ∪ SB ∈ C(n, k) and SA ∩ SB ∈ C(n, k).

Lemma 3 allows us to combine the previous results in interesting ways, as illustrated in Sections 3.3.10
and 3.3.11.

3.3.10 Aperiodic Strings

Let S ⊆ T(n, k) contain the aperiodic strings. Let the periodic necklaces in N(n, k) be β1, β2, . . . , βt.
Notice that

S = T(n, k)− Rot({β1, β2, . . . , βt})
=
(
T(n, k)− Rot({β1})

)
∩
(
T(n, k)− Rot({β2})

)
∩ · · · ∩

(
T(n, k)− Rot({βt})

)
.

Therefore, S ∪ {kn} ∈ C(n, k) by Section 3.3.8 and Lemma 3. Au previously considered sets of this type
[2].

3.3.11 Strings with Given Periods

Let S ⊆ T(n, k) be the strings with period in P ⊆ {1, 2, . . . , n} with n ∈ P . We can prove that
S∪{kn} ∈ C(n, k) by using the same approach as in Section 3.3.10. More specifically, replace β1, β2, . . . , βt
by the necklaces whose period is not in P . This provides a nice generalization of Au’s result [2].
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4 The generalized FKM construction

In this section, we prove the FKM portion of Theorem 1 and Corollary 1.
Let S ∈ C(n, k) where |S| > 1 and let α1, α2, . . . , αm be the lexicographic ordering of necklaces in

N(S). Let ap(α) be the aperiodic prefix of α. Let FKM(S) be the sequence created by the generalized
FKM algorithm applied to S. That is,

FKM(S) = ap(α1) · ap(α2) · · · · · ap(αm)

where · denotes concatenation. We first prove the following results:

1. m > 1 and kn ∈ N(S),

2. there are no consecutive periodic necklaces in the lexicographic ordering of N(S),

3. if αi = a1a2 · · · an−j−1 xkj for some x < k and 1 6 i < m, then αi+1 has prefix a1a2 · · · an−j−1,

4. α1 is a prefix of FKM(S),

5. xkn is a suffix of FKM(S) where x is the maximum value less than k such that xkn−1 ∈ N(S), and

6. if αi = a1a2 · · · an = a1a2 · · · an−j−1 xkj for some x < k and 1 6 i < m, then FKM(S) contains the
substring a1a2 · · · an · a1a2 · · · a|ap(α)|−j−1.

Lemma 4. If S ∈ C(n, k) and |S| > 1, then |N(S)| > 1 and kn ∈ N(S).

Proof. Since |S| > 1, there exists a string α in S such that α 6= kn. Since S is closed under rotation, it
also contains a necklace β such that β 6= kn and β ∈ Rot(α). Also, since N(S) is a k-suffix language, kn

must also be in N(S). Thus N(S) > 1 and kn ∈ N(S).

Lemma 5. If S ∈ C(n, k) and |S| > 1, then there are no consecutive periodic necklaces in the lexicographic
order of N(S).

Proof. Let α and β be consecutive necklaces in the lexicographic order of N(S) with α < β. Since
α < β we have α 6= kn, and so α contains a rightmost symbol x that is less that k. That is, α =
a1a2 · · · an−j−1xkj where x < k and j > 0.

Let y be the smallest value such that a1a2 · · · an−j−1ykj ∈ N(S) and x < y 6 k; the value y exists
because N(S) is a k-suffix language. Notice that β must have a1a2 · · · an−j−1y as a prefix.

Now suppose that α is periodic. Therefore, α = (γxkj)t for some γ and t > 1. Therefore, β has
(γxkj)t−1γy as a prefix. However, (γxkj)t−1γy is not the prefix of any periodic necklace of length n.
Therefore, β is not periodic.

Lemma 6. Suppose S ∈ C(n, k) and |S| > 1. Let α and β denote consecutive necklaces in the lexico-
graphical ordering of N(S) such that α < β. If α = a1a2 · · · an−j−1 xkj for some x < k, then β has prefix
a1a2 · · · an−j−1.

Proof. Since α is a necklace, clearly a1a2 · · · an−j−1 ykj is a necklace for all x < y 6 k. There exists
some smallest value of y such that a1a2 · · · an−j−1 ykj ∈ N(S) since N(S) is a k-suffix langauge. Since β
is lexicographically smaller or equal to a1a2 · · · an−j−1 ykj but lexicographically larger than α, clearly β
has prefix a1a2 · · · an−j−1.

Lemma 7. If S ∈ C(n, k) and |S| > 1, then the lexicographically smallest necklace in N(S) is a prefix of
FKM(S).

