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Abstract

Billey et al. [arXiv:1507.04976] have recently discovered a surprisingly simple
formula for the number a,, (o) of leaf-labelled rooted non-embedded binary trees (also
known as phylogenetic trees) with n > 1 leaves, fixed (for the relabelling action) by
a given permutation ¢ € &,,. Denoting by A - n the integer partition giving the
sizes of the cycles of ¢ in non-increasing order, they show by a guessing/checking
approach that if A is a binary partition (it is known that a,(c) = 0 otherwise), then

)

an(o) = [T+ + Agn) — 1),
=2

and they derive from it a formula and random generation procedure for tanglegrams
(and more generally for tangled chains). Our main result is a combinatorial proof
of the formula for a, (o), which yields a simplification of the random sampler for
tangled chains.
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1 Introduction

For A a finite set of cardinality n > 1, we denote by B[A] the set of rooted binary trees
that are non-embedded (i.e., the order of the two children of each node does not matter)
and have n leaves with distinct labels from A. Such trees are known as phylogenetic trees,
where typically A is the set of represented species. Note that such a tree has n — 1 nodes
and 2n — 1 edges (we take here the convention of having an additional root-edge above
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Flgure I: (a) A phylogenetlc tree v with label-set [1..6]. (b) The tree 4/ = o - v, with
= (1,4,3)(5)(2,6). Since v/ # 7, v is not fixed by ¢ (on the other hand = is fixed by
(2 3)(1,4,6,5)).

the root-node, this edge being connected to a ‘fake-vertex’ that does not count as a node;
see Figure 1).

The group G(A) of permutations of A acts on B[A]: for v € B[A] and 0 € G(A), 07 is
obtained from ~ after replacing the label i of every leaf by o(i); see Figure 1(b). We denote
by B,[A] the set of trees fixed by the action of o, i.e., B,[A] := {y € B[A] such that oy =
v}. We also define &,[A] (resp. E[A]) as the set of pairs (v, e) where v € B,[A] (resp.
v € B[A]) and e is an edge of v (among the 2n — 1 edges). Define the cycle-type of o
as the integer partition A - n giving the sizes of the cycles of ¢ in non-increasing order.
For A - n an integer partition, the cardinality of B,[A] is the same for all permutations
o with cycle-type A, and this common cardinality is denoted by r). It is easy to see
(from the wreath-product structure of the automorphism-group of a tree [6, Sec.38]) that
rx = 0 unless A is a binary partition, i.e., an integer partition whose parts are powers of 2.
Billey et al. [2] have recently found the following remarkable formula, valid for any binary

partition A:
o)

ro= ]+ + dy) — 1) (1)

=2
They prove the formula by a guessing/checking approach. Our main result here is a
combinatorial proof of (1), which yields a simplification (see Section 3) of the random
sampler for tanglegrams (and more generally tangled chains) given in [2].

Theorem 1. For A a finite set and o a permutation on A whose cycle-type is a binary
partition:

e [fo has one cycle, then |B,[A]| = 1.

e [f o has more than one cycle, let ¢ be a largest cycle of o; let A" be the set A without
the elements of ¢, and let o’ be the permutation o restricted to A’. Then we have

*Partly supported by the ANR grant “Cartaplus” 12-JS02-001-01 and the ANR grant “EGOS” 12-
JS02-002-01.
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the combinatorial isomorphism
B,[A] = £,[4]. @)

As we will see, the isomorphism (2) can be seen as an adaptation of Rémy’s method [7]
to the setting of (non-embedded rooted) binary trees fixed by a given permutation. Note
that Theorem 1 implies that the coefficients r) satisfy ry = 1 if X\ is a binary partition
with one part and 7y = (2|A\A1| — 1) - ra\y, if A is a binary partition with more than one
part (where A\; denotes the first part of A, and A\ \; denotes A without its first part), from
which we recover (1).

