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Abstract

A dominating set of a graph is a subset D of its vertices such that every vertex
not in D is adjacent to at least one member of D. The domination number of a
graph G is the number of vertices in a smallest dominating set of G. The bondage
number of a nonempty graph G is the size of a smallest set of edges whose removal
from G results in a graph with domination number greater than the domination
number of G. In this note, we study the bondage number of the binomial random
graph G (n, p). We obtain a lower bound that matches the order of the trivial
upper bound. As a side product, we give a one-point concentration result for the
domination number of G (n, p) under certain restrictions.

Keywords: random graph; bondage number; domination number

1 Introduction

In this paper, we consider the Erdős-Rényi random graph process, which is a stochas-
tic process that starts with n vertices and no edges, and at each step adds one new edge
chosen uniformly at random from the set of missing edges. Formally, let e1, e2, . . . , e(n2)
be a random permutation of the edges of the complete graph Kn. The graph process
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consists of the sequence of random graphs (G(n,m))
(n2)
m=0, where G(n,m) = (V,Em),

V = [n] := {1, 2, . . . , n}, and Em = {e1, e2, . . . , em}. It is clear that G(n,m) is a graph
taken uniformly at random from the set of all graphs on n vertices and m edges (see, for
example, [2, 6] for more details.)

Our results refer to the random graph process. However, it will be sometimes easier to
work with the G (n, p) model instead of G(n,m). The (binomial) random graph G (n, p)
consists of the probability space (Ω,F ,Pr), where Ω is the set of all graphs with vertex
set [n], F is the family of all subsets of Ω, and for every G ∈ Ω,

Pr(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

This space may be viewed as the set of outcomes of
(
n
2

)
independent coin flips, one for

each pair {u, v} of vertices, where the probability of success (that is, adding edge uv) is
p. Note that p = pn may (and usually does) tend to zero as n tends to infinity.

All asymptotics throughout are as n→∞ (we emphasize that the notations o(·) and
O(·) refer to functions of n, not necessarily positive unless otherwise stated, whose growth
is bounded; on the other hand, functions hidden in Θ(·) and Ω(·) notations are positive).
We use the notation an ∼ bn to denote an = (1+o(1))bn. A sequence an satisfies a certain
property eventually if the property holds for all but finitely many terms of the sequence.
We say that an event in a probability space holds asymptotically almost surely (or
a.a.s.) if the probability that it holds tends to 1 as n goes to infinity. We often write
G(n,m) and G (n, p) when we mean a graph drawn from the distribution G(n,m) and
G (n, p), respectively. All logarithms in this paper are natural logarithms.

A dominating set for a graph G = (V,E) is a subset D of V such that every vertex
not in D is adjacent to at least one member of D. The domination number, γ(G), is
the number of vertices in a smallest dominating set for G. The bondage number, b(G),
of a non-empty graph G is the smallest number of edges that need to be removed in order
to increase the domination number; that is,

b(G) = min{|B| : B ⊆ E, γ(G−B) > γ(G)}.

(If G has no edges, then we define b(G) = ∞.) This graph parameter was formally
introduced in 1990 by Fink et al. [3] as a parameter for measuring the vulnerability
of the interconnection network under link failure. However, it was considered already
in 1983 by Bauer at al. [1] as “domination line-stability”. Moreover, graphs for which
the domination number changes upon the removal of a single edge were investigated by
Walikar and Acharya [7] in 1979. One of the very first observations [1, 3] is the following
upper bound:

b(G) 6 min
xy∈E
{deg(x) + deg(y)− 1} 6 ∆(G) + δ(G)− 1,

where ∆(G) and δ(G) are the maximum and, respectively, the minimum degree of G.
Since a.a.s. ∆(G (n, p)) ∼ δ(G (n, p)) ∼ pn provided pn� log n (this follows immediately
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from Chernoff’s bound stated below, and the union bound), we get that a.a.s.

b(G (n, p)) 6 2pn(1 + o(1)) (1)

for pn � log n. For denser graphs, one can improve the leading constant of this upper
bound by using the following observation of Hartnell and Rall [5]:

b(G) 6 min
xy∈E
{deg(x) + deg(y)− 1− |N(x) ∩N(y)|}.

It follows that if p = Ω(1), then a.a.s.

b(G (n, p)) 6 (2p− p2)n(1 + o(1)).

Today, many properties of the bondage number are studied. For more details the reader
is directed to the survey [9] which cites almost 150 papers on the topic.

2 Results

Our goal is to investigate the bondage number of the binomial random graph on n vertices
and of the random graph process. Throughout the whole paper we will exclude the case
p = pn → 1 and also assume that p does not tend to zero too fast. More precisely, our
main results require that p = pn eventually satisfies

n−1/3+ε 6 p 6 1− ε, (2)

for some constant ε > 0, but most arguments only require the following, milder, constraint:

log2 n/
√
n� p 6 1− ε.

Since our results are asymptotic in n, we will assume that n is large enough so that all
requirements in the argument are met. (In particular, the notation “eventually” is often
implicitly assumed in the proofs and omitted.) Let Dk be the set of dominating sets of
size k of G (n, p), and let Xk = |Dk|. Clearly,

f(n, k, p) := EXk =

(
n

k

)(
1− (1− p)k

)n−k
. (3)

For a given p = pn, let

r = rn = min{k ∈ N : f(n, k, p) > 1/(pn)}. (4)

Since pn �
√
n log2 n > 1 (eventually) and f(n, n, p) = 1, the function r is well defined

for n sufficiently large.
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2.1 Random Graph Process

Consider the random graph process (G(n,m))06m6(n2)
. Clearly, the random variable

γ(G(n,m)) is a non-increasing function of m, γ(G(n, 0)) = γ(Kn) = n, and γ(G(n,
(
n
2

)
)) =

γ(Kn) = 1. Suppose that at some point the domination number drops down, that is, there
exists a value of m such that γ(G(n,m)) = k + 1 but γ(G(n,m + 1)) = k. The random
graph process continues and, as long as the domination number remains to be equal to k,
the bondage number, b(G(n,m+ `)), is a non-decreasing function of `. Moreover, we get
that b(G(n,m+ `)) 6 `, as one can remove the last ` edges that were added in the process
(namely, em+1, em+2, . . . , em+`) in order to increase the domination number. A natural
and interesting question is then to ask how large the bondage number is right before the
domination number drops again; that is, what can be said about b(G(n,m + `)) when
γ(G(n,m+ `)) = k but γ(G(n,m+ `+ 1)) = k − 1? It turns out that, for the range of k
we are interested in, it is of the order of the maximum degree of G(n,m + `), and hence
it matches the trivial, deterministic, upper bound mentioned in the introduction (up to a
constant multiplicative factor). Here is the precise statement.

Theorem 1. Given any constant ε > 0, let k = kn be such that eventually ε log n 6 k 6
n1/3−ε. Then, there exists m = mn such that a.a.s.

γ(G(n,m)) = k and b(G(n,m)) = Θ(∆(G(n,m))) = Θ(m/n).

2.2 Binomial Random Graph

Consider now the binomial random graph G (n, p). Before we state the main result for this
probability space, let us mention some technical difficulties one needs to deal with. Our
one-point concentration result (below) on the domination number of G (n, p) amounts to
showing that a.a.s. Xr > 1 (since, trivially, a.a.s. Xi = 0 for all i 6 r − 1). Moreover,
our claim about the bondage number requires that a.a.s. Xr = Ω(pn)→∞. This follows
from the fact that the number of dominating sets of minimum cardinality is an upper
bound on the bondage number (since each such set D must have a vertex v /∈ D adjacent
to only one vertex in D, and thus D can be neutralized by removing a single edge).
Therefore, we will restrict ourselves to situations in which EXr is large enough and prove
concentration of Xr around its mean. For technical reasons of the argument, we will
require the aforementioned condition to hold for two consecutive values n − 1 and n
(see (6) and (7) in Theorem 3). This motivates the assumptions on the ratio pn+1/pn in
the statement of Theorem 2.