Proof. Let α = a1a2 · · · an−j−1 xkj be the lexicographically smallest necklace in N(S) for some x < k.
Such a value of x exists since α 6= kn by Lemma 4. If α is aperiodic, then clearly FKM(S) has prefix α.
Otherwise if α is periodic, then α = (ap(α))t for some t > 1. Let β be the necklace that is after α in the lex-
icographic ordering of N(S). Such a necklace exists since |N(S)| > 1 by Lemma 4. By Lemma 5, β is ape-
riodic. Also by Lemma 6, β has prefix a1a2 · · · an−j−1 = (ap(α))t−1a(t−1)|ap(α)|+1a(t−1)|ap(α)|+2 · · · an−j−1.
Therefore, ap(α) · ap(β) has prefix ap(α) · (ap(α))t−1 = α.
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Lemma 8. If S ∈ C(n, k) and |S| > 1, then FKM(S) has suffix xkn, where x is the maximum value such
that x < k and xkn−1 ∈ N(S).

Proof. Let α and β denote the two lexicographically largest necklace in N(S) such that α < β. By
Lemma 4, β = kn and α exists since |N(S)| > 1. There exists a maximum value x < k such that
xkn−1 ∈ N(S) since N(S) is a k-suffix language. Observe that α = xkn−1 since there can be no necklace
between it and β in the lexicographical ordering of N(S). Therefore, FKM(S) has suffix ap(α) · ap(β) =
xkn−1 · k = xkn.

Lemma 9. Suppose S ∈ C(n, k) and |S| > 1. If α = a1a2 · · · an = a1a2 · · · an−j−1 xkj ∈ N(S) for some
x < k, then FKM(S) contains the substring a1a2 · · · an · a1a2 · · · a|ap(α)|−j−1.

Proof. Let p = |ap(α)| and let β denote the necklace that is after α in the lexicographic ordering N(S).
Clearly α 6= kn and β exists by Lemma 4. By Lemma 6 β has prefix a1a2 · · · an−j−1. By Lemma 5 at
most one of these necklaces is periodic and we proceed in three cases.

1. If both α and β are aperiodic, then ap(α) · ap(β) = α · β is a substring of FKM(S) which has prefix
a1a2 · · · an · a1a2 · · · an−j−1 = a1a2 · · · an · a1a2 · · · ap−j−1.

2. If α is periodic and β is aperiodic, then ap(α) · ap(β) = ap(α) · β is a substring of FKM(S) which
has prefix ap(α) · a1a2 · · · an−j−1. Let α = (ap(α))t for some t > 1. Observe that

ap(α) · a1a2 · · · an−j−1 = ap(α) · (ap(α))t−1a(t−1)p+1a(t−1)p+2 · · · an−j−1
= α · a(t−1)p+1a(t−1)p+2 · · · an−j−1
= a1a2 · · · an · a1a2 · · · ap−j−1.

3. If α is aperiodic and β is periodic, then there are two subcases. If β = kn, the substring a1a2 · · · an ·
a1a2 · · · ap−j−1 is simply equal to a1a2 · · · an due to the fact that α has suffix kn−1. The desired
substring is found in the length n + 1 suffix of FKM(S) by Lemma 8. Otherwise if β 6= kn, then
let γ be the necklace that is after β in the lexicographic ordering of N(S). Such a necklace exists
since β 6= kn. Notice that γ is aperiodic by Lemma 5. Therefore, by the arguments in the previous
case, ap(β) · ap(γ) has prefix β. Therefore, ap(α) · ap(β) · ap(γ) is a substring of FKM(S) which has
prefix α · β. The prefix α · β contains the prefix a1a2 · · · an · a1a2 · · · ap−j−1.

Thus FKM(S) contains the substring a1a2 · · · an · a1a2 · · · a|ap(α)|−j−1.

We now prove the FKM portion of Theorem 1.

Theorem 4. If S ∈ C(n, k), then FKM(S) is a universal cycle for S.

Proof. Since S is closed under rotation by the definition of C(n, k) and its strings all have length n, the
definition of FKM(S) implies |FKM(S)| = |S|. Therefore, to prove FKM(S) is a universal cycle for S, we
only need to show that FKM(S) contains each string in S as a substring when the sequence is considered
circularly.

When |N(S)| = 1, S = N(S) = {kn}. In this case, FKM(S) is the single character k which is a
universal cycle for S. For the remainder of the proof we assume |N(S)| > 1.

Now consider a rotation β = aiai+1 · · · ana1a2 · · · ai−1 of an arbitrary necklace α = a1a2 . . . an in
N(S). By Lemma 8 we can assume that α 6= kn since the only rotation of kn is found at the end
of FKM(S). Therefore, without loss of generality, we suppose α has suffix xkj for some x < k. Let
p = |ap(α)|. We show that all p distinct rotations of α exist in FKM(S). There are two cases depending
on the value of i.

