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Abstract

Large Schroder paths, sparse noncrossing partitions, partial horizontal strips,
and 132-avoiding alternating sign matrices are objects enumerated by Schroder num-
bers. In this paper we give formula for the number of Schroder objects with given
type and number of connected components. The proofs are bijective using Chung-
Feller style. A bijective proof for the number of Schroder objects with given type
is provided. We also give a combinatorial interpretation for the number of small
Schroder paths.

Keywords: large and small Schréder paths; partial horizontal strips; sparse non-
crossing partitions; 132-avoiding alternating sign matrices

1 Introduction

A (large) Schréder path of length 2n is a lattice path from (0,0) to (2n,0) using up steps
U = (1,1), flat steps F' = (2,0), and down steps D = (1,—1) such that it stays weakly
above the z-axis. For example, the path UDFUFUDUF DD shown in Figure 1(a) is a
large Schroder path of length 14. We denote the set of large Schroder paths of length 2n by
R, and call ,, := |R,| a Schrdoder number. 1t is known [14] that the n-th Schréder number
isr, = % oy (kﬁl) (2) 28 and the initial terms are {r, },>0 = {1,2,6,22,90,384, ... }.>0.
A descent is a maximal sequence of (consecutive) D steps and the (descent) type of a large
Schroder path is the integer partition formed by the length of the descents. For example,
the large Schroder path UDFUFUDUFDD has type A = (2,1,1). A small Schrider
path is a large Schroder path with no flat steps on the z-axis.

A Dyck path of length 2n is a lattice path from (0,0) to (2n,0) using up steps U and
down steps D such that it stays weakly above the x-axis. We denote the set of Dyck
paths of length 2n by D,,. It is well known [14] that the cardinality |D,,| is the Catalan
numbers ¢, := = (*"), with initial terms {c,}nz0 = {1,1,2,5,14,42,132,.. . },20. The
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type of a Dyck path can be defined by considering it as a large Schroder path without flat
steps. A Dyck path is said to be connected if it doesn’t touch the z-axis except two end
points. Note that a small Schroder path may not be a connected Dyck path since a small
Schroder paths may touch the x-axis more than twice.

The Dyck paths and the large Schroder paths are closely related and both are funda-
mental families of lattice paths. Hence it is natural to extend results on Dyck paths to
large Schroder paths (or vice versa). The number of Dyck path of given type is known
since Kreweras [9] introduced noncrossing partitions while the number of large Schroder
path of given type is recently given by An, Eu, and Kim [1]. Rhoades [13] enumerates
the number of Dyck paths of fixed type and fixed number of returns to the z-axis. In
this article, we count large Schroder paths which have a fixed number of flat steps on the
x-axis according to type. We also extend these results to Motzkin and Riordan paths.

The classical Chung-Feller theorem [4] provides an elegant way to enumerate the num-
ber of Dyck path. It says that the number of free Dyck paths with k flaws is independent
of k. The classical Chung-Feller theorem was first proved by MacMahon [11] and Chung
and Feller reproved by analytic method [4]. Narayana [12] gave a combinatorial proof by
using cyclic permutations of paths and Chen [3] gave a bijective proof.

There are several results about Chung-Feller property of large Schroder paths. Eu, Fu,
and Yeh [5] give weighted Chung-Feller theorem for large Schroder paths. Chen, Li, and
Shapiro [2] give butterfly decomposition which implies Eu et al’s therem about weighted
large Schroder paths. Liu, Wang, and Yeh [10] provide Chung-Feller type results about
large Schroder paths.

Huq [6] applied the “cycle method” to develop generalized Chung-Feller theorems.
He gave nice combinatorial interpretations to the Catalan number formula as well as the
Narayana number formula. He also discuss the number of Motzkin and large Schroder
paths. We provide a combinatorial interpretation for the number of Riordan and small
Schroder paths.

The rest of this paper is organized as follows. In Section 2, we list several objects
counted by Schroder numbers. We provide enumeration results in Section 3. The proof of
the main theorem is given in Section 4. In the last section, we provide a new proof for the
number of large Schroder paths with a given type and give a combinatorial interpretation
for the number of small Schréder paths.

