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Abstract

A dominating set of a graph is a subset D of its vertices such that every vertex
not in D is adjacent to at least one member of D. The domination number of a
graph G is the number of vertices in a smallest dominating set of G. The bondage
number of a nonempty graph G is the size of a smallest set of edges whose removal
from G results in a graph with domination number greater than the domination
number of G. In this note, we study the bondage number of the binomial random
graph ¥ (n,p). We obtain a lower bound that matches the order of the trivial
upper bound. As a side product, we give a one-point concentration result for the

domination number of ¢4(n,p) under certain restrictions.

Keywords: random graph; bondage number; domination number

1 Introduction

In this paper, we consider the Erd6s-Rényi random graph process, which is a stochas-
tic process that starts with n vertices and no edges, and at each step adds one new edge
chosen uniformly at random from the set of missing edges. Formally, let ey, es,. ..

be a random permutation of the edges of the complete graph K,. The graph process
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consists of the sequence of random graphs (g(n,m)),(nio, where G(n,m) = (V,E,),
V =[n]:={1,2,...,n}, and E,, = {e1,ea,...,en}. It is clear that G(n,m) is a graph
taken uniformly at random from the set of all graphs on n vertices and m edges (see, for
example, [2, 6] for more details.)

Our results refer to the random graph process. However, it will be sometimes easier to
work with the ¢(n, p) model instead of G(n, m). The (binomial) random graph ¥ (n,p)
consists of the probability space (€2, F, Pr), where €2 is the set of all graphs with vertex
set [n], F is the family of all subsets of 2, and for every G € Q,

Pr(G) = pP@I(1 — p)(5)-1E@
This space may be viewed as the set of outcomes of (g) independent coin flips, one for
each pair {u,v} of vertices, where the probability of success (that is, adding edge uv) is
p. Note that p = p, may (and usually does) tend to zero as n tends to infinity.

All asymptotics throughout are as n — oo (we emphasize that the notations o(-) and
O(-) refer to functions of n, not necessarily positive unless otherwise stated, whose growth
is bounded; on the other hand, functions hidden in ©(-) and () notations are positive).
We use the notation a,, ~ b, to denote a,, = (1+0(1))b,. A sequence a,, satisfies a certain
property eventually if the property holds for all but finitely many terms of the sequence.
We say that an event in a probability space holds asymptotically almost surely (or
a.a.s.) if the probability that it holds tends to 1 as n goes to infinity. We often write
G(n,m) and ¥(n,p) when we mean a graph drawn from the distribution G(n,m) and
4 (n,p), respectively. All logarithms in this paper are natural logarithms.

A dominating set for a graph G = (V, E) is a subset D of V such that every vertex
not in D is adjacent to at least one member of D. The domination number, v(G), is
the number of vertices in a smallest dominating set for G. The bondage number, b(G),
of a non-empty graph G is the smallest number of edges that need to be removed in order
to increase the domination number; that is,

b(G) = min{|B|: B C E,v(G — B) > ~v(G)}.

(If G has no edges, then we define b(G) = o0.) This graph parameter was formally
introduced in 1990 by Fink et al. [3] as a parameter for measuring the vulnerability
of the interconnection network under link failure. However, it was considered already
in 1983 by Bauer at al. [1] as “domination line-stability”. Moreover, graphs for which
the domination number changes upon the removal of a single edge were investigated by
Walikar and Acharya [7] in 1979. One of the very first observations [1, 3] is the following
upper bound:
b(G) < min{deg(z) +deg(y) — 1} < A(G) +0(G) — L,

where A(G) and 6(G) are the maximum and, respectively, the minimum degree of G.
Since a.a.s. A(¥4(n,p)) ~ (4 (n,p)) ~ pn provided pn > logn (this follows immediately
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from Chernoff’s bound stated below, and the union bound), we get that a.a.s.
b(&(n,p)) < 2pn(l +o(1)) (1)

for pn > logn. For denser graphs, one can improve the leading constant of this upper
bound by using the following observation of Hartnell and Rall [5]:

b(G) < min{deg(x) +deg(y) — 1 — [N(z) " N(y)[}-

It follows that if p = (1), then a.a.s.
b(Z(n,p)) < (2p — p*)n(1 + o(1)).
Today, many properties of the bondage number are studied. For more details the reader

is directed to the survey [9] which cites almost 150 papers on the topic.

2 Results

Our goal is to investigate the bondage number of the binomial random graph on n vertices
and of the random graph process. Throughout the whole paper we will exclude the case
p = p, — 1 and also assume that p does not tend to zero too fast. More precisely, our
main results require that p = p,, eventually satisfies

T p<l—g, (2)
for some constant £ > 0, but most arguments only require the following, milder, constraint:
log?n/v/n<p<1—e.

Since our results are asymptotic in n, we will assume that n is large enough so that all
requirements in the argument are met. (In particular, the notation “eventually” is often
implicitly assumed in the proofs and omitted.) Let Dy be the set of dominating sets of
size k of 4(n,p), and let X}, = |Dy|. Clearly,

ko) = Bx = (1) (1= =) ®)

For a given p = p,, let
r=r, =min{k € N: f(n,k,p) > 1/(pn)}. (4)

Since pn > y/nlog®n > 1 (eventually) and f(n,n,p) = 1, the function r is well defined
for n sufficiently large.
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2.1 Random Graph Process

Consider the random graph process (G(n,m)) Clearly, the random variable

o<m<(3)
v(G(n,m)) is a non-increasing function of m, v(G(n,0)) = v(K,) = n, and y(G(n, (}))) =
v(K,) = 1. Suppose that at some point the domination number drops down, that is, there
exists a value of m such that y(G(n,m)) = k+ 1 but v(G(n,m + 1)) = k. The random
graph process continues and, as long as the domination number remains to be equal to k,
the bondage number, b(G(n, m + ¢)), is a non-decreasing function of ¢. Moreover, we get
that b(G(n,m+{)) < ¢, as one can remove the last ¢ edges that were added in the process
(namely, €41, €mi2;---,Emte) in order to increase the domination number. A natural
and interesting question is then to ask how large the bondage number is right before the
domination number drops again; that is, what can be said about b(G(n,m + £)) when
Y(G(n,m+{)) =k but v(G(n,m + €+ 1)) = k — 17 It turns out that, for the range of k
we are interested in, it is of the order of the maximum degree of G(n,m + ¢), and hence
it matches the trivial, deterministic, upper bound mentioned in the introduction (up to a
constant multiplicative factor). Here is the precise statement.

Theorem 1. Given any constant € > 0, let k = k,, be such that eventually elogn < k <
n'/3=¢. Then, there exists m = m,, such that a.a.s.

(G (n,m)) =k and b(G(n,m)) = O(A(G(n,m))) = O(m/n).