Case 1: 0 < i 6 p − j − 1 By Lemma 9, a1a2 · · · an·a1a2 · · · ap−j−1 is a substring of FKM(S). Observe
that β is a substring of a1a2 · · · an · a1a2 · · · ap−j−1 when 0 < i 6 p− j − 1.
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Case 2: p − j − 1 < i 6 p Observe that β = kn−ia1a2 · · · ai−1 when p − j − 1 < i 6 p. Let γ be the
lexicographically smallest necklace in N(S) such that it has prefix a1a2 · · · ai−1. If γ is not the
lexicographically smallest necklace in N(S), then the previous necklace of γ has the suffix kn−i

due to the fact that N(S) is a k-suffix language. On the other hand, if γ is the lexicographically
smallest necklace in N(S), then the previous n− i symbols in FKM(S) are kn−i by Lemma 8 when
the sequence is considered circularly. Thus, β is a substring of FKM(S).

Therefore, FKM(S) contains each string in S as a substring and is a universal cycle for S since |FKM(S)| =
|S|.

We now extend this result to the FKM portion of Corollary 1.

Corollary 4. If S ∪ {kn} ∈ C(n, k), then FKM(S) is a universal cycle for S.

Proof. If S ∈ C(n, k), then by Theorem 4, FKM(S) is a universal cycle for S. Otherwise if S /∈ C(n, k)
but S ∪ {kn} ∈ C(n, k), then observe that FKM(S) · k = FKM(S ∪ kn). By Theorem 4 FKM(S) · k is
a universal cycle for S ∪ kn. By Lemma 8, FKM(S) · k ends with the suffix kn. Hence, removing the
last k in FKM(S) · k only removes its substring kn when considered circularly. Thus, all other strings
in S ∪ {kn} \ {kn} = S are preserved. Therefore, FKM(S) is a universal cycle for S since FKM(S) has
length |S|.

The proof of Theorem 4 explicitly states where the rotations of each necklace are found. To specify
the position of a substring in a universal cycle we introduce the following notation. Suppose FKM(S) =
u0u1 · · ·u|S|−1 is a universal cycle for S ⊆ T(n, k) and α ∈ S. Let last(α) be the last position of the
substring α in FKM(S). In other words, if ui−n+1ui−n+2 · · ·ui = α, then last(α) = i because i is the last
position of the substring α, where 0 6 i < |S| and the other index expressions are taken modulo |S|.

Corollary 5. If S ∈ C(n, k), α ∈ N(S) has suffix xkj for some x < k, and β is a rotation of α, then
last(β) 6 last(α) + |ap(α)|−j−1.

Proof. Let α = a1a2 · · · an. By Lemma 9, the rotations of α starting from ai where 1 6 i 6 |ap(α)| − j
are all found in succession starting from α itself. In particular, the last of these rotations β has last(β) =
last(α) + |ap(α)| − j − 1. The remaining rotations of α end within the first necklace in the lexicographic
ordering of N(S) with prefix a1a2 · · · ai for some i satisfying 1 6 i 6 |ap(α)|−j−1. None of these necklaces
appear after α in the lexicographic ordering of N(S), thus last(β) < last(α) for any such rotation of β.

This information will be crucial for the greedy algorithm in Section 5.

5 The generalized greedy approach

In this section we prove the greedy portion of Theorem 1 and Corollary 1, and that the generated universal
cycles are all lexicographically smallest.

Let Greedy(S) denote the sequence generated by the greedy algorithm after removing the initial kn−1.
We need to prove that Greedy(S) = FKM(S) and this is the lexicographically smallest universal cycle
when S ∈ C(n, k).

Lemma 10. If S ∈ C(n, k) and |S| > 1, then the lexicographically smallest necklace in N(S) is a prefix
of Greedy(S).

Proof. By contradiction. Let α = a1a2 · · · an be the lexicographically smallest necklace in N(S). The
string α is also the lexicographically smallest string in S since S is closed under rotation. Suppose
Greedy(S) starts with prefix a1a2 · · · aiz for some i < n and z 6= ai+1. Observe that z < ai+1 by
the definition of the greedy algorithm. Furthermore, since the greedy algorithm starts with the initial
seed kn−1, after i + 1 iterations of the greedy algorithm the length n suffix of the sequence is β =
kn−i−1a1a2 · · · aiz. Notice that if β ∈ S, then its rotation a1a2 · · · aizkn−i−1 must also be in S since S is
closed under rotation. However, a1a2 · · · aizkn−i−1 is strictly less than α, a contradiction to α being the
lexicographically smallest string in S.
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Theorem 5. If S ∈ C(n, k), then Greedy(S) is equivalent to FKM(S).