We point out that, even for “natural” functions satisfying our assumptions, such as
pn = 1/2, it is not clear whether there are always many dominating sets of minimum
cardinality, or rather Xrn oscillates reaching both small and large values as n grows. All
we managed to show is that, for such pn, almost all values of n satisfy (6) and (7) and
thus yield the bondage number as large as possible. To make this precise, a set I ⊆ N is
said to be dense if

lim
n→∞

|I ∩ [n]|
n

= 1. (5)
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In view of this definition, and recalling the definition of r = rn in (4), our result for the
binomial random graph can be stated as follows.

Theorem 2. Given any constant ε > 0, let p = pn be such that eventually n−1/3+ε 6
p 6 1− ε. Moreover, suppose there exists a non-increasing non-negative sequence h = hn
such that pn+1/pn = 1 − Θ(hn/n). Then, there exists a dense set I ⊆ N such that, with
asymptotics restricted to n ∈ I, a.a.s.

γ(G (n, p)) = r and b(G (n, p)) = Θ(∆(G(n, p))) = Θ(pn).

Although the conditions on pn in Theorem 2 seem restrictive, many common and
natural probability functions pn satisfy it. For example, pn = n−1/4, pn = 1/ log log n
and pn = 1/2 meet the requirements (by picking hn = 1, hn = 1/ log n and hn = 0,
respectively). Other, seemingly more complicated, choices such as pn = (n+1)−1/4 log3 n+
n−1/3 also satisfy our conditions. On the other hand, mixed behaviours such as

pn =

{
n−1/4 n even

1/ log log n n odd

are not considered here. One can easily relax the conditions on pn a bit further, but we
do not aim for it, as it does not appear to be possible to express that in terms of any
“natural” assumptions such as “pn being non-decreasing”.

2.3 General Result

In fact, both Theorem 1 and Theorem 2 are implied by the following, slightly more general,
result. It is known that even for sparser graphs (namely, for p = pn � log2 n/

√
n, but

bounded away from 1) a.a.s. the domination number of G (n, p) takes one out of two
consecutive integer values, r or r + 1, where r = rn is defined in (4) (see [4] and also [8]
for an earlier paper where denser graphs were considered). The next result shows that if
f(n, r, p) (that is, the expected number of dominating sets of cardinality r) is large, then
we actually have one-point concentration and the bondage number is of order pn. Note
that we may have to restrict asymptotics to an infinite subset of N that guarantees our
assumptions on f .

Theorem 3. Given any constant ε > 0, suppose that p = pn eventually satisfies n−1/3+ε 6
p 6 1−ε, and let f and r be defined as in (3) and (4). Suppose that there exists an infinite
set I ′ ⊆ N and ω = ωn →∞ such that

EXr = f(n, r, p) > exp (ω log n) (for n ∈ I ′). (6)

Then, a.a.s.
γ(G (n, p)) = r (for n ∈ I ′).

Moreover, suppose that

I = {n ∈ N : n ∈ I ′, n− 1 ∈ I ′} has infinite cardinality. (7)
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Then a.a.s.
b(G (n, p)) = Θ(∆(G (n, p))) = Θ(pn) (for n ∈ I).

Remark 4.

(i) In many applications of Theorem 3 (for instance, in the proofs of Theorems 1 and 2),
I ′ is a dense subset of N. Then, automatically I is also dense, and thus has infinite
cardinality as required.

(ii) The first part of the theorem, which characterizes the domination number of G (n, p),
holds in fact for any p = pn satisfying log2 n/

√
n� p 6 1−ε (see Corollary 9 below).

The paper is structured as follows. In Section 3, we show that the results for G(n,m)
and G (n, p) can be obtained from Theorem 3. Section 4 develops some tools required to
estimate the second moment of Xr and some other random variables. Finally, Section 5
is devoted to prove Theorem 3.

3 Preliminaries

In this section we are going to introduce a few inequalities used in the paper, and we show
some properties of the functions r = rn and f(n, r, p) defined in (3) and (4). The function
p will be assumed to satisfy (2). We will also show that Theorem 1 and Theorem 2 are
implied by Theorem 3.

We will use the following version of Chernoff bound (see e.g. [6]):

Lemma 5 (Chernoff Bound). If W is a binomial random variable with expectation µ,
and 0 < δ < 1, then, setting ϕ(x) = (1 + x) log(1 + x)− x for x > −1 (and ϕ(x) =∞ for
x < −1),

Pr[W < (1− δ)µ] 6 exp (−µϕ(−δ)) 6 exp

(
−δ

2µ

2

)
; (8)

and if δ > 0,

Pr[W > (1 + δ)µ] 6 exp

(
− δ2µ

2 + δ

)
. (9)

Given p = pn ∈ [0, 1), define p̂ = log 1
1−p . Note that p̂ > p (with equality only holding

at p = 0), and 
p̂ ∼ p if p = o(1),

p̂ = Θ(1) if p = Θ(1) and 1− p = Θ(1),

p̂→∞ if p→ 1.

(10)

We start with a few simple observations. Let us mention that some of the properties
we show below are known and can be found in, for example, [4, Observation 2.1] (but
mainly for p = o(1)). We present the proof here for completeness and to prepare the
reader for similar calculations later on.
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Lemma 6. Assume log2 n/
√
n� p 6 1− ε for some constant ε > 0, and let r be defined

as in (4). Then, the following holds:

(i)

r =

⌈
1

p̂
log

(
p̂n

log2(pn)
(1 + o(1))

)⌉
=


1

p̂
log

(
p̂n

log2(pn)
(1 + o(1))

)
if p = o(1)

1

p̂
log

(
α

p̂n

log2(pn)

)
if p = Ω(1),

for some 1 + o(1) 6 α 6 1+o(1)
1−p = Θ(1).

(ii)

r = Θ

(
log n

p

)
and (1− p)r = Θ

(
log2 n

pn

)
.

In particular, r = Ω(log n) and r = o(
√
n/ log n).

(iii) Moreover, if k = r +O(1), then

f(n, k + 1, p)

f(n, k, p)
= exp(Θ(log2 n)).

Proof. For a given function g = gn = o(1), we define

sg = sg(n, p) =

⌈
1

p̂
log

(
p̂n

log2(pn)(1 + gn)

)⌉
.

First, observe that for p in the range of discussion, log(pn) = Θ(log n). Then, it follows
from (10) that

sg =
1

Θ(p)

(
Θ(log(pn))−O(log log(pn))

)
= Θ

(
log n

p

)
. (11)

Also, from the definition of p̂ and (10), we obtain (1− p)sg = Θ
(

log2 n
pn

)
. Hence, part (ii)

will follow, once we show that r = sg for some function gn = o(1). In particular, proving
part (i) will automatically yield part (ii).

Given any gn = o(1), define g−n and g+n by

sg =
1

p̂
log

(
p̂n

log2(pn)(1 + g−n )

)
and sg − 1 =

1

p̂
log

(
p̂n

log2(pn)(1 + g+n )

)
.

Since z 6 dze < z + 1 for any z ∈ R, we obtain that g−n 6 gn 6 g+n .
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Now we proceed to estimate f(n, sg, p) and f(n, sg− 1, p) for any gn = o(1). Denoting

by [n]k = n(n − 1) . . . (n − k + 1), and using Stirling’s formula (k! ∼
√

2πk(k/e)k), we
observe that

f(n, sg, p) =
[n]sg
sg!