2 Schroder objects

In this section, we introduce several objects counted by Schroder numbers. We focus on
Schroder objects which have natural notions of type and connectedness.
2.1 Sparse noncrossing partitions

A partition 7 of a set [n] := {1,2,...,n} is a collection By, Bs,..., By of nonempty
pairwise disjoint subsets of [n] whose union is [n]. The B;’s are called blocks. The
type of a noncrossing partition is the integer partition given by its block sizes. The
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(c) A partial horizontal strip o (d) An 132-avoiding alternating matrix M

Figure 1: Schroder objects

standard representation of a partition 7 is a graph on the vertex set [n] such that a
block B = {by,bs,...,b;} corresponds to a path (by,bs,...,bx). A pair (i,7) with i < j
which corresponds to an edge in the standard representation of 7 is called an arc. The
arc type of a partition 7 is the integer partition given by length of paths in the stan-
dard representation of 7. If the type of a partition 7 is (Ay, Aa,..., Ag, 1,...,1) with
A¢ = 2, then its arc type is (A\; — 1, s — 1,..., A, — 1). For a noncrossing parti-
tion m = ({1,3,8},{2},{4,7},{5},{6},{9,11},{10}) shown in Figure 1(b), its type is
(3,2,2,1,1,1,1) and its arc type is (2,1, 1).

The set partition is called connected if for every i with 1 < i < n there exists at least
one arc in the standard representation which connects the intervals [1,i] and [i 4+ 1, n].
The set partition is said to have m connected components if there exist numbers 1 <
11 < g < --- < Iu_1 < n such that the restriction of the its standard representation to
each of the intervals [1,41], [i1 + 1,42, ..., [im—1 + 1,n] is a connected set partition. A set
partition is called sparse if no two consecutive integers are in the same block. A partition
is noncrossing if a,c € B; and b,d € B for no elements a < b < ¢ < d and 7 # j. The
partition 7 listed above is sparse, noncrossing and has 2 connected components. It is
well-known that the sparse noncrossing partitions of some set into n blocks are counted
by large Schréder numbers r,_1. (See [8] or [14, Exercise 6.39.0].)

2.2 Partial horizontal strips

Let p = (p1, pto,...) and v = (v, 1%, ...) be integer partitions such that u; > v; for all
i. The skew shape /v is the setwise difference of Young diagrams. A partial horizontal
strip in the shape pu/v is a set of boxes, at most one in each column, such that the height
of the boxes is weakly increasing to the right. The collection of numbers of boxes in each
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row of a partial horizontal strip ¢ form an integer partition, called the type of . The
type of the partial horizontal strip ¢ shown in Figure 1(c) is (2,1, 1).

In this article, we are interested in partial horizontal strips contained in the staircase
skew shape n"/(n —1,...,2,1). The partial horizontal strips in the staircase skew shape
is counted by Schroder numbers [1]. A partial horizontal strip in the staircase skew shape
is connected if there is no empty box in the main diagonal such that all the chosen boxes
are either strictly above the corresponding row or strictly to the left of the corresponding
column. If there are m — 1 such empty boxes, then the partial horizontal strip is said to
have m connected components. The partial horizontal strip o shown in Figure 1(c) has
2 connected components since the leftmost empty box in the second row from the top is
the unique empty box which satisfies the above condition.

2.3 132-avoiding alternating sign matrices

An alternating sign matriz is a matrix consisting of Os, 1s, and —1s where the sum of
entries in each row and in each column is 1 and the signs of nonzero entries of each
row and of each column are alternating. For an n X n alternating sign matrix M and a
permutation m, we say that M contains 7 if M contains a submatrix D = (d;;) where
d;; = 1 whenever (i) = j. If M does not contain 7w, we say that M avoids w. Johansson
and Linusson [7] show that the 132-avoiding alternating sign matrices are counted by the
Schroder numbers.

An 132-avoiding alternating matrix M is connected if there is only one 1 which is the
unique nonzero entry in its row and all the entries in its lower right positions are zero. If
there are m such 1’s, then we say that M has m connected components. The matrix M
shown in Figure 1(d) has two connected components since the 1’s on the 6th row and the
8th row satisfy the above condition.

Alternating sign matrices carry a notion of type defined as follows: Circle all 1’s such
that all the entries which lie northeast of it are 0 and connect them with a path from
top to bottom. Circle all 1’s such that all the entries which lie northeast (including north
or east) of it are 0, —1 or circled 1 and connect them with a path from top to bottom.
Continue this until all 1’s are circled. The type of an 132-avoiding alternating matrix is
the integer partition given by the length of paths. The type of the matrix M shown in
Figure 1(d) is (2,1,1).