2.2 Binomial Random Graph

Consider now the binomial random graph ¢ (n, p). Before we state the main result for this
probability space, let us mention some technical difficulties one needs to deal with. Our
one-point concentration result (below) on the domination number of ¢(n,p) amounts to
showing that a.a.s. X, > 1 (since, trivially, a.a.s. X; = 0 for all ¢ < r — 1). Moreover,
our claim about the bondage number requires that a.a.s. X, = Q(pn) — oo. This follows
from the fact that the number of dominating sets of minimum cardinality is an upper
bound on the bondage number (since each such set D must have a vertex v ¢ D adjacent
to only one vertex in D, and thus D can be neutralized by removing a single edge).
Therefore, we will restrict ourselves to situations in which EX, is large enough and prove
concentration of X, around its mean. For technical reasons of the argument, we will
require the aforementioned condition to hold for two consecutive values n — 1 and n
(see (6) and (7) in Theorem 3). This motivates the assumptions on the ratio p,41/p, in
the statement of Theorem 2.

We point out that, even for “natural” functions satisfying our assumptions, such as
pn = 1/2, it is not clear whether there are always many dominating sets of minimum
cardinality, or rather X, oscillates reaching both small and large values as n grows. All
we managed to show is that, for such p,, almost all values of n satisfy (6) and (7) and
thus yield the bondage number as large as possible. To make this precise, a set I C N is
said to be dense if

i [T N [n]|
im ————
n—oo n

~1. (5)
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In view of this definition, and recalling the definition of r = 7, in (4), our result for the
binomial random graph can be stated as follows.

Theorem 2. Given any constant € > 0, let p = p, be such that eventually n=/3 <
p < 1—¢e. Moreover, suppose there exists a non-increasing non-negative sequence h = h,
such that ppi1/pn = 1 — O(hy,/n). Then, there exists a dense set I C N such that, with
asymptotics restricted ton € I, a.a.s.

(G (n,p))=r and b (n,p)) =O(A(G(n,p))) = O(pn).

Although the conditions on p, in Theorem 2 seem restrictive, many common and
natural probability functions p, satisfy it. For example, p, = n~"/* p, = 1/loglogn
and p, = 1/2 meet the requirements (by picking h, = 1, h, = 1/logn and h, = 0,
respectively). Other, seemingly more complicated, choices such as p, = (n-+1)~1/4 log® n+
n~Y/3 also satisfy our conditions. On the other hand, mixed behaviours such as

e n even
b= 1/loglogn mn odd

are not considered here. One can easily relax the conditions on p, a bit further, but we
do not aim for it, as it does not appear to be possible to express that in terms of any
“natural” assumptions such as “p, being non-decreasing”.

2.3 General Result

In fact, both Theorem 1 and Theorem 2 are implied by the following, slightly more general,
result. It is known that even for sparser graphs (namely, for p = p, > log? n/v/n, but
bounded away from 1) a.a.s. the domination number of ¥(n,p) takes one out of two
consecutive integer values, 7 or r + 1, where r = 7, is defined in (4) (see [4] and also [§]
for an earlier paper where denser graphs were considered). The next result shows that if
f(n,r,p) (that is, the expected number of dominating sets of cardinality r) is large, then
we actually have one-point concentration and the bondage number is of order pn. Note
that we may have to restrict asymptotics to an infinite subset of N that guarantees our
assumptions on f.

Theorem 3. Given any constant € > 0, suppose that p = p, eventually satisfies n="/3+ <
p < 1—g, andlet f andr be defined as in (3) and (4). Suppose that there exists an infinite
set I' CN and w = w,, — oo such that

EX, = f(n,r,p) = exp (wlogn) (fornel). (6)

Then, a.a.s.
Y& (n,p)) =r (fornel).

Moreover, suppose that

I={neN:nel , n—-1€l'} has infinite cardinality. (7)
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Then a.a.s.

oG (n,p)) = O(A(¥(n,p)) =O(pn)  (fornel).
Remark 4.

(i) In many applications of Theorem 3 (for instance, in the proofs of Theorems 1 and 2),
I’ is a dense subset of N. Then, automatically I is also dense, and thus has infinite
cardinality as required.

(ii) The first part of the theorem, which characterizes the domination number of ¢ (n, p),
holds in fact for any p = p, satisfying log? n/\/n < p < 1—¢ (see Corollary 9 below).

The paper is structured as follows. In Section 3, we show that the results for G(n,m)
and ¢(n,p) can be obtained from Theorem 3. Section 4 develops some tools required to
estimate the second moment of X, and some other random variables. Finally, Section 5
is devoted to prove Theorem 3.

3 Preliminaries

In this section we are going to introduce a few inequalities used in the paper, and we show
some properties of the functions r = r, and f(n,r,p) defined in (3) and (4). The function
p will be assumed to satisfy (2). We will also show that Theorem 1 and Theorem 2 are
implied by Theorem 3.

We will use the following version of Chernoff bound (see e.g. [6]):

Lemma 5 (Chernoff Bound). If W is a binomial random variable with expectation pu,
and 0 < 6 < 1, then, setting p(z) = (1+x)log(1+x) —x for x > —1 (and p(x) = oo for
r<—1),

P < (1= 0)p1 < exp (—po(—8)) < exp (—57“) ; )
and if 6 > 0, ,
Pr(W > (14 0)p] < exp <_2(5+,u5> : (9)

Given p = p, € [0,1), define p = log 1%1). Note that p > p (with equality only holding
at p =0), and
p~p if p=o(1),
p=06(1) ifp=06(1)and 1 —p=06(1), (10)
p—oo ifp—1.
We start with a few simple observations. Let us mention that some of the properties
we show below are known and can be found in, for example, [4, Observation 2.1} (but

mainly for p = o(1)). We present the proof here for completeness and to prepare the
reader for similar calculations later on.
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Lemma 6. Assume log?n/\/n < p < 1—¢ for some constant € > 0, and let r be defined
as in (4). Then, the following holds:

(i)

L [ bn
L TN S,

for some 1+ 0(1) < a < 1%

(ii)
r=0 (loi ) and  (1—p) =0 (loin) .
and r = o(\/n/ log n).

(iii) Moreover, if k =1+ O(1), then

f(n,k+1,p)
f(n,k,p)

S

~—

In particular, r = Q(logn

= exp(©(log® n)).