(
1− log2(pn)

p̂n
(1 + g−n )

)n(1−sg/n)
=

nsg(1 +O(sg/n))sg

(1 + o(1))
√

2πsg(sg/e)sg
exp

(
− log2(pn)

p̂

(
1 + g−n +O

(
log2 n

pn

)
+O

(sg
n

)))
=

1 + o(1)√
2πsg

exp

(
sg log

(
ne

sg

)
− log2(pn)

p̂

(
1 + g−n +O

(
log2 n

pn

)))
,

since sg = Θ(log n/p) (by (11)) and p� log2 n/
√
n, which implies that

(1 +O(sg/n))sg = eO(s2g/n) = eO(log2 n/(p2n)) ∼ 1

and sg/n = O(log n/(pn)) = o(log2 n/(pn)). Hence,

f(n, sg, p) ∼
1√
2πsg

exp

(
log(pn) +O(log log n)

p̂

(
log

(
pn

log n

)
+O(1)

)

− log2(pn)

p̂

(
1 + g−n +O

(
log2 n

pn

)))

= Θ

(√
p

log n

)
exp

(
− log2(pn)

p̂

(
g−n +O

(
log log n

log n

)))
. (12)

Moreover, the same calculations leading to (12) are valid if we replace sg by sg − 1 and
g−n by g+n , so we also get

f(n, sg − 1, p) = Θ

(√
p

log n

)
exp

(
− log2(pn)

p̂

(
g+n +O

(
log log n

log n

)))
. (13)

In order to prove part (ii), we first take gn = (log log n)2/ log n. From (13) and since
g+n > gn, we obtain

f(n, sg − 1, p) 6 exp
(
−Ω((log2 log n) log(pn))

)
= o(1/(pn)),

and thus
f(n, j, p) < 1/(pn) for all 1 6 j 6 sg − 1,

since f(n, j, p) is increasing with respect to j in that range (this can be easily checked
by looking at the ratio f(n, j + 1, p)/f(n, j, p) for j = O(log n/p) = o(

√
n)). Therefore,

r > sg − 1 and, since both r and sg are natural numbers, r > sg = s(log logn)2/ logn. On the
other hand, if we set gn = −(log log n)2/ log n then, by (12) and since g−n 6 gn,

f(n, sg, p)� n−1/4
√

log n · exp
(
Ω((log2 log n) log(pn))

)
> 1/(pn),
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and hence r 6 s−(log logn)2/ logn. Combining the two bounds, we conclude that

r = sg for some − (log log n)2/ log n 6 gn 6 (log log n)2/ log n,

which implies the first equality in part (i). The second equality follows immediately from
setting α = 1/(1 + g−n ) and the fact that 1

1+gn
6 1

1+g−n
< 1

(1+gn)(1−p) .

Finally, let us move to part (iii). Using part (ii), it is easy to see that for k = r+O(1)
we get

f(n, k + 1, p)

f(n, k, p)
=

[n]k+1/(k + 1)!

[n]k/k!

(
1− (1− p)k+1

1− (1− p)k

)n−k (
1− (1− p)k+1

)−1
∼ n

k

(
1− (1− p)k + p(1− p)k

1− (1− p)k

)n−k
= Θ

(
pn

log n

)(
1 + Θ(p(1− p)k)

)n−k
= Θ

(
pn

log n

)
exp

(
Θ(pn(1− p)k)

)
= Θ

(
pn

log n

)
exp

(
Θ(log2 n)

)
= exp

(
Θ(log2 n)

)
.

This finishes the proof of the lemma.

Now, we will show that Theorem 1 can be obtained from Theorem 3.

Proof of Theorem 1. Let k = kn be such that ε log n 6 k 6 n1/3−ε for some ε > 0. Our
goal is to show that there exists m = mn ∈ N such that a.a.s. γ(G(n,m)) = k and
b(G(n,m)) = Θ(∆(G(n,m))) = Θ(m/n). We assume that Theorem 3 holds and we will
use the probability space G (n, p) to get the result.

It follows immediately from definition (3) that, for 1 6 j < n, f(n, j, p) is both a
continuous and increasing function of p, taking all values between 0 and

(
n
j

)
. Then, given

n ∈ N (sufficiently large), we can define p+ to be such that

f(n, k − 1, p+) = 1/(p+n). (14)

Moreover, straightforward computations show that, for 0 < p < 1 and 0 6 j 6 n/4,

f(n, j, p)

f(n, j + 1, p)
6

(
n
j

)(
n
j+1

) =
j + 1

n− j
< 1/2, (15)

so in particular f(n, j, p) is increasing in j, for j in that range. Let r+ be defined as
r in (4) for p = p+. From (14) and (15), we deduce that f(n, k, p+) > 1/(p+n) and
f(n, j, p+) 6 1/(p+n) for all j 6 k − 1, so we must have r+ = k. Also observe that r
in (4) is a non-increasing function of p. Combining this fact and Lemma 6(i), we conclude
that n−1/3+ε

′
6 p+ 6 1 − ε′, for some constant ε′ = ε′(ε), since otherwise r+ < ε log n
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or r+ > n1/3−ε contradicting our assumptions on k and the fact that k = r+. Hence, in
particular, 1/(p+n) = o(1). It follows immediately from the first moment method that
a.a.s. G (n, p+) has no dominating set of size k − 1, and then

for all 0 6 p 6 p+, γ(G (n, p)) > k a.a.s. (16)

since this is a non-increasing property with respect to the addition of edges. In fact, a.a.s.
γ(G (n, p+)) = k but we do not prove it now, since we will need a stronger statement to
hold.

Now, let ω = ωn be a function tending to infinity sufficiently slowly in order to meet
all requirements in the argument. Define

p− := p+ −
2 ω
√
p+n(

n
2

) = p+

(
1− 2 ωn
√
p+
(
n
2

)) = p+(1 + o(1)),

where the last step follows from the fact that p+ > n−1/3+ε
′
. Since p− ∼ p+, then

p− > n−1/3+ε
′/2 and p− is bounded away from 1. Clearly,

f(n, k − 1, p−) 6 f(n, k − 1, p+) =
1

p+n
<

1

p−n
. (17)

Let r− be defined as r in (4) for p = p−. Next we want to show that r− = k and then
that f(n, k, p−) > exp(ω log n). First, using Lemma 6(ii) and the fact that k = r+ =
Θ(log n/p+), we get

1− (1− p−)k−1 = 1−
(

1− p+ + Θ

(
ω
√
p+

n

))k−1
= 1− (1− p+)k−1

(
1 + Θ

(
ω
√
p+
n

))k−1
= 1− (1− p+)k−1

(
1 + Θ

(
ω logn
n
√
p+

))
= 1− (1− p+)k−1 −Θ

(
ω log3 n

n2p
3/2
+

)
=
(
1− (1− p+)k−1

)(
1−Θ

(
ω log3 n

n2p
3/2
+

))
.

Hence,

f(n, k − 1, p−) = f(n, k − 1, p+)

(
1−Θ

(
ω log3 n

n2p
3/2
+

))n−k+1

= f(n, k − 1, p+)

(
1−Θ

(
ω log3 n

np
3/2
+

))
∼ f(n, k − 1, p+) = (p+n)−1 ∼ (p−n)−1,
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as p+ > n−1/3+ε
′
. Combining this with (15) and (17), we obtain that f(n, k, p−) > 1/(p−n)

and f(n, j, p−) 6 1/(p−n) for all j < k, so k = r−. Now, using Lemma 6 again (this time
part (iii)), we get

f(n, k, p−) = f(n, k − 1, p−) exp(Θ(log2 n)) ∼ (p−n)−1 exp(Θ(log2 n)) > exp(ω log n),

as desired. The same argument holds clearly with n−1 playing the role of n. Therefore, it
follows from Theorem 3 that a.a.s. γ(G(n, p−)) = k and b(G (n, p−)) = Θ(∆(G (n, p−))) >
cp−n, for some constant c = c(ε) > 0. Let Q be the graph property that we cannot
destroy all dominating sets of size k by removing any set of at most cp−n edges. Clearly,
this is a non-decreasing property with respect to adding edges in the graph, so

for all p− 6 p 6 1, G (n, p) satisfies property Q a.a.s. (18)

Finally, define

m̂ =

(
n

2

)
p− + p+

2
=

(
n

2

)
p+ − ωn

√
p+ ∼

(
n

2

)
p+,

where at the last step we use the fact that p+ > n−1/3+ε. Easy manipulations yield

p+ =
m̂+ ωn

√
p+(

n
2

) =
m̂+ (

√
2 + o(1))ω

√
m̂(

n
2

) >
m̂+ ω

√
m̂
((
n
2

)
− m̂

)
/
(
n
2

)(
n
2

) , (19)

and similarly

p− =
m̂− ωn√p+(

n
2

) 6
m̂− ω

√
m̂
((
n
2

)
− m̂

)
/
(
n
2

)(
n
2

) . (20)

In view of (16), (18), (19) and (20), we can apply Proposition 1.13 in [6] separately to
both the property Q and the property that γ(G(n, p)) > k, and we conclude that a.a.s.
γ(G(n, m̂)) > k and G(n, m̂) satisfies property Q. These two events together imply that
γ(G(n, m̂)) = k and b(G(n, m̂)) = Θ(p−n) = Θ(m/n). The proof is finished.