2 Proof of Theorem 1

2.1 Case where the permutation o has one cycle

The fact that |B,[A]| = 1 if 0 has a one cycle and the cycle has size 2% (for some k > 0)
is easy to see at the level of the cycle index sum specification [1, 3] (recall that the
specification is Z(s1, Sa,...) = s1 4+ 2(Z(s1,52,...)> + Z(s2, 54, ...)), which implies that
for k > 0 and n = 2*, the coefficient [st}Z(sl,sg, ...) equals 1/n; denoting by A the
partition with a single part n, this coefficient is also 7ym) /2\m) = T\ /n; thus rym = 1).
For the sake of completeness we give here a short justification. Since the case k& = 0 is
trivial, we can assume that k > 1. Let ¢, ¢y be the two cycles of o2 (each of size 2871),
with the convention that c¢; contains the minimal element of A; denote by A;, As the
induced bi-partition of A, and by oy (resp. 03) the permutation o2 restricted to A; (resp.
Ay); note that oy (resp. o2) has ¢; (resp. cg) as its unique cycle. For v € B,[A] let
1,72 be the two subtrees at the root-node of 7, such that the minimal element of A is
in 7;. Then clearly v, € By, [A1] and v2 € B,,[As], and conversely for v, € B,,[A;] and
Y2 € B,,[As] the tree v with (v1,72) as subtrees at the root-node is in B,[A]. Hence

B, [A] = By, [A1] X By, [As], (3)

which implies |B,[A]| = 1 by induction on k (note that, also by induction on k, the
underlying unlabelled tree is the complete binary tree of height k).

2.2 Case where the permutation o has more than one cycle

Let & > 0 be the integer such that the largest cycle of o has size 2¥. A first useful remark
is that ¢ induces a permutation of the edges and a permutation of the nodes of 7, and
each o-cycle of edges or nodes has size 2° for some i € [0..k]. We present the proof of (2)
progressively, treating first the case k = 0, then k = 1, then general k.

Case k = 0. This case corresponds to o being the identity, so that B,[A] ~ B[A]. Hence
we just have to justify that B[A] ~ E[A\{:}] for each fixed i € A. This is easy to see
using Rémy’s argument [7] !, used here in the non-embedded leaf-labelled context: every

LA similar argument in the context of triangulations of a polygon dates back to Rodrigues [8].
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Figure 2: (a) Rémy’s leaf-removal operation. (b) The two cases for removing a 2-cycle
of leaves (depending whether the two leaves have the same parent or not). The vertices
depicted in gray are allowed to be the fake vertex above the root-node.

v € B[A] is uniquely obtained from some (7', e) € £[A\{i}] upon inserting a new pendent
edge from the middle of e to a new leaf that is given label i; see Figure 2(a).

Case k = 1. Let ¢ = (ay,az) be the selected cycle of o, with a; < as. Two cases can
arise (in each case, with the notations in Theorem 1, we obtain from ~ a pair (7, e) with
v € By/[A'] and e an edge of v'):

e If a; and ay have the same parent v, we obtain a reduced tree 7' € B,/[A’] by erasing
the 3 edges incident to v (and the endpoints of these edges, which are ay, as, v, and
the parent of v); and we mark the edge e of v/ whose middle was the parent of v;
see the first case of Figure 2(b).

e If a; and ay have distinct parents, we can apply the operation of Figure 2(a) to each
of a; and ay, which yields a reduced tree 7/ € B,/[A’]. We then mark the edge e of
7" whose middle was the parent of a;; see the second case of Figure 2(b).

Conversely, starting from (v/,e) € E[A'], the o'-cycle of edges that contains e has
either size 1 or 2:

o If it has size 1 (i.e., e is fixed by ¢’), we insert a pendent edge from the middle of e
and leading to “cherry” with labels (a1, as).

e If it has size 2, let ¢/ = o’(e); then we attach at the middle of e (resp. €’) a new
pendent edge leading to a new leaf of label a; (resp. as).

The general case k > 0. Recall that the selected cycle of ¢ is denoted by ¢. A node or
leaf of the tree is generically called a vertexr of the tree. We define a c-verter as a vertex
v of 7 such that:

o If v is a leaf then v € c.

e If v is a node then all leaves that are descendants of v are in c.
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Figure 3: (a) Example of a tree in B,[A4], for A = [1..14] and for ¢ =
(3,8)(1,5,13,12)(2,7,10,4,14,11,6,9). (b) The corresponding (when selecting the cy-
cle ¢ of size 8 in o) pair (v,e) € E[A'], where A" = A\c and ¢’ = (3,8)(1,5,13,12)
(restriction of o to A’).