Proof. For a given function g = g, = o(1), we define

b= sap) = | Flog (10%2@5;1 n M '

First, observe that for p in the range of discussion, log(pn) = ©(logn). Then, it follows
from (10) that

2= g7 (Boston)) — Oltoglogymy)) = & (57 ). (1)

Also, from the definition of p and (10), we obtain (1 — p)® = © <M> . Hence, part (ii)

pn
will follow, once we show that r = s, for some function g, = o(1). In particular, proving
part (i) will automatically yield part (ii).
Given any g, = o(1), define g, and g, by
1 n 1 pn
s:;log( > and s—lz;log( )
P \log*(pn)(1 + ) ! p " \log®(pn)(1 + g;f)
+

n -

Since z < [z] < z+ 1 for any z € R, we obtain that g, < g, <g
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Now we proceed to estimate f(n, s, p) and f(n,s, — 1, p) for any g, = o(1). Denoting
by [n]r = n(n —1)...(n — k + 1), and using Stirling’s formula (k! ~ v27k(k/e)¥), we
observe that

| n(1=s/n)

gy = L (1220 )
il <1+;8;¢%237@>98Xp( P (1 s0 (M52) +o (2))
() o)

since s, = O(logn/p) (by (11)) and p > log® n/y/n, which implies that

(14 O(sy/n))% = eOls/m) = Olog®n/w*n) 1

and s,/n = O(logn/(pn)) = o(log®n/(pn)). Hence,
Fn5pp) ~ 1 exp <log(pn) +9(loglogn) (log( pn ) —|—O(1)>

2ms, D logn

- o (22)))
- oY) (M5 (o (7)) o

Moreover, the same calculations leading to (12) are valid if we replace s, by s, — 1 and
g, by g, so we also get

f(n,s,—1,p) =0 ( lop ) exp (— 1°g2£p”> (g; 1O (101‘51%”)) ) (13)
gn p ogn

In order to prove part (ii), we first take g, = (loglogn)?/logn. From (13) and since
g7 = gn, we obtain

f(n, 53 —1,p) < exp (—Q((log® log n) log(pn))) = o(1/(pn)),
and thus
f(n,5,p) < 1/(pn) forall 1<j<s,—1,

since f(n,j,p) is increasing with respect to j in that range (this can be easily checked
by looking at the ratio f(n,j + 1,p)/f(n,j,p) for 7 = O(logn/p) = o(y/n)). Therefore,
r > s, — 1 and, since both 7 and s, are natural numbers, 7 > sy = S(og10gn)2/10gn- On the
other hand, if we set g, = —(loglogn)?/logn then, by (12) and since g, < g,

f(n,sy,p) > n~Y4/logn - exp (Q((10g2 logn) log(pn))) > 1/(pn),
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and hence 7 < 5_(1og10gn)2/10gn- Combining the two bounds, we conclude that

r=s, for some — (loglogn)?/logn < g, < (loglogn)?/logn,

which implies the first equality in part (i). The second equality follows immediately from

setting o = 1/(1 + g;;) and the fact that 1+1gn < ng, < T

Finally, let us move to part (iii). Using part (ii), it is easy to see that for k = r+ O(1)
we get

M _ [l /(R 1)! 1—(1—p)ktt n—k e
flnk,p) [n]/k! (1_(1_p)k) (1-(1-p*H)
Lon(1=(=pfp—p)F\
’f( 1—(1—p)* >

—k

(lp”n) (1+e@1-p)"
~ o ( b )exp (©n(1—p)"))
(

" ) exp (O(log*n)) = exp (O(log"n)) .

,_.
@)

o
S

This finishes the proof of the lemma. O]
Now, we will show that Theorem 1 can be obtained from Theorem 3.

Proof of Theorem 1. Let k = k, be such that elogn < k < n'/3~¢ for some € > 0. Our
goal is to show that there exists m = m, € N such that a.a.s. v(G(n,m)) = k and
b(G(n,m)) = O(A(G(n,m))) = O(m/n). We assume that Theorem 3 holds and we will
use the probability space ¢(n,p) to get the result.

It follows immediately from definition (3) that, for 1 < j < n, f(n,7,p) is both a
continuous and increasing function of p, taking all values between 0 and (?) Then, given
n € N (sufficiently large), we can define p, to be such that

k= 1,py) = 1/(psn). (14)

Moreover, straightforward computations show that, for 0 < p < 1 and 0 < 57 < n/4,

fngp) _ G) g+

<1/2, (15)

so in particular f(n,j,p) is increasing in j, for j in that range. Let r, be defined as
rin (4) for p = p,. From (14) and (15), we deduce that f(n,k,p;) > 1/(psn) and
f(n,7,p+) < 1/(pyn) for all j < k — 1, so we must have ry = k. Also observe that r
in (4) is a non-increasing function of p. Combining this fact and Lemma 6(i), we conclude
that n=1/3+" < p, < 1 — ¢, for some constant ¢ = £/(¢), since otherwise r, < elogn
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or ry > n'/37¢ contradicting our assumptions on k and the fact that k = r,. Hence, in

particular, 1/(psn) = o(1). It follows immediately from the first moment method that
a.a.s. 4(n, ps) has no dominating set of size k — 1, and then

for all 0 < p < py, (¥4 (n,p)) =2 k a.as. (16)

since this is a non-increasing property with respect to the addition of edges. In fact, a.a.s.
v(¥4(n,ps)) = k but we do not prove it now, since we will need a stronger statement to
hold.

Now, let w = w,, be a function tending to infinity sufficiently slowly in order to meet
all requirements in the argument. Define

2 wy/pin 2 wn
— = +—T: + ].——n - +1+01 ,

where the last step follows from the fact that py > n~'/3*¢'. Since p_ ~ p,, then
p_ > n~ Y32 and p_ is bounded away from 1. Clearly,
1

k= 1,p) < flm k= 1,py) = —— < ——

) 17
psn pn a7

Let r_ be defined as r in (4) for p = p_. Next we want to show that r_ = k and then
that f(n,k,p_) > exp(wlogn). First, using Lemma 6(ii) and the fact that k = ry =
O(logn/py ), we get

1= (1=p)" =1~ (1—p++@(°’ p+)>’“

n

—1—(1=py)! <1+@ (%))
— 1= (1= pa)E! (1+@ (jﬁbl—if))

—1— (1 _p+)k—1 s (w10g3n)

3/2
n2p+/

= (1-(1—py)Y) (1 o (fji/”» -

n—k+1
f(’fl,k’ — ]_,p_) = f(n7k — ]_7p+) (1 —0 (wmg3n)>

Hence,

2. 3/2
np

= f(n7k - 1>p+> (1 -6 (wlog;jgn))
npy/

~ f(n’ k — 17p+) = (p+n)_1 ~ (p—n)_1>
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as p, = n~ /3. Combining this with (15) and (17), we obtain that f(n,k,p_) > 1/(p_n)
and f(n,j,p—) < 1/(p_n) for all j <k, so k =r_. Now, using Lemma 6 again (this time
part (iii)), we get

f(n,k,po) = f(n,k—1,p_) exp(©(log*n)) ~ (p-n) " exp(B(log?n)) > exp(wlogn),

as desired. The same argument holds clearly with n—1 playing the role of n. Therefore, it
follows from Theorem 3 that a.a.s. v(G(n,p_)) = k and b(¥4(n,p-)) = O(A(Y(n,p-))) =
cp_n, for some constant ¢ = ¢(e) > 0. Let @ be the graph property that we cannot
destroy all dominating sets of size k by removing any set of at most cp_n edges. Clearly,
this is a non-decreasing property with respect to adding edges in the graph, so

for all p_ < p <1, ¢ (n,p) satisfies property @ a.a.s. (18)

- n\p-+py (N . n
o) 79 T \o P+ P+ 9 P+

—1/3+4¢

Finally, define

where at the last step we use the fact that p, > n . Easy manipulations yield

_mtwnyFr i+ (V24 o()wvii i+ wy fiin ((3) =) /(3)
O (5) - (5) ’

P+ (19)

and similarly

L _mmenypr Mo eym () -m) /()

(3) (3)
In view of (16), (18), (19) and (20), we can apply Proposition 1.13 in [6] separately to
both the property () and the property that v(G(n,p)) > k, and we conclude that a.a.s.

v(G(n,m)) = k and G(n,m) satisfies property ). These two events together imply that
v(G(n,m)) =k and b(G(n,m)) = O(p_n) = O(m/n). The proof is finished. O

(20)

Now, we are going to show that Theorem 2 can be obtained from Theorem 3.