Now, we are going to show that Theorem 2 can be obtained from Theorem 3.

Proof of Theorem 2. Let p = pn be such that n−1/3+ε 6 p 6 1− ε for some ε > 0, and let
r = rn be defined as in (4). Moreover, suppose there exists a non-increasing non-negative
sequence h = hn such that pn+1/pn = 1−Θ(hn/n). Our goal is to show that there exists
a positive sequence ω = ωn →∞ and a dense set I ′ ⊆ N such that

f(n, r, p) > exp(ω log n), for n ∈ I ′.

The result will follow immediately from Theorem 3, and will hold for I defined as in (7).
(Note that, since I ′ is dense, it is straightforward to verify that I must be dense too.)
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Throughout the proof, we set ω = ωn = log log n. Note h1 = O(1) and so our
assumptions on p and h imply that hn = O(1) and so there exists a universal constant
0 < A1 < 1 such that, for every n 6 n′ 6 3n,

A1 6
pn′

pn
6 1. (21)

Given any fixed j ∈ {0, 1, 2}, in view of our assumptions on p and h and by Lemma 6(ii),
we have

1− (1− pn)rn+1−j = 1−
(

1− pn+1

(
1 + Θ(hn/n)

))rn+1−j

= 1− (1− pn+1)
rn+1−j

(
1−Θ

(
pn+1hn

n

))rn+1−j

= 1− (1− pn+1)
rn+1−j

(
1−Θ

(
hn logn

n

))
=
(
1− (1− pn+1)

rn+1−j
)(

1 + Θ

(
hn log3 n

n2pn+1

))
.

Therefore,

f(n+ 1, rn+1 − j, pn+1)

f(n, rn+1 − j, pn)
=

n+ 1

n+ 1− rn+1 + j

(
1− (1− pn+1)

rn+1−j
)n−rn+1+j+1

(
1− (1− pn)rn+1−j

)n−rn+1+j

=

(
1 + Θ

(
log n

npn

))(
1− (1− pn+1)

rn+1−j
)(

1−Θ

(
hn log3 n

n2pn+1

))n−rn+1+j

=

(
1 + Θ

(
log n

npn

))(
1−Θ

(
log2 n

npn+1

))(
1−Θ

(
hn log3 n

npn+1

))
= 1−Θ

(
gn
npn

)
, (22)

where gn := log2 n+hn log3 n. By our assumptions on hn, we have log2 n 6 gn = O(log3 n).
In particular, for every j ∈ {0, 1, 2} and every n,

exp

(
−C2

gn
npn

)
6
f(n+ 1, rn+1 − j, pn+1)

f(n, rn+1 − j, pn)
6 exp

(
−C1

gn
npn

)
, (23)

for some universal constants C2 > C1 > 0. From (22) (with j = 0) and our assumptions
on p, we obtain

(n+ 1)pn+1f(n+ 1, rn+1, pn+1)

npnf(n, rn+1, pn)
=

(
1−Θ

(
gn
npn

))(
1 +O

(
1

n

))
< 1,

where the last inequality holds for n sufficiently large. This implies that

f(n, rn+1, pn) >
(n+ 1)pn+1f(n+ 1, rn+1, pn+1)

npn
>

1

npn
,
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where the last inequality uses the definition of rn+1 in (4). Hence, rn+1 > rn for n large
enough, and thus r is a nondecreasing sequence of n except, possibly, for a finite number
of terms. Similarly, from (22) (with j = 2) and by Lemma 6(iii),

f(n, rn+1 − 2, pn) =
(

1 + Θ
(
gn
npn

))
f(n+ 1, rn+1 − 2, pn+1)

∼ f(n+ 1, rn+1 − 2, pn+1)

= f(n+ 1, rn+1 − 1, pn+1) exp
(
−Θ(log2 n)

)
6

1

(n+ 1)pn+1

exp
(
−Θ(log2 n)

)
<

1

npn
,

for n sufficiently large. Therefore, rn+1− 2 < rn, or equivalently rn+1 6 rn + 1, for all but
finitely many n (that is, r can increase by at most one). We construct now the set I ′ as
follows:

I ′ := {n ∈ N : f(n, rn, pn) > exp(ωn log n)}.
Since we want to show that I ′ contains almost all n ∈ N, suppose that n1 /∈ I ′ for some
value n1 ∈ N. Then we have

1/(n1pn1) < f(n1, rn1 , pn1) < exp(ωn1 log n1).

Our goal is to show that n1 is followed by an interval of naturals [n1, n2−1] /∈ I ′ and then
by a much longer interval [n2, n3] ∈ I ′. We may assume that n1 is sufficiently large, since
the limiting density of I ′ is not affected by ignoring any finite number of naturals.

Let
n2 = min{n > n1 : rn > rn1 or n = 3n1}.

Since rn = rn1 for all n1 6 n 6 n2 − 1, applying (23) to that range (with j = 0) we get

f(n2 − 1, rn2−1, pn2−1) 6 f(n1, rn1 , pn1) exp

(
−C1

n2−2∑
n=n1

gn
npn

)

< exp

(
ωn1 log n1 −

C1

3n1pn1

n2−2∑
n=n1

gn

)

< exp

(
ωn1 log n1 + 1− C1

3n1pn1

n2−1∑
n=n1

gn

)
.

On the other hand, by the definition of r (see (4)), we know that

f(n2 − 1, rn2−1, pn2−1) >
1

pn2−1(n2 − 1)
>

1

3pn1n1

. (24)

Hence, it must be the case that, say,

n2−1∑
n=n1

gn 6 n1pn1ω
2
n1

log n1. (25)
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Since gn > log2 n and by our choice of ωn, it follows that

n2 − n1 6 n1ω
2
n1
/ log n1 < n1. (26)

As a result, n2 6= 3n1, and so it follows that rn2 > rn1 . In fact, since r can increase by at
most one, rn2 = rn2−1 + 1. Now, we get from (23), Lemma 6(iii) and (24) that, for some
small constant C3 > 0 (possibly depending on ε),

f(n2, rn2 , pn2) > C3f(n2 − 1, rn2 , pn2−1) = C3f(n2 − 1, rn2−1 + 1, pn2−1)

> C3f(n2 − 1, rn2−1, pn2−1) exp
(
C3 log2 n2

)
>

C3/3

pn1n1

exp
(
C3 log2 n2

)
> exp

(
(C3/2) log2 n2

)
> exp (ωn2 log n2) . (27)

As a result, n2 belongs to I ′.
Let

n3 = min{n > n2 : f(n, rn2 , pn) < exp(2ωn2 log n2) or n = 3n2}.

Note that if f(n, rn2 , pn) > exp(2ωn2 log n2) for some n2 < n 6 3n2, then

f(n, rn2 , pn) > exp(ωn log n) > 1/(pnn).

Hence, rn = rn2 and, more importantly, n ∈ I ′. If n3 = 3n2, then we are done, since the
interval [n2, n3] is longer than [n1, n2 − 1] by at least a log n1/ω

2
n1

factor (see second step
in (26)). Hence, we may assume that f(n3, rn2 , pn3) < exp(2ωn2 log n2). Applying (23)
one more time and by the second last step of (27), we get

f(n3, rn2 , pn3) > f(n2, rn2 , pn2) exp

(
−C2

n3−1∑
n=n2

gn
npn

)

> exp

(
(C3/2) log2 n2 −

C2

A1n2pn2

n3−1∑
n=n2

gn

)

> exp

(
(C3/2) log2 n2 −

C2

A2
1n1pn1

n3−1∑
n=n2

gn

)
,

which is at least exp(2ωn2 log n2), if, say,
∑n3−1

n=n2
gn 6 n1pn1 log2 n1/ωn1 . Consequently,

n3−1∑
n=n2

gn >
n1pn1 log2 n1

ωn1

. (28)

Finally, note that hn is non-increasing and n3−n1 6 8n1, so gn ∼ gn1 for any n1 6 n 6 n3

and, as a result,

max{gn : n2 6 n 6 n3 − 1} < C ·min{gn : n1 6 n 6 n2 − 1}
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for some universal constant C. Combining this observation together with (25) and (28),
it immediately follows that

n2 − n1

n3 − n2 + 1
6

ω3
n1

log n1

.