3 Enumeration of Schroder objects by type and connected com-
ponents

In this section, we enumerate the number of Schroder objects by type and number of
connected components.

First, we define several notions which will be used throughout this paper. The height
of a path P is the height of its lowest point and is denoted by h(P). The height of a
subpath or a step is similarly defined. A negative step is a step whose height is negative.
Positive, nonnegative, and nonpositive steps are defined similarly. For an up step U, its
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matching down step is the first down step after U whose height is the same as U. An up
step is the matching up step of its matching down step. The length of a descent D is the
number of its down steps and is denoted by £(D).

Given an integer partition A, we set my = my(\)lma(A)!ms(N)!- -, where m;()) is
the number of parts of A equal to i. Note that m, here is not the monomial symmetric
function. We use |A| for the sum of the parts of A.

Before we state the main theorem, we give a lemma about two statistics of large
Schroder paths which are equi-distributed.

Lemma 1. Among all large Schréoder paths of given length and type, the number of flat
steps on the x-axis and the number of flat steps after the last up step are equi-distributed.

Proof. Let P be a large Schroder path of given length and type. We provide an algorithm
which sends P to @ so that all the flat steps of height 0 of P are sent to the flat steps
after the last up step of ) and vice versa.

Decompose P into P = 1017209 - - 'TjTJ,-O'j - mpopaBD where

e D is the last descent,

e 0; is the ith flat step of height 0 together with a descent immediate before it (if
any),

e if 1 <7 < k and o; is not the last one with a descent, then 7; is the subpath between
o;_1 and o; (if ; does not have a descent, 7; is empty),

e if 0; is the last one with a descent, then 7; is the subpath after o;_; up to the
matching up step of the first down step of o; and 7] is the subpath between 7; and
o (7j could be empty and it ends with F" if it is not empty),

e « is the subpath after o}, up to the matching up step of the first down step of D,

e (3 is the subpath between a and D (the height of 3 is £(D) and 3 must finish with
F unless it is empty.).

Then let Q) = ,BaT]’.Tng .- Two109 - -0, D. Note that all the flat steps of height 0 are
moved to the flat steps after the last up step.

Y T Y Gr O, | O3 Oy ‘553 D
P Q
Figure 2: Algorithm for sending flat steps of height 0 to flat steps after the last up

v i = patiTiTy - TRoO109 - - O D, W
Conversely, decompose () into « j’ D, where
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D is the last descent,

[ is the subpath from the beginning to the last flat step of height 0,

« is the subpath after 8 up to the matching up step of the first down step of D,

e 0;: the ith flat step after the last up step together with a descent immediate before
it (if any),

e if 0; is the last one with a descent, 77 is the subpath after o up to the last flat step

of height £(D) before the last up step (if no such flat steps exist, 7/ is empty),

e For i < j, 7; is the subpath after 7,_; up to the last U or F ending at height

D)+t + -+ + {; where {; is the length of the descent in o;. (if ¢; = 0, then 7; is
empty.) 7; is the subpath after 7,_; up to the last U. For i > j, 7; is empty.

Then let P := 1011009 - - 'TjTJ/-Uj -« mopafBD. Note that all the flat steps after the last
up step are moved to the flat steps of height 0. Also, it is easy to see that these maps are
inverse to each other. O

The following is the main theorem of this article which provides the number of Schroder
objects of given length and type with a fixed number of connected components.

Theorem 2. The number of

1. large Schréider paths of length 2n with type A = (A1, ..., A\e) with m — 1 flat steps on
the x-axis

2. large Schroder paths of length 2n with type A with m — 1 flat steps after the last up
step

3. sparse noncrossing set partitions of [n + |\ + 1] with arc type A and m connected
components

4. partial horizontal strips with type X and m connected components contained in the
staircase skew shape n"/(n —1,...,2,1)

5. 132-avoiding (n+1) x (n+1) alternating sign matrices with type A and m connected

components
m (n—m)\[(n+1) ¢!
n+1\J\ -1 ¢ )my

The equivalence of Part 1 and 2 follows from Lemma 1. The equivalence of Part 1, 3,
and 4 can be obtained from the bijections provided by An, Eu, and Kim [1]. The bijection
given by Johansson and Linusson [7] implies the equivalence of Part 1 and 5. The proof
of Theorem 2 is given in Section 4.