Proof of Theorem 2. Let p = p, be such that n='/3+¢ < p < 1 — ¢ for some € > 0, and let
r = r, be defined as in (4). Moreover, suppose there exists a non-increasing non-negative
sequence h = h,, such that p,.1/p, =1 — O(h,/n). Our goal is to show that there exists
a positive sequence w = w,, — oo and a dense set I’ C N such that

f(n,r,p) = exp(wlogn), forn eI

The result will follow immediately from Theorem 3, and will hold for I defined as in (7).
(Note that, since I’ is dense, it is straightforward to verify that I must be dense too.)
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Throughout the proof, we set w = w, = loglogn. Note h; = O(1) and so our
assumptions on p and h imply that h, = O(1) and so there exists a universal constant
0 < A; < 1 such that, for every n < n’ < 3n,

A <P < (21)
P

Given any fixed j € {0, 1,2}, in view of our assumptions on p and h and by Lemma 6(ii),
we have

1—(1—p,)" 7 =1- <1 — P (14 @(hn/n))ynﬂﬂ

=1-(1- pn+1)rn+l_j <1 -0 (Pn+1hn)>rn+1_j
=1—(1—pps1)" 77 (1 — © (Lnlogn))

= (1= (1= psr)™ ) (1 +0 (@)) |

n2pn+1
Therefore,
Prt1—j n—rp+1+j+1
fn+ 1,70 — J, Pny1) . n+1 <1_ (1 = poys)™™ J)
f(n,ros1 = J,pn) A1 -1+ <1 - pn)rnﬂ_j)n—mﬂﬂ

B logn - hy, log®n it
_ (1 +e ( o )) (1 (1= prst) ) (1 o ( e
2 3
(e () (e () e ()
NPy NPp+1 NPn+1

:1_@(&), (22)

npPn

where g,, := log? n+h,, log® n. By our assumptions on h,,, we have log* n < g, = O(log® n).
In particular, for every j € {0,1,2} and every n,

1 n - '> n n
< f(n+ 1, J.p +1) <oxp(_c ). (23)
f(n7rn+1 _jap’n) npn

exp <_CQ In
NPn

for some universal constants Cy > C > 0. From (22) (with 7 = 0) and our assumptions
on p, we obtain

(n+ Dpnsrf (0 + 1,741, Do) _ (1 6 (&)) (1 L0 <1)) -1
npnf(nvrn—l-lapn) npn n ’

where the last inequality holds for n sufficiently large. This implies that

Dpn L, "ni1, P 1
f(n7rn+1apn) > (n+ )p +1f(n+ L +1 p +1) > 9
npp npn
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where the last inequality uses the definition of r,, in (4). Hence, r,41 > 7, for n large
enough, and thus 7 is a nondecreasing sequence of n except, possibly, for a finite number
of terms. Similarly, from (22) (with j = 2) and by Lemma 6(iii),

f(n7rn+1 - 27pn) = <1 + @ (%)) f(n + 17 Tn+1 — 27pn+1)
~ f(n + 17Tn+1 - 27pn+1)
= f(n + 17 Tnt1l — 17pn+1) exp (_@<10g2 n))

1
——exp (—O(log?n)) < —,
(n 4 1)pns1 P ( (log )) npn

for n sufficiently large. Therefore, r,, 1 —2 < r,, or equivalently 7,1 < r, + 1, for all but
finitely many n (that is, r can increase by at most one). We construct now the set I’ as
follows:

I''={neN: f(n,rn,p,) > exp(w,logn)}.

Since we want to show that I’ contains almost all n € N, suppose that n; ¢ I’ for some
value n; € N. Then we have

1/(n1pn1) < f(n17 rn1apn1) < eXp(wnl lOg nl)'

Our goal is to show that n, is followed by an interval of naturals [ny,ne — 1] ¢ I’ and then
by a much longer interval [ny, n3] € I'. We may assume that n; is sufficiently large, since
the limiting density of I’ is not affected by ignoring any finite number of naturals.
Let
ny = min{n >ny : 1, > 1, orn=3ny}.

Since 1, = 1y, for all n; < n < ny — 1, applying (23) to that range (with j = 0) we get

ng—2
f(nZ - 1771n2*17pn271> g f(nla rn1apn1) €xp <_Cl Z 9_n>

npn
n=ni
Cl no—2
Xp (w 11087 311, 7;19
Cl no—1
< exp | wy, logny +1 — In | -
( ' ! 3nlpn1 nz:
=n
On the other hand, by the definition of  (see (4)), we know that
flna—1 )> > (24)
No — L,Tpy—1,Pns— = .
’ 2ot P Pny—1(ng — 1) 3Dny 11
Hence, it must be the case that, say,
no—1
Z 9n < nlpn1w7211 10g ni. (25)
n=ni
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Since g, > log?n and by our choice of w,, it follows that
ny —ng < nw? /logni < ni. (26)

As a result, ny # 3nq, and so it follows that r,, > r,,. In fact, since r can increase by at
most one, 7,, = r,,_1 + 1. Now, we get from (23), Lemma 6(iii) and (24) that, for some
small constant C3 > 0 (possibly depending on ¢),

f<n2>rn27pn2) 2 C3f(n2 - 15 Tnman*l) = C3f(n2 - 177ﬂn2*1 + 17pn271)
= C3f( - 1,rn2_1,pn2_1)eXp (03 10g2 n2)
> Gs/3 exp (Cs log? ns)
pn1 1
> exp ((03/2) log? ng) > exp (wp, logny) . (27)

As a result, no belongs to I’.
Let
nsg = min{n > ny : f(n, 7y, pn) < exp(2wy, lognsg) or n = 3ny}.

Note that if f(n,r,,,pn) = exp(2wy, logny) for some ny < n < 3ngy, then

f(n, 05, pn) = exp(wn logn) > 1/ (pan).