Putting everything together, given any n1 /∈ I ′ sufficiently large, we obtained n2 and n3

such that

[n2, n3] ⊆ I ′ and n3 − n2 + 1 >
log n1

ω3
n1

(n2 − n1).

This proves that I ′ is dense as required, and the proof of the theorem is finished.

Note that the lengths of the intervals [n1, n2−1] and [n2, n3] in the proof of Theorem 2
depend on the value of pn. This is not an artifact of the proof, but rather reflecting the
fact that for different values of pn these lengths are indeed different: for pn = n−1/4, we
get that r2n− rn = Θ(n1/4 log n), and thus, on average, after Θ( np

logn
) integers the value of

r increases by 1. On the other hand, for pn = 1
log logn

, we get that r2n− rn = Θ(log log n),

and thus, on average, after Θ(np) integers the value of r increases by 1.

4 Second moment ingredients

For a given function p = pn, let f(n, k, p) and r = rn be defined as in (3) and (4),
respectively. Throughout this section, we suppose that, given our choice of p, there exists
some infinite set I ′ ⊆ N satisfying (6) for a given function ω = ωn → ∞, and restrict
all our asymptotic statements to n ∈ I ′. For simplicity, we also write X instead of Xr

and D instead of Dr. For each i ∈ {0, 1, . . . , r}, let Wi be the random variable counting
the number of ordered pairs D,D′ ∈ D in G (n, p) with |D ∩ D′| = i. One of the key
ingredients in our analysis is to estimate the variance of X and other related random
variables defined later in the paper. To do so, we will use several bounds on EWi that
are stated in Proposition 8 below. In fact, the variance of Xr+1 was already studied
in [4] and [8], and we follow some of the ideas in their computations, but we need a more
accurate estimation of the error terms involved. Also, the aforementioned papers deal
with Xr+1 instead of Xr, since they make use of the fact that EXr+1 = exp(Θ(log2 n)).
In our case, this fact is replaced by our assumption (6).

The following lemma uses some of the computations in [4], and will prepare us for Propo-
sition 8. Given two sets of vertices D,D′ of size r with |D ∩ D′| = i, let Pi denote the
probability that D,D′ dominate each other in G (n, p) (i.e., every vertex in D has a neigh-
bour in D′ and vice versa).

Lemma 7. Given a constant ε > 0, suppose that log2 n/
√
n� p 6 1−ε and condition (6)

holds for some infinite set I ′ ⊆ N and some function ω = ωn → ∞, where f(n, k, p) and
r are defined as in (3) and (4). Then, for each 0.9r 6 i 6 r,

rEWi/Pi
EW1/P1

6 exp (−(ω/2) log n) (for n ∈ I ′).
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Sketch of proof. We follow some of the computations in Section 3.1 of [4]. In that paper,
their choice of r corresponds to our r + 1, and their calculations assume p = o(1), but
everything we use here remains valid in our setting. First, note that

EWi =
n!

i!(r − i)!2(n− 2r + i)!

(
1− (1− p)i + (1− p)i(1− (1− p)r−i)2

)n−2r+i
Pi. (29)

Observe that EWi/Pi corresponds exactly to f(i) in [4]. By adapting (3.8) in [4] to our
notation and using our assumption (6), we get

rEWi/Pi
EW1/P1

6
(1 + o(1))

EX

n

r

(
r

i

)(
n− r
r − i

)(
1 +

(1− p)r (1− (1− p)r−i)
1− 2(1− p)r + (1− p)2r−i

)−(n−r)
6 exp

(
−ω log n+ log n+ 2(r − i) log n− n(1− p)r

(
1− (1− p)r−i

)
(1 + o(1))

)
.

(The term −ω log n in the exponent above corresponds to −(1 + o(1)) log2(pn) in [4],
because of their different choice of r.) Moreover, (3.9) in [4] gives that

2(r − i) log n− n

2
(1− p)r

(
1− (1− p)r−i

)
6 0,

and therefore

rEWi/Pi
EW1/P1

6 exp (−ω log n+ log n) 6 exp (−(ω/2) log n) .

Before we proceed, we need one more definition. Given a constant ε > 0 and for
i ∈ {1, 2, . . . , r}, let

Qi =

min{i−1,L−1}∑
j=0

Pr(Bin(i− 1, p) = j)(Pr(Bin(r − i, p) < L− j))2, (30)

where L = b%prc with % = ε2. The following proposition will be central for estimating
the variance of several random variables.

Proposition 8. Given a constant ε > 0, assume that log2 n/
√
n � p 6 1 − ε and

condition (6) is satisfied for some infinite set I ′ ⊆ N. Then, the following holds for
G (n, p) with n restricted to I ′:

(i)

EW0

(EX)2
6 1 + Θ

(
log3 n

p2n

)
and

EW1

(EX)2
6
r2

n

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
;

(ii)
r∑
i=1

iEWi 6
r2

n

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
(EX)2;
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(iii)
r∑
i=1

iQiEWi 6 Q1
r2

n

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
(EX)2.

Proof. Denoting by Pi is, as above, the probability that D,D′ with intersection of size i
dominate each other, note first that from (29) we obtain in particular,

EW0 =
n!

r!2(n− 2r)!
(1− (1− p)r)2(n−2r) P0, (31)

and

EW1 =
n!

(r − 1)!2(n− 2r + 1)!

(
p+ (1− p)(1− (1− p)r−1)2

)n−2r+1
P1. (32)

Also, recall that

(EX)2 = f(n, r, p)2 =

(
n!

r!(n− r)!
(1− (1− p)r)n−r

)2

. (33)

Using (31), (33) and Lemma 6(ii), we can easily bound the ratio

EW0

(EX)2
=

[n− r]r
[n]r

(
1−(1−p)r

)−2r
P0 6

(
1−(1−p)r

)−2r
= 1+Θ(r(1−p)r) = 1+Θ

(
log3 n

p2n

)
.

Moreover, from (32), (33), Lemma 6(ii) and the fact that p� log2 n/
√
n,

EW1

(EX)2
=
r2[n− r]r−1

[n]r

(p+ (1− p)(1− (1− p)r−1)2)n−2r+1(
(1− (1− p)r)n−r

)2 P1

=
r2[n− r]r−1

[n]r

(1− 2(1− p)r + (1− p)2r−1)n−2r+1(
(1− (1− p)r)n−r

)2 P1

=
r2[n− r]r−1

[n]r

(
1 +

(1− p)2r−1 − (1− p)2r)
(1− (1− p)r)2

)n−r (
1− 2(1− p)r + (1− p)2r−1

)−r+1
P1

=
r2[n− r]r−1
n[n− 1]r−1

(
1 +

p(1− p)2r−1

(1− (1− p)r)2

)n−r (
1− 2(1− p)r + (1− p)2r−1

)−r+1
P1

=
r2

n

(
1−Θ

(
r2

n

))(
1 + Θ

(
pn(1− p)2r

))
(1 + Θ (r(1− p)r))P1

=
r2

n

(
1−Θ

(
log2 n

p2n

))(
1 + Θ

(
log4 n

pn

))(
1 + Θ

(
log3 n

p2n

))
P1

6
r2

n

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
.