15 given by
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A small Schréoder path is a large Schroder path with no flat steps on the x-axis. It is
well-known that the number of small Schroder paths of length 2n is the half of the number
of large Schroder paths of length 2n. This is not the case when we count the number of
small Schroder paths of fixed type. The following corollary provides the number of small
Schroder paths of given type.

Corollary 3. The number of
1. small Schréder paths of length 2n with type X = (A, ..., \¢)
large Schroder paths of length 2n with type A with no flat steps after the last up step

connected sparse noncrossing set partitions of [n + |A| + 1] with arc type A

connected partial horizontal strips with type \ contained in the staircase skew shape
n"/(n—1,...,2,1)

5. connected 132-avoiding (n + 1) x (n+ 1) alternating sign matrices with type A

1 n—1Y\/n+1\ ¢
n+1\U\N -1 0 )my

A Motzkin path of length n is a lattice path from (0,0) to (n,0) using up steps (1, 1),
flat steps (1,0), and down steps (1, —1) such that it stays weakly above the z-axis. A
Riordan path is a Motzkin path with no flat steps on the z-axis. As the flat steps do not
affect the type of a path, there is a bijection between the set of Motzkin paths of length n
with type A and the set of large Schroder paths of length 2(n — |A|) with type A. Similar
bijection can be obtained between Riordan paths and small Schroder paths. Thus we get
the following corollaries.

s given by

Corollary 4. The number of Motzkin paths of length n with type X with m — 1 flat steps

on the x-aris is
n—IX—=m\ (n—|\\{—1)
m -
|>\| -1 f—1 my

Corollary 5. The number of Riordan paths of length n with type A = (A1,...,\¢) is
n—IN=1\[(n—|\\{-1)!
|>\‘ -1 {—1 my ‘

4 Proof of the main theorem

In this section, we provide an algorithm which shows that the number of paths is inde-
pendent of the number of flaws.

The type of a lattice path is the integer partition formed by the length of the descents.
Let L(n, A, m) be the set of all lattice paths of type A from (0,0) to (2n + 1,1) using
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U, F, or D beginning with up or flat step and containing m — 1 flat steps before the first
up step or after the last up step. The number of flaws of a path P € L(n,\,m) is the
number of nonpositive flat steps and nonpositive up steps. Let Li(n, A, m) be the subset
of L(n, \,m) consisting of lattice paths with k flaws (1 < k < n+1). We give a bijection
between Lg(n, \,m) and Ly_1(n, A\, m) when k > 2.

4.1 Algorithm for the subpath after the last up step of height 0

R (R,,RH)

Figure 3: Algorithm R < (R', R")

Let P be a path in L(n, A\, m) and let R be the subpath of P after the last up step of
height 0. If R ends with D, decompose R into R RyR3R, where

e R;: the part of R from the beginning to the last flat step of height 0 (if there is no
flat step of height 0, Ry is empty),

e R,: the last descent of R,
e RRy: the subpath after Ry up to the matching up step of the first down step of Ry,
e Rj3: the subpath between Ry and Ry.

Let R' := RyR1R; and R” := Rs3. If R ends with F, then R’ is the empty path and
R” = R. Note that R’ has no flat step on its height.

Conversely, suppose two paths R and R” are given where R’ is a path whose height
is the height of the first step with no flat step on its height. If R’ is empty, let R = R".
Otherwise, R’ ends with a descent. Decompose R’ = Ry R R, where R, is the last descent,
R5 is the subpath from the beginning to the matching up step of the first down step of
R4, and Ry is the subpath between Ry and R4. Let R := RiRyR"R,.

4.2 Algorithm for decreasing the number of flaws

Now, we describe the main algorithm. There are several cases:

1. When there are more than one up steps of height 0 and R is not following DU:
There are three sub cases:
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(a) R is following FU:
If there is a down step of height 0 whose previous step is either a flat step or
a down step, then let ) be the subpath from the descent containing the last
such down step to the preceding step of FU. Otherwise, let () be the path
from the next step of the first up step of height 0 to the preceding step of FU.
Decompose P into SQFUR. Construct the path ¢(P) := SR'FQUR".