Hence, r,, = r,, and, more importantly, n € I'. If ng = 3ng, then we are done, since the
interval [ng,ng] is longer than [ny,ny — 1] by at least a logny /w2 factor (see second step
n (26)). Hence, we may assume that f(ns,7n,, Pn,) < €xp(2wp, logns). Applying (23)
one more time and by the second last step of (27), we get

npn

nz—1
9n
f(n37rn27pn3) 2 f(n277an27pn2)exp <_C2 Z _>

n=ng

C nz—1
> on (- 5

n=ngo

CQ nay—1
> exp [ (C5/2)log?ns — —2— 3" g. ],
p<( 5/2) log? ny A%nlpng)

n=ng

which is at least exp(2w,,, log ns), if, say, > "% . gn < N1 pn, log? ny Jwy, . Consequently,

o N1Pn 10g2 ni
> gn > —— (28)
n=nso wnl

Finally, note that h,, is non-increasing and nz —n; < 8ny, S0 g, ~ gn, for any n; < n < ng
and, as a result,

max{g, :ne <n<n3—1} < C -min{g, :ny <n<ny—1}
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for some universal constant C. Combining this observation together with (25) and (28),

it immediately follows that
3

No — N1 < wnl

ng—ne+1  logng
Putting everything together, given any n; ¢ I’ sufficiently large, we obtained ny and ng

such that |
[no,n3) CI' and n3g—mg+1> og3n1 (ny — ny).

ni

This proves that I’ is dense as required, and the proof of the theorem is finished. O

Note that the lengths of the intervals [ny, ny — 1] and [ng, n3] in the proof of Theorem 2

depend on the value of p,. This is not an artifact of the proof, but rather reflecting the
1/4

fact that for different values of p,, these lengths are indeed different: for p, = n="*, we
get that ro, —r, = ©(n'/*logn), and thus, on average, after @(%) integers the value of

r increases by 1. On the other hand, for p, = we get that o, — 1, = ©(loglogn),

1
loglogn’
and thus, on average, after ©(np) integers the value of r increases by 1.

4 Second moment ingredients

For a given function p = p,, let f(n,k,p) and r = r, be defined as in (3) and (4),
respectively. Throughout this section, we suppose that, given our choice of p, there exists
some infinite set I’ C N satisfying (6) for a given function w = w, — oo, and restrict
all our asymptotic statements to n € I’. For simplicity, we also write X instead of X,
and D instead of D,. For each i € {0,1,...,r}, let W; be the random variable counting
the number of ordered pairs D, D" € D in ¥(n,p) with |[D N D’| = i. One of the key
ingredients in our analysis is to estimate the variance of X and other related random
variables defined later in the paper. To do so, we will use several bounds on EW; that
are stated in Proposition 8 below. In fact, the variance of X,.; was already studied
in [4] and [8], and we follow some of the ideas in their computations, but we need a more
accurate estimation of the error terms involved. Also, the aforementioned papers deal
with X, instead of X,, since they make use of the fact that EX,,; = exp(©(log®n)).
In our case, this fact is replaced by our assumption (6).

The following lemma uses some of the computations in [4], and will prepare us for Propo-
sition 8. Given two sets of vertices D, D’ of size r with |D N D’| = i, let P, denote the
probability that D, D" dominate each other in ¢ (n, p) (i.e., every vertex in D has a neigh-
bour in D" and vice versa).

Lemma 7. Given a constant ¢ > 0, suppose that log®n//n < p < 1—e¢ and condition (6)
holds for some infinite set I' C N and some function w = w,, — oo, where f(n,k,p) and
r are defined as in (3) and (4). Then, for each 0.9r < i <,

BT E <o ((@/2)logn)  (fornel)
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Sketch of proof. We follow some of the computations in Section 3.1 of [4]. In that paper,
their choice of r corresponds to our r + 1, and their calculations assume p = o(1), but
everything we use here remains valid in our setting. First, note that

n! i n—22r-+i

EW; = i!(r _ i)!Q(n — o+ z')! (1 - (1 _p)i + (1 —p)i(l - (1 —p>H)2)

B (29)

Observe that EW;/P; corresponds exactly to f(i) in [4]. By adapting (3.8) in [4] to our
notation and using our assumption (6), we get

B W () (0 (1 000y

< exp (—wlogn +logn +2(r —i)logn —n(l1 —p)" (1 — (1 —p)"") (1 + o(1))).

]

(The term —wlogn in the exponent above corresponds to —(1 4 o(1))log®(pn) in [4],
because of their different choice of r.) Moreover, (3.9) in [4] gives that

2(r —i)logn — (1 —p)" (1= (1—=p)"") <0,

and therefore

% < exp (—wlogn +logn) < exp (—(w/2)logn). -

Before we proceed, we need one more definition. Given a constant ¢ > 0 and for
ie{l,2,...,r} let

min{i—1,L—1}

Qi= Y Pr(Bin(i—1,p) =j)(PrBin(r—i,p) < L - j))*, (30)

j=0

where L = |gpr| with ¢ = 2. The following proposition will be central for estimating
the variance of several random variables.

Proposition 8. Given a constant ¢ > 0, assume that log® n/vyn < p <1—¢ and
condition (6) is satisfied for some infinite set I' C N. Then, the following holds for
(n,p) with n restricted to I':

(i)

EW, log® n EW, r? log*n  log®n
<1 d < (1 :
(EX)? +06 ( n an - +06 = + n

(i)

T 2 4 3
Y EW, < - (1 +0 (k’g n log n)) (EX)?;
n
i=1
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(iii)

T

2 1 4 1 3
Y IQEW: < Q1 (1 +0 ( IR n)) (EX)2.

— n n p*n

Proof. Denoting by P; is, as above, the probability that D, D’ with intersection of size i
dominate each other, note first that from (29) we obtain in particular,

n!

EWo = r12(n — 2r)!

(1= (1=p)")" B, (31)

and
EW == 1)!2(:!— 2 + 1)] (p+A—p)(a—-Q—p )" P (32)

Also, recall that

2

B = ) = (g - =0 ) (33)

\n—=r)

n!