This proves part (i). Note that, in fact, we get something slightly stronger, namely

EW1/P1

(EX)2
6
r2

n

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
. (34)
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For i not too close to r, say 1 6 i 6 r − 3 log log n/p, we have

EWi+1/Pi+1

EWi/Pi
=

(r − i)2

(i+ 1)(n− 2r + i+ 1)

(1− (1− p)i+1 + (1− p)i+1(1− (1− p)r−i−1)2)n−2r+i+1

(1− (1− p)i + (1− p)i(1− (1− p)r−i)2)n−2r+i

=
(r − i)2

(i+ 1)(n− 2r + i+ 1)

(
1− 2(1− p)r + (1− p)2r−i−1

1− 2(1− p)r + (1− p)2r−i

)n−2r+i (
1− 2(1− p)r + (1− p)2r−i−1

)
=

(r − i)2

(i+ 1)(n− 2r + i+ 1)

(
1 +

p(1− p)2r−i−1

1− 2(1− p)r + (1− p)2r−i

)n−2r+i (
1− 2(1− p)r + (1− p)2r−i−1

)
6

r2

n− 2r

(
1 +O

(
pn(1− p)r+3 log logn/p

))
(1−Θ ((1− p)r))

6
r2

n− 2r

(
1 +O

(
e−3 log logn log2 n

))(
1−Θ

(
log2 n

pn

))
=
r2

n
(1 + o(1)) = O(log2 n/(p2n)). (35)

On the other hand, consider now r − 3 log log n/p 6 i 6 r. Since this range is eventually
included in the range 0.9r 6 i 6 r then, by Lemma 7,

rEWi/Pi
EW1/P1

6 exp (−(ω/2) log n) . (36)

Now, note that for i > 1 we have

(i+ 1)EWi+1/Pi+1

iEWi/Pi
6 2

EWi+1/Pi+1

EWi/Pi
.

Combining this with (34), (35) and (36),

r∑
i=1

iEWi 6
r∑
i=1

iEWi/Pi =
EW1

P1

(
1 +O

(
log2 n

p2n

))
+

EW1

P1

O (log log n/p) exp (−(ω/2) log n)

=
EW1

P1

(
1 +O

(
log2 n

p2n

))
6 (EX)2

r2

n

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))(
1 +O

(
log2 n

p2n

))
= (EX)2

r2

n

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
,

and part (ii) follows.
For part (iii), observe first that there exists some C = C(ε) > 0 such that if i >

C log n, then i > 2L. Hence, for C log n 6 i 6 r − 3 log log n/p, substituting Ba,b for
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Pr(Bin(a, p) = b), we get

(i+ 1)Qi+1

iQi

=
(i+ 1)

∑L−1
j=0 Pr(Bin(i, p) = j)(Pr(Bin(r − i− 1, p) < L− j))2

i
∑L−1

j=0 Pr(Bin(i− 1, p) = j)(Pr(Bin(r − i, p) < L− j))2

=
(i+ 1)

∑L−1
j=0

∑L−j−1
k=0

∑L−j−1
k′=0

i
i−j

r−i−k
r−i

r−i−k′
r−i

1
1−pBi−1,jBr−i,kBr−i,k′

i
∑L−1

j=0

∑L−j−1
k=0

∑L−j−1
k′=0 Bi−1,jBr−i,kBr−i,k′

6
i+ 1

i

i

i− L+ 1

1

1− p
= O(1).

Similarly, for L 6 i < C log n we have

(i+ 1)Qi+1

iQi

= O(log n).

On the other hand, for 1 6 i 6 L− 1,

(i+ 1)Qi+1

iQi

=
(i+ 1)

∑i−1
j=0

∑L−j−1
k=0

∑L−j−1
k′=0

i
i−j

r−i−k
r−i

r−i−k′
r−i

1
1−pBi−1,jBr−i,kBr−i,k′

i
∑i−1

j=0

∑L−j−1
k=0

∑L−j−1
k′=0 Bi−1,jBr−i,kBr−i,k′

+
(i+ 1)pi

∑L−i−1
k=0

∑L−i−1
k′=0 Br−i−1,kBr−i−1,k′

i
∑i−1

j=0

∑L−j−1
k=0

∑L−j−1
k′=0 Bi−1,jBr−i,kBr−i,k′

= O(log n) +
(i+ 1)pi( 1

1−p)2
∑L−i−1

k=0

∑L−i−1
k′=0 Br−i,kBr−i,k′

ipi−1
∑L−i

k=0

∑L−i
k′=0Br−i,kBr−i,k′

= O(log n).

Finally, for r− 3 log log n/p 6 i 6 r, by Lemma 7, since Qi 6 1, and by Chernoff’s bound
(see (8)),

rQiEWi/Pi
Q1EW1/P1

6
Qi

Q1

exp (−(ω/2) log n)

6
1

(Pr(Bin(r − 1, p) < L))2
exp (−(ω/2) log n)

6 exp
(
((1− %)2pr/2)− (ω/2) log n

)
6 exp (O(log n)− (ω/2) log n) 6 exp (−(ω/3) log n) ,

where the last inequality follows from p� log2 n/
√
n. Combining all bounds,

r∑
i=1

iQiEWi 6
r∑
i=1

iQiEWi/Pi =
EW1Q1

P1

(
1 +O

(
log3 n

p2n

))
= Q1(EX)2

r2

n

(
1 +O

(
log3 n

p2n

)
+O

(
log4 n

pn

))
,

and (iii) follows. The proof of the proposition is finished.
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As an immediate consequence of this proposition, we can bound the variance ofX = Xr

(which is also done for Xr+1 in [4] and [8]), and obtain the following result.

Corollary 9. Given a constant ε > 0, assume that log2 n/
√
n � p 6 1 − ε and condi-

tion (6) is satisfied for some infinite set I ′ ⊆ N. Then a.a.s. X ∼ f(n, r, p) (for n ∈ I ′).
Consequently, a.a.s. γ(G (n, p)) = r (for n ∈ I ′).

Proof. From Proposition 8 (i) and (ii), we get

EW0 6 (1 + o(1))(EX)2 and
r∑
i=1

EWi 6
r∑
i=1

iEWi 6 O(r2/n)(EX)2 = o(EX)2,

where we used that r2/n = o(1) by Lemma 6(ii). Therefore,

VarX = E(X2)− (EX)2 =
r∑
i=0

EWi − (EX)2 = o(EX)2,

and thus, by Chebyshev’s inequality, we conclude that X ∼ EX = f(n, r, p) → ∞ a.a.s.
for n ∈ I ′. The second claim in the statement follows immediately from the fact that
EXr−1 = f(n, r − 1, p) = o(1) (from the definition of r in (4)).

Before we state the next lemma, we need one more definition. For a given vertex v, let
Zv be the random variable counting the number of dominating sets of size r containing
vertex v. We will use Proposition 8 to prove the following observation.

Lemma 10. Given a constant ε > 0, assume that log2 n/
√
n � p 6 1 − ε and condi-

tion (6) is satisfied for some infinite set I ′ ⊆ N. Then, the following holds for G (n, p)
and any vertex v ∈ [n]:

EZv =
r

n
EX and (for n ∈ I ′) VarZv = Θ

(
log4 n

pn
+

log3 n

p2n

)
(EZv)

2.