NG height 1 Eac i) { height I
; : — height 0 /\v/ ; - \Vv/ | height 0

s 0 FU R | s R F Q0 U R

P = y(P') P = (P)

Figure 4: Main algorithm, Case 1(a)

(b) R is following UU and there is no flat step of height 0 after the last down step
of height 0:
Let @ be the part of the path from the last descent beginning on positive height
to the last up step of height —1. Decompose P into SQU R. Construct the
path ¢(P) := SR'UQR".

height 1
* height 0

P NG height 1
fA ; ; height 0

P =4(P) P'=¢(P)

Figure 5: Main algorithm, Case 1(b)

(¢) R is following UU and there is a flat step of height 0 after the last down step
of height 0:
Let F' be the last such step and decompose P into SFQU R. Construct the
path ¢(P) := SUR'FQR".

2. When there are more than one up step of height 0 and R is following DU: o
In this case, we can decompose the path into SDUR. Construct a path SR'UR"D.

3. When there is only one up step of height 0:
In this case, the path must begin with a flat step since P contains at least two flaws.
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s S
P =y(P) P'=¢(P)
Figure 6: Main algorithm, Case 1(c)
/\v S e e o o
‘ S D U R | s R" U R D
P =y(P) P'=¢(P)

Figure 7: Main algorithm, Case 2

Let D be the descent preceding the first up step. (Note that D is following a flat
step F and it could be empty.) Decompose P into SFDQQ;R where @, is the
subpath from the first up or flat step of height 1 — ¢(D) to the unique up step of
height 0. Then ¢(P) is the path SQ,DQ,RF. Note that R is not changed in this

case.

fr ,,,,,,,, ‘L,,‘L rrrrrrrrrr height 1 L ,,,,, height 1

height 0 y 7NN height 0
R S 0, D 0, R F
P’ = ¢(P)

Figure 8: Main algorithm, Case 3

One can see that a path in Lg(n, A, m) must satisfy exactly one of the given cases and
any two paths in different cases are not sent to the same case.

In order to decrease the number of flaws while keeping the number of flat steps before
the first up step or after the last up step, a U or F' of nonpositive height must be moved
to the positive height. In Case 3, the last flat step before the first up step is moved. In
Case 1(a) and 1(c), the last flat step of height 0 is moved. In Case 1(b) and 2, the last
up step of height 0 is moved.
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In order to have a bijection, we must keep track of the position of the step moved. In
Case 3, D is used for this purpose while R’ is used in other cases.

We sent R to (R, R") in order to keep the flat steps after the last up step. No two
paths in the same case are sent to the same path since R <» (R, R”) is a bijection and all
the remaining steps except the moved ones (U, F, D, R') are fixed.

4.3 Algorithm for increasing the number of flaws

Let P’ be a path in Li_1(n, A\, m). There are several cases and we list them according to
the labels and order used in Subsection 4.2. The algorithm constructing R from R’ and
R’ is discussed in Subsection 4.1.

1. When the path ends with U or ends with F' and there is a subpath whose height is
at least 1 before the last up step of height 0:

(a) If it is not (b) nor (c):
Decompose P’ into SR'FQU R"” where
e U: the last up step of height 0
e F': the last flat step of positive height before the above U
e R': the largest connected subpath of height h(F) immediate before the
above F' with no flat steps of height h(F')
Let ¥(P') :== SQFUR.
(b) If the last nondecreasing step of positive height before the last U of height 0 is
U:
Decompose P’ = SR'UQR" where
e R’: after the last up step of height 0 (could be empty)
e U: the last nondecreasing step of positive height (the above U)
e R': the largest connected subpath of height > h(F') immediate before the
above U with no F' on height h(F)
Let ¥(P') :== SQUR.

(c) If the last nondecreasing step of positive height before the last U of height 0
is F' of height 1 and there are more than one U of height 0 before that F', and
there is no F' of height 1 between the last such U and F":

Decompose P = SUR'FQR" where
e R": after the last up step of height 0 (could be empty)
e F": the last F' of height 1 before the last U (the above F)
e U: the last U of height 0 before F' (the above U)

Let 1(P') := SFQUR.

2. When the path ends with D:
Decompose P = SR'UR"D where
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e D: the last descent
e U: the last up step of height /(D)
e R': the largest connected subpath of height > ¢ (D) immediate before the above
U with no F' on height ¢(D)
Let o (P') :== SDUR.