Using (31), (33) and Lemma 6(ii), we can easily bound the ratio

EW, [n—7l, 1\ 2T TR S (1)) — log®n
EX)? . nl, (1 (1 p)) P0<(1 (1 p)) = 140(r(1-p)") H_@(p% >

Moreover, from (32), (33), Lemma 6(ii) and the fact that p > log®n/\/n,

EW; r?n—rl,_1(p+ (1 —-p)(1—(1- p)r_l)Q)n_%'i'lP

R (1= (1 —p)) ")’ 1
P (=20 ) ()
il (L= =p)) )’
_ r’n =1l (L=p)* ' =(1=p*)\"" _ AT o 2r—1\ Tl
=T L (1 Ty ) (1-20-p"+A=-p*") " P
= —7“2[77/ _ ’I"] p(l _ p)27’_1 o _ Y. o\2r—1\ T+
T onln -1, (1+ —(—p)r )2) I=20-p)+A=-p*") " P
:%( (% ) 146 (pn(l =p)7)) A+ O (r(L=p)) P2

2 4 1 3
(e () (e (50) (e (50)) 7
n p*n pn pn
2
gr <1+@<log n+log2n>>.
n pn p*n

This proves part (i). Note that, in fact, we get something slightly stronger, namely

2 4 3
EWy/Ah T (1 +6 <1Og n, los n)) . (34)

(EX)? n pn p*n
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For i not too close to r, say 1 <i < r — 3loglogn/p, we have

EWii1/Pip _ (r—1)? 1-1-=p)+1—-p)a1-(1- p)r—i—l)z)n—27"+i+1
EW,/P,; (i+1)(n—2r+i+1) (1—(1—p)i+(1—p)i(l—(1 _p)»,«_i>2)n—2r+z
(r—1i)? 1—2(1 —p)" + (1 —p)2ri-t\" " ) §
Tt Dm—2r1it 1) < 1—2(1—p) + (1 - py2r— ) (1-21-p)"+(1-p)

_ (r —i)* p(l —p)* "
S+ D(n—2r+i+1) <1+ 1-2(1-p)+(1—p

)2r—i>n ;. (1 —2(1-p)"+(1-p

< (140 (pn(1 — p)rt3lelsn/)) (1 -0 (1 —p)"))
- %(1 +0(1)) = O(log? n/(p*n)). (35)

On the other hand, consider now r — 3loglogn/p < i < r. Since this range is eventually
included in the range 0.97 < ¢ < r then, by Lemma 7,
EW,/P,

N

exp (—(w/2) logn). (36)

Now, note that for ¢ > 1 we have

(i + DEW; 1 /P < EWi1/Pip
iEW;/ P, =7 EW,/P

Combining this with (34), (35) and (36),

r . r . EW1 loan EW1
;zEVVi <;ZEVV1'/P¢: 7, (1+O< n + 2 O (loglogn/p) exp (—(w/2) logn)
EW, log®n
= 1+ 0
Py ( ’ ( p*n ))
2 l 4 1 3 1 2
o (a5 20) o 5
n pn p°n pn
2 1 4 1 3
- @ (1o (REn lEn))
n pn p2n
and part (ii) follows.

For part (iii), observe first that there exists some C' = C(¢) > 0 such that if i >
C'logn, then ¢ > 2L. Hence, for Clogn < i < r — 3loglogn/p, substituting B, for
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Pr(Bin(a,p) = b), we get

(+1)Qin  (i+1) 3275 Pr(Bin(i,p) = j)(Pr(Bin(r —i — 1,p) < L — j))?
Qi a ZL ! PI‘(BIH(Z —1,p) = 7)(Pr(Bin(r — i,p) < L — j))?
(i+1) Z Sy 1Zijrrzlk%TBz 1, Br—i e Br—i
- ZZ L j ' 5:]0 ' Bifl,jBrfi,kBrfi,k’
1+1 l 1 — o(1).

i i—L+11—p

Similarly, for L < i < C'logn we have

(1 +1)Qixa
7 =0l )
0, (logn)
On the other hand, for 1 <¢ < L —1,
L 1 L 1 4 r—i—kr—i—k
(Z+ ].)Qi—‘rl . (Z + 1)2 j Zk’ . i—j r— zk r— lk 11pBZ 17].B7'*i7kBT*ivk/
ZQz Zz L J ! ]I;/:JO 1Bi—17jBr—i,k‘B’r‘—i,k’

(Z + 1)p ZL - i/:Z() 1Brfi71,chr7i71,k’

ZZ P 1 o Bi1 B ik Broip

(z + 1>pi(%p>2 ﬁ‘é‘l o Bk By
P o BreikBoiw

= O(logn) +

— Ollogn).
Finally, for r —3loglogn/p < ¢ < r, by Lemma 7, since @; < 1, and by Chernoff’s bound

(see (8)),

TQLVVZ/PZ < @exp( (w/2)logn)

QEW, /P, 1
1
S Pr@uir—1p) <Dy P W/Dlogn)
< exp (((1 = 0)*pr/2) — (w/2)logn)
< exp(O(logn) — (w/2) logn) < exp (—(w/3) logn)

where the last inequality follows from p > log?n/y/n. Combining all bounds,

! . " . EWlQl 10g3n
;zQiEWi < ;zQiEW@-/Pi— = (1+O(p2n

1

_ Ql(EX)ﬂ—Q (1 +0 (log n) +0 <log4n)) ,
n p*n pn

and (iii) follows. The proof of the proposition is finished. O
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As an immediate consequence of this proposition, we can bound the variance of X = X,
(which is also done for X, in [4] and [8]), and obtain the following result.

Corollary 9. Given a constant € > 0, assume that log”n//n < p < 1 —¢ and condi-
tion (6) is satisfied for some infinite set I' C N. Then a.a.s. X ~ f(n,r,p) (forn € I').
Consequently, a.a.s. v(4(n,p)) =71 (formn e I').

Proof. From Proposition 8 (i) and (ii), we get
EW, < (1+0(1))(EX)*  and iEW ZZEW O(r*/n)(EX)? = o(EX)?,
where we used that r?/n = o(1) by Lemma 6(ii). Therefore,
VarX = E(X?) - (EX)? = ZEW — (EX)? = o(EX)?,
i=0

and thus, by Chebyshev’s inequality, we conclude that X ~ EX = f(n,r,p) — oo a.a.s.
for n € I'. The second claim in the statement follows immediately from the fact that
EX, 1 = f(n,r —1,p) = o(1) (from the definition of r in (4)). O

Before we state the next lemma, we need one more definition. For a given vertex v, let
Z, be the random variable counting the number of dominating sets of size r containing
vertex v. We will use Proposition 8 to prove the following observation.

Lemma 10. Given a constant ¢ > 0, assume that log®n/\/n < p < 1 — ¢ and condi-
tion (6) is satisfied for some infinite set I' C N. Then, the following holds for 4 (n,p)
and any vertex v € [n]:

log*n  log®n
g n g

EZ, = — EX and (fornel') Vaer:@( 5
n pn pn

) ®2,):

Proof. First note that

> Z,=rX,

v€[n]
as both sides count dominating sets in D with one vertex marked. So EZ, = “EX by
linearity of expectation and since all Z, have the same distribution, and the first part
holds. Similarly,

T
S zr=ya,
vE[n| i=1
since both sides count pairs of dominating sets D, D’ € D with one marked vertex in the
intersection. Therefore,

ZZEW 7:— (1+h) (EX)? = (1+h) (BZ,)?

for some h = G)(log—n” + 1‘;%””), by Proposition 8. The bound on the variance in the

statement follows immediately, and the proof of the lemma is finished. n
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5 Proof of Theorem 3