Proof. First note that ∑
v∈[n]

Zv = rX,

as both sides count dominating sets in D with one vertex marked. So EZv = r
n
EX by

linearity of expectation and since all Zv have the same distribution, and the first part
holds. Similarly, ∑

v∈[n]

Zv
2 =

r∑
i=1

iWi,

since both sides count pairs of dominating sets D,D′ ∈ D with one marked vertex in the
intersection. Therefore,

E(Zv
2) =

1

n

r∑
i=1

iEWi 6
r2

n2
(1 + h) (EX)2 = (1 + h) (EZv)

2,

for some h = Θ( log
4 n
pn

+ log3 n
p2n

), by Proposition 8. The bound on the variance in the
statement follows immediately, and the proof of the lemma is finished.
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5 Proof of Theorem 3

In order to prove our main result, we first analyze the effect that removing one edge has
on the number of dominating sets of smallest size. Given p = pn, recall the definitions of
f(n, k, p) and r in (3) and (4). Also recall X = Xr and D = Dr. Let G = (V,E) be a
random outcome of G (n, p). Throughout this section, a pair uv always refers to a pair
of different vertices u, v ∈ V (a pair uv may or may not be an edge in E). Similarly, a
directed pair −→uv refers to the corresponding ordered pair of vertices (so uv = vu but
−→uv 6= −→vu). Given a pair uv, let D̂uv be the set of dominating sets of size r of the graph
G+ uv = (V,E ∪ {uv}). Given a directed pair −→uv and j ∈ [r], let

D̂j,−→uv =
{
D ∈ D̂uv : v ∈ D, u /∈ D, |N̂(u) ∩D| = j

}
,

where N̂(u) denotes the set of vertices adjacent to u in G + uv. Define the damage of
−→uv to be

Z−→uv =
r∑
j=1

|D̂j,−→uv|
j

,

and the damage of the corresponding pair uv to be Zuv = Z−→uv+Z−→vu. Finally, the damage
of a set of pairs A is ZA =

∑
e∈A Ze. We will see that this notion constitutes a convenient

upper bound on the number of dominating sets of size r destroyed by removing a set
of pairs A from the edge set. Let YA be the number of dominating sets in D that are
not dominating anymore after deleting a set of pairs A from E, that is, the number of
dominating sets of size r of G but not of G− A = (V,E \ A). (Note that the definitions
of ZA and YA do not require A ⊆ E, but in the next observation we do.)

Observation 11. Assuming γ(G) = r, clearly, one strategy to prove a lower bound
b(G) > a is to show that YA < X for all sets of edges A ⊆ E of size a, so the removal
of any a edges of G cannot destroy all dominating sets of minimal size. Unfortunately,
YA is not easy to compute, since in general YA 6=

∑
e∈A Ye. Hence, our notion of damage

turns useful in view of the following deterministic result.

Lemma 12. For every set A of pairs (not necessarily A ⊆ E), YA 6 ZA.

Proof. The proof is straightforward. Let D ∈ D be a dominating set of G of size r
contributing to YA. Since D fails to dominate the rest of the graph G − A, there must
be some vertex u /∈ D (but, of course, adjacent to some vertex in D) such that all
|N(u) ∩D| edges connecting u and D in G belong to A (and thus are removed). Each of
the corresponding directed pairs −→uv (for v ∈ N(u) ∩D) contributes 1/|N(u) ∩D| to the
total damage.

In order to bound YA, by the previous lemma, it suffices to estimate Zuv = Z−→uv + Z−→vu
and sum over all pairs uv in A. It is convenient for our analysis to split the damage Z−→uv
of a directed pair −→uv into its light damage

Z ′−→uv =
r∑

j=L+1

|D̂j,−→uv|
j

,
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and its heavy damage

Z ′′−→uv = Z−→uv − Z ′−→uv =
L∑
j=1

|D̂j,−→uv|
j

.

(Recall that L = b%prc with % = ε2.) Similarly as before, the light damage of a pair uv
is Z ′uv = Z ′−→uv + Z ′−→vu, and its heavy damage is Z

′′
uv = Z

′′
−→uv + Z

′′
−→vu. For a given set of pairs

A, its light damage is Z ′A =
∑

e∈A Z
′
e and its heavy damage is Z

′′
A =

∑
e∈A Z

′′
e .

We will now estimate the first and second moments of some of the random variables
described above. Given any −→uv, we can easily estimate EZ−→uv by summing the probability
that a given D ∈ D̂j,−→uv appears in G+uv, weighted by 1/j, over all possible choices of D.

EZ−→uv =
r∑
j=1

1

j

(
n− 2

r − 1

)(
1− (1− p)r

)n−r−1(r − 1

j − 1

)
pj−1(1− p)r−j

=
r(n− r)
n(n− 1)

(
1− (1− p)r

)−1
EX

r∑
j=1

1

pr

(
r

j

)
pj(1− p)r−j (37)

=
(n− r)
pn(n− 1)

EX ∼ EX

pn
.

For Z ′′−→uv we get better bounds:

Lemma 13. Given any constant ε > 0 sufficiently small, assume that log2 /
√
n � p 6

1− ε. Then, for n sufficiently large and for any −→uv,

EZ ′′−→uv 6


EX

(pn)2−ε/2
, if p = o(1),

EX

(pn)1+ε2
, p = Θ(1) and p 6 1− ε.

Proof. Arguing as in (37) and by Lemma 6(ii), we have

EZ ′′−→uv =
r(n− r)
n(n− 1)

(
1− (1− p)r

)−1
EX

L∑
j=1

1

pr

(
r

j

)
pj(1− p)r−j

=
(n− r)
pn(n− 1)

EX
Pr(1 6 Bin(r, p) 6 L)

1− (1− p)r

6
1 + o(1)

pn
EX Pr(Bin(r, p) 6 L).

By the stronger version of Chernoff’s bound given in (8), writing %′ = %− % log %,

Pr(Bin(r, p) 6 L) = Pr(Bin(r, p) 6 %pr) 6 exp(−rpϕ(%− 1)) 6 exp(−rp(1− %′)).
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Note that %′ gets small when % does, even if at a slower rate. If p → 0, using p̂ =
log(1/(1− p)), by Lemma 6(i) we have

exp(−(1− %′)rp) 6
(
p̂n(1 + o(1))

log2 n

)−(1−%′)p/p̂
6 (pn)−(1−2%

′) .

Now, by our choice of % = ε2 and using the fact that 2ε log ε → 0 as ε → 0, we have
1− 2%′ = 1− 2%+ 2% log % > 1− ε/2, and the statement follows in this case.

If p = Θ(1) with p bounded away from 1, we have

exp(−(1− %′)rp) 6 (pn)−%
′
,

where we assumed that ε (and thus %) was chosen to be small enough so that the following
holds: %′ < (1− %′)p/ log(1/(1− p)) (note that p close to 1 forces a small %, and therefore
a small ε). The desired statement follows since %′ > % = ε2.

In order to bound the variance of Z ′′−→uv, we will need to use that (6) holds for two
consecutive values n − 1 and n. Therefore, we assume that there exist infinitely many
such pairs of values, and restrict asymptotics to all n such that both n−1 and n satisfy (6).

Lemma 14. Given a constant ε > 0, assume that log2 n/
√
n � p 6 1 − ε. Moreover,

suppose there exist infinite sets I ′ ⊆ I ⊆ N satisfying (6) and (7), and restrict asymptotics
to n ∈ I ′. Then,

VarZ ′′−→uv = O

(
log4 n

pn
+

log3 n

p2n

)
(EZ ′′−→uv)

2.

Proof. First, observe that G (n, p)−u is distributed as G (n−1, p), and this is independent
of the edges emanating from u. By definition, each dominating set D counted by Z ′′−→uv is a
dominating set of G (n, p)−u of size r such that v ∈ D and 0 6 |N(u)∩D \ {v}| 6 L− 1.
Therefore, we get

EZ ′′−→uv = Pr(Bin(r − 1, p) < L) EG (n−1,p)Zv.

Furthermore, given u ∈ V , by counting in two different ways the number of pairs D,D′

of dominating sets of G (n, p)− u of size r with one marked vertex v ∈ D ∩D′ such that
0 6 |N(u) ∩D \ {v}| 6 L− 1, we get

∑
v∈V \{u}

E(Z ′′−→uv
2
) =

r∑
i=1

iQiEG (n−1,p)Wi,

where Qi is defined in (30). Therefore, since the distribution of Z ′′−→uv does not depend on
v ∈ V \ {u},

E(Z ′′−→uv
2
) =

1

n− 1

r∑
i=1

iQiEG (n−1,p)Wi.
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Recall from our assumption on I ′ that n−1 ∈ I. Then, applying Proposition 8 with n−1
instead of n (at the expense of an additional, negligible, multiplicative factor 1+O(1/n)),
we get

E(Z ′′−→uv
2
) =

1

n− 1

r∑
i=1

iQiEG (n−1,p)Wi

=Q1
r2

n2

(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
(EX)2.