Proof. Let α1, α2, . . . , αm denote the lexicographic ordering of necklaces in N(S). Let Lt = ap(α1)ap(α2)
· · · ap(αt) for 1 6 t 6 m. When m = 1, S = {kn} and the greedy algorithm terminates with the correct
sequence of length one, namely Greedy(S) = FKM(S) = k.

For m > 1, we prove that Greedy(S) = FKM(S) = Lm by contradiction. Suppose t is the smallest
value such that Lt+1 is not a prefix of Greedy(S), where αt = a1a2 · · · an = a1a2 · · · an−jkj and an−j < k.
From Lemma 10 we know that 1 6 t < m. Let αt+1 = b1b2 · · · bn and p = |ap(αt+1)|. Let i be the
smallest value such that 0 < i 6 p and Lt ·b1b2 · · · bi is not a prefix of Greedy(S). Let β denote the length
n− 1 suffix of Lt · b1b2 · · · bi−1. Such a suffix exists since both Greedy(S) and FKM(S) begin with α1 by
Lemma 7 and Lemma 10 when m > 1. There are two cases depending on the value of i.

Case 1: 0 < i 6 p − j − 1 By Lemma 6, b1b2 · · · bn−j−1 = a1a2 · · · an−j−1. Therefore by Lemma 9,
β = ai+1ai+2 · · · an ·a1a2 · · · ai−1 since ap(αt) is prior to b1b2 · · · bi−1. Since Lt ·b1b2 · · · bi is not a pre-
fix of Greedy(S), the greedy algorithm appends z to β where z < bi. By Corollary 5, βz is not a ro-
tation of the necklaces α1, α2, . . . , αt−1. However, a rotation of βz is equal to a1a2 · · · ai−1zai+1ai+2

· · · an and is strictly less than αt. Therefore, βz is a rotation of some necklace that is between αt−1
and αt in lexicographic order, a contradiction to αt being the necklace after αt−1 in the lexicographic
ordering of N(S). Thus z must be equal to bi = ai.

Case 2: p − j − 1 < i 6 p By Lemma 9, β = ai+1ai+2 · · · anb1b2 · · · bi−1 which is equal to ai+1ai+2 · · ·
ana1a2 · · · ap−j−1 · bp−jbp−j+1 · · · bi−1 since ap(αt) is prior to b1b2 · · · bi−1. Since Lt · b1b2 · · · bi is
not a prefix of Greedy(S), the greedy algorithm appends z to β where z < bi. By Corollary
5, βz is not a rotation of the necklaces α1, α2, . . . , αt. However, a rotation of βz is equal to
a1a2 · · · ap−j−1 · bp−jbp−j+1 · · · bi−1zai+1ai+2 · · · an and is strictly less than αt+1. Therefore, βz is
a rotation of some necklace that is between αt and αt+1 in lexicographic order, a contradiction to
αt+1 being the necklace after αt in the lexicographic ordering of N(S). Thus z must be equal to bi.

Thus by proof of contradiction, Greedy(S) = FKM(S) = Lm as claimed.

Corollary 6. FKM(S) and Greedy(S) produce the lexicographically smallest universal cycle among all
universal cycles for S ∈ C(n, k).

Proof. The greedy algorithm always starts with the lexicographically smallest necklace in N(S) by
Lemma 10, which is also the lexicographically smallest string in S. It then greedily appends the lex-
icographically smallest possible symbol such that the length n suffix is unique and in S. By the definition
of the greedy algorithm, appending any smaller symbol results in either a duplicate string, or a string
not in S. Thus Greedy(S) must be the lexicographically smallest universal cycle. Also by Theorem 5,
FKM(S) and Greedy(S) produce the same universal cycle. Therefore, both FKM(S) and Greedy(S)
produce the lexicographically smallest universal cycle for S.

6 Final Remarks

Although the language C(n, k) includes a broad class of combinatorial objects, there are still sets that
are not in C(n, k) while their universal cycles can be constructed by the FKM algorithm. As an example,
consider the set S4 ⊆ T(4, 3) which contains the following length 4 strings:

1112, 1121, 1122, 1212, 1211, 1221, 1222, 1322, 2111,
2112, 2121, 2122, 2132, 2211, 2212, 2213, 2221, 3221.

The set S4 is closed under rotation, but N(S4) = {1112, 1122, 1212, 1222, 1322} is not a k-suffix language.
However, FKM(S4) = 1112 · 1122 · 12 · 1222 · 1322 is a universal cycle for S4. Naturally, we would like
to characterize the sets of strings S in which FKM(S) is a universal cycle. Similarly, we are interested in
characterizing when the greedy algorithm works.
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