In order to prove our main result, we first analyze the effect that removing one edge has
on the number of dominating sets of smallest size. Given p = p,,, recall the definitions of
f(n,k,p) and r in (3) and (4). Also recall X = X, and D = D,. Let G = (V, E) be a
random outcome of ¥ (n,p). Throughout this section, a pair uv always refers to a pair
of different vertices u,v € V (a pair uv may or may not be an edge in F). Similarly, a
directed pair ub refers to the corresponding ordered pair of vertices (so uv = vu but
b # ﬁ) Given a pair uv, let D, be the set of dominating sets of size r of the graph
G +uv = (V,EU{uv}). Given a directed pair w0 and j € [r], let

ﬁjﬁ: {DEﬁuvzveD,u¢D,|N(u)ﬂD| :j},

where N (u) denotes the set of vertices adjacent to u in G + uv. Define the damage of

ub to be R
~ D,
3 Pl

=1 7

and the damage of the corresponding pair uv to be Z,,, = Zz;+ Z5;. Finally, the damage
of a set of pairs Ais Z, = Zee 4 Ze- We will see that this notion constitutes a convenient
upper bound on the number of dominating sets of size r destroyed by removing a set
of pairs A from the edge set. Let Y4 be the number of dominating sets in D that are
not dominating anymore after deleting a set of pairs A from FE, that is, the number of
dominating sets of size r of G but not of G — A = (V, E'\ A). (Note that the definitions
of Z4 and Y4 do not require A C F, but in the next observation we do.)

Observation 11. Assuming v(G) = r, clearly, one strategy to prove a lower bound
b(G) > a is to show that Y4 < X for all sets of edges A C E of size a, so the removal
of any a edges of G cannot destroy all dominating sets of minimal size. Unfortunately,
Y4 is not easy to compute, since in general Y4 # Y ., Ye. Hence, our notion of damage
turns useful in view of the following deterministic result.

Lemma 12. For every set A of pairs (not necessarily AC E), Ya < Za.

Proof. The proof is straightforward. Let D € D be a dominating set of G of size r
contributing to Y4. Since D fails to dominate the rest of the graph G — A, there must
be some vertex u ¢ D (but, of course, adjacent to some vertex in D) such that all
|N(u) N D| edges connecting v and D in G belong to A (and thus are removed). Each of
the corresponding directed pairs w6 (for v € N(u) N D) contributes 1/|N(u) N D| to the
total damage. O]

In order to bound Y4, by the previous lemma, it suffices to estimate Z,, = Z5 + Z5,
and sum over all pairs uv in A. It is convenient for our analysis to split the damage Zg;
of a directed pair ud into its light damage

"\ |D;
7= 3, Disl
j=rt1 7

THE ELECTRONIC JOURNAL OF COMBINATORICS 22 (2015), #P00 21



and its heavy damage
D
2t = I~ 2 z |

(Recall that L = |gpr]| with ¢ = 2.) Similarly as before, the light damage of a pair uv
is Z,,, = Z + Z_, and its heavy damage is Z. = ZY% + Z%i‘ For a given set of pairs
A, its light damage is Z/y = >___, Z! and its heavy damage is Z, = _, Z. .

We will now estimate the first and second moments of some of the random variables
described above. Given any @, we can easily estimate EZz; by summing the probability

that a given D € D,z appears in G + uv, weighted by 1/j, over all possible choices of D.

- S (2200 (0

(n _ T) EX ~ E
pn(n —1) -

For ZZ, we get better bounds:

Lemma 13. Given any constant ¢ > 0 sufficiently small, assume that log® /\/n < p <
1 —e. Then, for n sufficiently large and for any m,

EX
—5 5 U p=o(1),
2—¢/2
) (pn)
EZ <
EX
W, p:@(l) andp 1—e.

Proof. Arguing as in (37) and by Lemma 6(ii), we have

EZL = % (1 —(1- p)r) TEX ; ]% (;)pj(l —p)?
 (n—r) _Pr(1<Bin(rp) < L)
ST I (1-py

14 o(1
< 1M gy prBing,p) < 1),
pn

By the stronger version of Chernoff’s bound given in (8), writing ¢’ = ¢ — plog o,

Pr(Bin(r,p) < L) = Pr(Bin(r,p) < gpr) < exp(—rpp(0 — 1)) < exp(—rp(1 — o).
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Note that ¢’ gets small when o does, even if at a slower rate. If p — 0, using p =
log(1/(1 —p)), by Lemma 6(i) we have

5n(1 1 —(1-2")p/P L
pn(l + o ))) < (pn)~ 02"
og'n

exp(—(1 - o)rp) < (

Now, by our choice of ¢ = £? and using the fact that 2cloge — 0 as ¢ — 0, we have
1—-20 =1—-2p+2plogp>1—¢/2, and the statement follows in this case.
If p = ©(1) with p bounded away from 1, we have

exp(—(1 = d)rp) < (pn) ™,
where we assumed that € (and thus p) was chosen to be small enough so that the following
holds: ¢ < (1 —¢')p/log(1/(1—p)) (note that p close to 1 forces a small p, and therefore

a small €). The desired statement follows since o' > g = £2. m

In order to bound the variance of ZZ, we will need to use that (6) holds for two
consecutive values n — 1 and n. Therefore we assume that there exist infinitely many
such pairs of values, and restrict asymptotics to all n such that both n—1 and n satisfy (6).

Lemma 14. Given a constant € > 0, assume that logn/\/n < p < 1 —e. Moreover,
suppose there exist infinite sets I' C I C N satisfying (6) and (7), and restrict asymptotics
ton € I'. Then,
log*n log®n
T
pn pn

VarZ. = O ( ) (EZL)2.

Proof. First, observe that 4(n,p)—u is distributed as ¢ (n—1, p), and this is independent
of the edges emanating from u. By definition, each dominating set D counted by ZZ, is a
dominating set of 4(n, p) —u of size r such that v € D and 0 < |[N(u)ND\{v}| < L—1.

Therefore, we get
EZ% = Pr(Bin(r — 1,p) < L) Ey(u_1.)Z0-

Furthermore, given u € V', by counting in two different ways the number of pairs D, D’
of dominating sets of ¢(n,p) — u of size r with one marked vertex v € D N D’ such that
0<[Nw)ND\{v} <L -1, we get

r

Z E(Z5%) = ZiQiE%(n—Lp)Wi,

veV\{u} =1

where Q; is defined in (30). Therefore, since the distribution of ZZ, does not depend on
ve VA {u},

E<Z” 2 - 7 ZleE%(n 1,p) W
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Recall from our assumption on I’ that n—1 € I. Then, applying Proposition 8 with n —1
instead of n (at the expense of an additional, negligible, multiplicative factor 1+0O(1/n)),
we get

R
B0 = 3 0BtV
=1

2 4 3
:er—Q (1 + 0 (log %4 10g2 n)) (EX)2
n pn pn

Hence,

VarZZ, =0

2 log*n  log®n
> (1+@< . pn BX)* ~ QuBo-1nZ)’

2 log*n log®n 9 r 2
) (1+@< ) ) @R ((1+O(1/n))EEX>
5 4 3
> O (log n_ log2 n) (BX)?
pn pn
log* n N log;’n)
pn p*n

|
—
/N /N /N

SI3 313 313

=1

:Ql (Eg(nfl,p)Zv)2O (

= (Pr(Bin(r - 1,p) < L) X Eg(n_Lp)Zv)z @) (

log*n  log® n)
T2
pn p*n

log*n  log®n
gn g2 )
pn pn

=(BEZ%)*0 (

and the desired property holds. O
Finally, we proceed to the proof of the main theorem.