3. When the path ends with F' and there is no subpath of positive height before the
last up step of height 0:
Decompose P’ = SQDQ,RF where

e [: the last flat step

e [: the subpath after the last up step of height 0 and before the above F
e D: the last descent beginning at height 1 (might be empty)

e ();: the subpath from the first up step to the step immediate before D

Let @ZJ(P,) = SFEQlQQR
Now we provide the proof of the main theorem.

Proof of Theorem 2. Any path in L(n, A\, m) contains |A| + 1 up steps, n — |\| flat steps,
and ¢ descents. Since there are m ways to put m — 1 flat steps before the first up step

and after the last up step, (C\I_—Wi) ways to arrange the remaining |[A\| — 1 up steps and

n — |\ — m + 1 flat steps between the first and the last up step, and (
arrange ¢ descents, the number of paths in L(n, A\, m) is

- n—m n+1 ﬂ
’)\|—1 14 m,\'

The number of flaws can vary from 1 to n+1. By the algorithms described, the number of
paths is independent of the number of flaws. Since the lattice paths in Li(n, A\, m) begin
with an up step and stay strictly above the x-axis except the origin, there is a one-to-one
correspondence between Lq(n, A\, m) and the set of all large Schroder paths of length n
with type A having m — 1 flat steps after the last up step. Thus the theorem follows. [J

ways to

5 Small and large Schroder paths

In this section, we provide a new proof for the number of large Schroder paths with
given type (and any number of connected components). Also, we give a combinatorial
interpretation for the number of small Schréder paths (with any type).

An, Eu and Kim [1] show the following theorem about the number of large Schroder
paths of given type. We provide a new bijective proof.

Theorem 6. The number of
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1. large Schrider paths of length 2n with type A = (A1, ..., \)
2. sparse noncrossing set partitions of [n + |\| + 1] with arc type

3. partial horizontal strips with type A contained in the staircase skew shape n"/(n —
1,...,2,1)

4. 132-avoiding (n 4+ 1) x (n + 1) alternating sign matrices with type A

1 n (n + 1) /!
|A] -+ 1 \|A| ¢ Jmy
Proof. Consider the set L of all lattice paths from (0,0) to (2n,0) of type A\ using steps
U,F, and D. Note that there are |A| up steps, n — |A| flat steps, and ¢ descents. Since
there are (&) ways to arrange up steps and flat steps and there are ("Zl)m% ways to

choose positions of descents, the total number of lattice paths in L is

() ()3

The number of flaws of a path P in L is the number of negative up steps. Then the
number of flaws can vary from 0 to |A|.

For a path P with at least one flaw, we decompose P into P,U P, where U is the first
up step of height —1. Let () be a path P,UP;. Then @ is a path in L with one less
flaws than P. Conversely, let @ be a path in L with at most |A\| — 1 flaws. Then one can
decompose @) into Q1UQ, where U is the last up step of height 0 and P = Q,UQ; is the
path in L with one more flaws than (). This correspondence provides a bijection between
the set of path in L with k flaws and the set of paths in L with £ — 1 flaws (1 < k£ < |)]).
Thus the number of paths is independent of the number of flaws. Since the large Schroder
paths are the paths in L with no flaws, the proof is done. O

18

Now we provide a combinatorial interpretation for the number of small Schroder paths
which fills the missing part from the thesis of Huq [6]. It follows from the more general
result about large Schroder paths with a fixed number of flat steps on the z-axis.

Theorem 7. The number of large Schroder path of length 2n with k up steps, k down
steps, and n — k flat steps with m — 1 flat steps on the x-axis is given by

m (n—m\ [(n+k
n+1\ k-1 k)
Proof. Consider the set L of all lattice paths from (0,0) to (2n + 1,1) with £ + 1 up
steps, k down steps, and n — k flat steps with m — 1 flat steps before the first up step or

after the last up step. Since there are m ways to put m — 1 flat steps before the first up

step and after the last up step, (’;;T) ways to arrange the remaining k£ — 1 up steps and
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n —k —m+ 1 flat steps between the first and the last up step, and (("Zl)) = (”Zk) ways
to arrange k down steps, the number of paths in L is

n—m\[(n+k
m )
k—1 k
If the number of flaws of a path is the number of nonpositive flat steps and nonpositive
up steps, then the number of flaws can vary from 1 to n 4 1. Since the bijections used in

the proof of the main theorem don’t change the types of large Schroder paths, the rest of
the proof is the same as the proof of Theorem 2. n
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