Hence,

VarZ ′′−→uv =Q1

( r
n

)2(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
(EX)2 −Q1(EG (n−1,p)Zv)

2

=Q1

( r
n

)2(
1 + Θ

(
log4 n

pn
+

log3 n

p2n

))
(EX)2 −Q1

(
(1 +O(1/n))

r

n
EX

)2
=Q1

( r
n

)2
O

(
log4 n

pn
+

log3 n

p2n

)
(EX)2

=Q1(EG (n−1,p)Zv)
2O

(
log4 n

pn
+

log3 n

p2n

)
=
(
Pr(Bin(r − 1, p) < L)× EG (n−1,p)Zv

)2
O

(
log4 n

pn
+

log3 n

p2n

)
=(EZ ′′−→uv)

2O

(
log4 n

pn
+

log3 n

p2n

)
,

and the desired property holds.

Finally, we proceed to the proof of the main theorem.

Proof of Theorem 3. Let ε > 0 be an arbitrarily small constant such that n−1/3+ε 6 p 6
1 − ε, and recall that G = (V,E) denotes a random outcome of G (n, p). Corollary 9
yields immediately the first part of the statement for a less restrictive range of p. To
prove the second part, we combine the strategy described in Observation 11 together
with Lemma 12: our goal is to show that, for some sufficiently small constant δ > 0 (only
depending on ε), a.a.s. for any set A of at most δnp edges of G, the sum of light and
heavy damages of A is strictly less than 3

4
EX. Thus, since a.a.s. X = (1 + o(1))EX (by

Corollary 9), we infer that a.a.s. not all dominating sets can be removed by deleting at
most δnp edges of G, yielding the desired lower bound on b(G). The upper bound follows
from (1).

We will first bound the heavy damage of any set of at most δnp edges in E. For
convenience, we say that a directed pair −→uv is present in G (or is a directed edge of G) if
the corresponding pair uv belongs to E. Using Lemma 14, by Chebyshev’s inequality and

noting that O
(

log4 n
pn

+ log3 n
p2n

)
= O

(
log4 n
p2n

)
, for any directed pair −→uv (possibly not present
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in G) and t > 0

Pr (|Z ′′−→uv − EZ ′′−→uv| > tEZ ′′−→uv) 6
VarZ ′′−→uv(
tEZ ′′−→uv

)2 = O

(
log4 n

t2p2n

)
. (38)

Making use of the subsubsequence principle (see e.g. [6]), we split the analysis into two
cases, depending on the asymptotic behaviour of p: set ν = 2 − ε/2 if p = o(1); and
ν = 1 + ε2 if p = Θ(1) and p 6 1− ε. Using Lemma 13, the equation above yields

Pr

(
Z ′′−→uv >

EX

(pn)ν
(1 + t)

)
= O

(
log4 n

t2p2n

)
. (39)

Clearly, (39) implies that, uniformly for all i > 1,

Pr

(
Z ′′−→uv >

EX

(pn)ν
2i
)

= O

(
log4 n

22ip2n

)
. (40)

We call a directed pair −→uv (possibly not in G) i-bad if

2i
EX

(pn)ν
6 Z ′′−→uv < 2i+1 EX

(pn)ν

and bad if it is i-bad for some i > 1. Directed pairs that are not bad will be called good.
Observe from its definition that Z ′′−→uv is independent of the event that −→uv is present in G.
Hence, using (40), the probability that a directed pair −→uv is i-bad and is present in G is

p ·O
(

log4 n
22ip2n

)
, and therefore the heavy damage of all bad directed edges in the graph G is

in expectation at most

n2p
∑
i>1

2i+1 EX

(pn)ν
O

(
log4 n

22ip2n

)
= O

(
EX log4 n

p1+νnν−1

)∑
i>0

2−i = O

(
EX log4 n

p1+νnν−1

)
.

Consequently, by Markov’s inequality, the heavy damage of all bad directed edges in G is
a.a.s. at most EX log5 n/(p1+νnν−1) = o(EX), as long as p > n−1/3+ε and p 6 1− ε. On
the other hand, the heavy damage of a good directed pair is at most 2 EX

(pn)ν
by definition.

Therefore, given any set A of pairs (possibly not in G) of size at most δpn, the heavy
damage of the set of all good directed pairs −→uv such that uv ∈ A is deterministically at
most

2δpn · 2 EX

(pn)ν
= O

( EX

(pn)ν−1

)
= o(EX),

where in the last step we used again our assumptions on p. Putting all the above together,
we conclude that a.a.s. the heavy damage of any set of edges A in the graph G with
|A| 6 δnp is

Z
′′

A = o(EX). (41)

Now we proceed to bound the light damage of any set A of edges in G of size at most
δnp. The analysis bears some similarities to our previous estimation of the heavy damage,
but the role of directed pairs will be taken by vertices.
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Using Lemma 10, by Chebyshev’s inequality and noting that VarZv = O
(

log4 n
p2n

)
(EZv)

2,

for any vertex v and s > 0,

Pr (|Zv − EZv| > sEZv) 6
VarZv

(sEZv)
2 = O

(
log4 n

s2p2n

)
.

Thus,

Pr
(
Zv > EX

r

n
(1 + s)

)
= O

(
log4 n

s2p2n

)
. (42)

Clearly, (42) implies that, uniformly for all i > 1,

Pr
(
Zv > EX

r

n
2i
)

= O

(
log4 n

22ip2n

)
. (43)

We call a vertex v i-exceptional, if

2iEX
r

n
6 Zv 6 2i+1EX

r

n
,

and exceptional if it is i-exceptional for some i > 1. Let V1 ⊆ V be the set of all excep-
tional vertices in the graph G. We want to bound the number

∑
v∈V1 Zv of dominating

sets of size r containing at least one exceptional vertex. Since we are summing over a
random set, it is convenient to interpret the previous sum as∑

v∈V1

Zv =
∑
v∈V

Zv1{v∈V1},

where 1{v∈V1} is the indicator function of the event that v ∈ V1. Hence, in view of (43)
and by the linearity of expectation,

E

(∑
v∈V1

Zv

)
= n

∑
i>1

2i+1EX
r

n
O

(
log4 n

22ip2n

)
= O

(
EX

r log4 n

p2n

)∑
i>0

2−i = O

(
EX

log5 n

p3n

)
.

Thus, by Markov’s inequality, a.a.s.∑
v∈V1

Zv 6 EX
log6 n

p3n
. (44)

We call a vertex normal if it is not exceptional. For a normal vertex v, Zv is at most
2EX r

n
by definition.

Now, for a given set A of edges in G of size at most δpn, let V (A) be the set of vertices
containing all endpoints of edges from A, that is,

V (A) = {v ∈ V | ∃e ∈ A such that v ∈ e}.

the electronic journal of combinatorics 22 (2015), #P00 26



Partition V (A) as follows: V (A) = V0(A) ∪ V1(A), where V0(A) is the subset of normal
vertices, and V1(A) the subset of exceptional vertices. From the definition of light damage,
we get

Z ′A 6
∑

v∈V (A)

Zv/(ε
2pr) =

∑
v∈V0(A)

Zv/(ε
2pr) +

∑
v∈V1(A)

Zv/(ε
2pr). (45)

For the first sum on the RHS of (45), we have∑
v∈V0(A)

Zv
ε2pr

6
2|V0(A)|EX

ε2pn
6

4|A|EX
ε2pn

6
4δEX

ε2
6 EX/2,

deterministically and regardless of the choice of A, as long as δ 6 ε2/8. On the other
hand, for the second sum on the RHS of (45), we use (44), and obtain that a.a.s. for every
choice of A∑

v∈V1(A)

Zv
ε2pr

6
∑
v∈V1

Zv
ε2pr

6
1

ε2pr
EX

log6 n

p3n
= O

(
EX

log5 n

p3n

)
= o(EX),

since p > n−1/3+ε. Hence, a.a.s. for every set A of edges of G with |A| 6 δnp, we have

Z ′A 6 (1 + o(1))
EX

2
.

Combining this, (41) and Corollary 9, we conclude that a.a.s. for every choice of A,

ZA <
3

4
EX < X,

as required. The second part of the statement follows and the proof is finished.
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