Proof of Theorem 3. Let € > 0 be an arbitrarily small constant such that n=/3+¢ < p <
1 — ¢, and recall that G = (V, E) denotes a random outcome of ¥(n,p). Corollary 9
yields immediately the first part of the statement for a less restrictive range of p. To
prove the second part, we combine the strategy described in Observation 11 together
with Lemma 12: our goal is to show that, for some sufficiently small constant § > 0 (only
depending on ¢), a.a.s. for any set A of at most dnp edges of G, the sum of light and
heavy damages of A is strictly less than 3EX. Thus, since a.a.s. X = (1 + o(1))EX (by
Corollary 9), we infer that a.a.s. not all dominating sets can be removed by deleting at
most dnp edges of G, yielding the desired lower bound on b(G). The upper bound follows
from (1).

We will first bound the heavy damage of any set of at most dnp edges in E. For
convenience, we say that a directed pair ub is present in G (or is a directed edge of G) if
the corresponding pair uv belongs to E. Using Lemma 14, by Chebyshev’s inequality and

noting that O <1°g4” + 1°g3”> =0 <1°g4">, for any directed pair w0 (possibly not present

pn p2n p%n
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in G)and t >0

V ZI/ 1 4
Pr (|2 — EZY| > tEZ%) < ——cm_ o (28 1) (38)
’ (tEZ)* t2p*n

Making use of the subsubsequence principle (see e.g. [6]), we split the analysis into two
cases, depending on the asymptotic behaviour of p: set v = 2 —¢/2 if p = o(1); and
v=1+¢e%if p=0(1) and p <1 —¢e. Using Lemma 13, the equation above yields

EX log*n
Pr(ZL>"—"-(1 - —= 7).
r( m (pn)”( H)) O(t2p2n) (#9)

Clearly, (39) implies that, uniformly for all # > 1,

P log" n
P (%2 o) =0 (m) <40>

We call a directed pair @0 (possibly not in G) i-bad if
EX EX
(pn)” (pn)”

and bad if it is i-bad for some 7 > 1. Directed pairs that are not bad will be called good.
Observe from its definition that ZZ, is independent of the event that ub is present in G.
Hence, using (40), the probability that a directed pair wb is i-bad and is present in G is

" i+1
S Ly <2

2i

p- O(;S?p;;), and therefore the heavy damage of all bad directed edges in the graph G is

in expectation at most

log’n EXlog*n EXlog*n
H—l _ i
n PZZ <22ip2n> =0 ( Itvpr—1 ) 22 ( IHvpr=1 |

i>1 >0

Consequently, by Markov’s inequality, the heavy damage of all bad directed edges in G is
a.a.s. at most EX log”n/(p'™n""!) = o(EX), aslongas p > n~/*** and p <1 —¢. On
the other hand, the heavy damage of a good directed pair is at most 2% by definition.
Therefore, given any set A of pairs (possibly not in G) of size at most dpn, the heavy
damage of the set of all good directed pairs w0 such that uv € A is deterministically at
most

20pn - 2 ) =o(EX),

EX < EX
(pn)¥ (pn)v1
where in the last step we used again our assumptions on p. Putting all the above together,
we conclude that a.a.s. the heavy damage of any set of edges A in the graph G with
|A| < dnp is

Z, = o(EX). (41)

Now we proceed to bound the light damage of any set A of edges in G of size at most
onp. The analysis bears some similarities to our previous estimation of the heavy damage,
but the role of directed pairs will be taken by vertices.
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Using Lemma 10, by Chebyshev’s inequality and noting that VarZ, = O (k;g ") (EZ,)?,
for any vertex v and s > 0,

VarZ, log?
Pr(|Z, — EZ,| > sEZ,) < —=2v _ 0 (M) ,

(sEZ,)? s?p?n
Thus,
log*n
Pr(Z, > EX~(1+5)) =0 . 42
r e o
Clearly, (42) implies that, uniformly for all i > 1,
Pr <Z > EXT2i> _ ol (43)
v = n - 22ip2n :

We call a vertex v t-exceptional, if
YEXL < Z, < 2EXL
n n

and exceptional if it is i-exceptional for some ¢ > 1. Let V3 C V be the set of all excep-
tional vertices in the graph G. We want to bound the number »_ . Z, of dominating
sets of size r containing at least one exceptional vertex. Since we are summing over a
random set, it is convenient to interpret the previous sum as

Z Zv - Z Zvl{vEV1}7

veVy veV

where 1g,cv;) is the indicator function of the event that v € V;. Hence, in view of (43)
and by the linearity of expectation,

log™n rlog*n _ log® n
i+1 _ T __
E(g Zv>—n§ ot x O(QQan)—O<EX 5 )E 2 —O(EX .

n n
veEV] i1 p =0 p

Thus, by Markov’s inequality, a.a.s.

>z, 6n . (44)

veEV]

We call a vertex normal if it is not exceptional. For a normal vertex v, Z, is at most
2EX~ by definition.

Now, for a given set A of edges in G of size at most dpn, let V(A) be the set of vertices
containing all endpoints of edges from A, that is,

V(A) ={v €V |3Je € Asuch that v € e}.
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Partition V' (A) as follows: V(A) = V5(A) U Vi(A), where V5(A) is the subset of normal
vertices, and V;(A) the subset of exceptional vertices. From the definition of light damage,
we get

Zh< Y Z)Epr)= Y Z)Epr)+ Y Z)(Epr). (45)
)

veV (A veVH(A) veVi(A)
For the first sum on the RHS of (45), we have

Z, 2Vo(A)EX _4|AJEX _ 4SEX
Z < < <

~X

< < < EX/2
2 2 2 2 ’
e EPT e2pn e2pn €

deterministically and regardless of the choice of A, as long as § < ¢2/8. On the other
hand, for the second sum on the RHS of (45), we use (44), and obtain that a.a.s. for every

choice of A

Z, Z, 1 log" log?®
Yoo SR> SR < EX°§”=0<EXO%”>20(EX),
veVl(A) espr e e“pr e“pr p°n p°n

since p > n~1/3+¢. Hence, a.a.s. for every set A of edges of G with |A| < dnp, we have

EX
Combining this, (41) and Corollary 9, we conclude that a.a.s. for every choice of A,

ZA<§1EX<X,

as required. The second part of the statement follows and the proof is finished. n
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