A c-vertex is called mazimal if it is not the descendant of any other c-vertex. A c-tree
is a subtree formed by a maximal c-vertex v and its hanging subtree (if v is a leaf then
the corresponding c-tree is reduced to v). Note that the maximal c-vertices are permuted
by o. Moreover since the leaves of ¢ are permuted cyclically, the maximal c-vertices
actually have to form a o-cycle of vertices, of size 2! for some ¢ < k; and in each c-tree, o'
permutes the 277 leaves of the c-tree cyclically. Let ¢ be the leaf of minimal label in ¢, and
let w be the maximal c-vertex such that the c-tree at w contains £. We obtain a reduced
tree v/ € B,.[A’] by erasing all c-trees and erasing the parent-edges and parent-vertices of
all maximal c-vertices; and then we mark the edge e of v/ whose middle was the parent
of w; see Figure 3.

Conversely, starting from (7', e) € E,[A’], let i € [0..k] be such that the o'-cycle of
edges that contains e has cardinality 2¢; we write this cycle as ey, ..., eqi_1, with ey = e.
Starting from the element of ¢ of minimal label, let (so, ..., ssi_1) be the 2" (successive)
first elements of c. And for r € [0..2" — 1] let ¢, be the cycle of 02" that contains s,, and let
A, be the set of elements in ¢, (note that Ay, ..., Asi_; each have size 2¢~¢ and partition
the set of elements in ¢). Let 7, be the unique (by Section 2.1) tree in B[A,] fixed by the
cyclic permutation ¢,. We obtain a tree v € B,[A] as follows: for each r € [0..2" — 1] we
create a new edge that connects the middle of e, to a new copy of T,.

To conclude, we have described a mapping from B,[A] to £,/[A’] and a mapping from
E,[A'] to B,[A] that are readily seen to be inverse of each other, therefore B,[A] ~ &,/ [A'].

3 Application to the random generation of tangled chains

For n > 1, we denote by n the set {1,...,n}. A tanglegram of size n is an orbit of
B[n] x B[n] under the relabelling action of &, (see Figure 4 for an example). More
generally, for k > 1, a tangled chain of length k and size n is an orbit of B[n]* under the

relabelling action of &,,; see [5, 2, 3|. Let 7% be the set of tangled chains of length &
and size n, and let ) be the cardinality of 7. Then it follows from Burnside’s lemma
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Figure 4: (a) A pair of (rooted non-embedded leaf-labelled) binary trees. (b) The corre-
sponding (unlabelled) tanglegram.

(see [2] for a proof using double cosets and [3] for a proof using the formalism of species)

that
=L = )
n n! 7 2
ceS, AFn
where zy, = 1™'my!---r™ m,! if X has m parts of size 1, ..., m, parts of size r (recall that

n!/z, is the number of permutations with cycle-type \). At the level of combinatorial
classes, Burnside’s lemma gives

S, x TH ~ Z B,[n]*.

Hence the following procedure is a uniform random sampler for 7, (see [2] for details):

1. Choose a random binary partition A - n under the distribution

. BWE
- )

PO =2

where S, = Y\, r¥/2) (so S, = 7(1]“))

2. Let o be a permutation with cycle-type . For each r € [1..k] draw (independently)
a tree T, € B,[n] uniformly at random.

3. Return the tangled chain corresponding to (77,...,T}).

A recursive procedure (using (1)) is given in [2] to sample uniformly at random from
B,[n]. From Theorem 1 we obtain a simpler random sampler for B,[n]. We order the
cycles of o as ci,..., ¢ such that the cycle-sizes are in non-decreasing order. Then,
with A; the set of labels in ¢;, we start from the unique tree (by Section 2.1) in B, [4]
(where ¢; is to be seen as a cyclic permutation on A;). Then, for i from 2 to ¢(\) we
mark an edge chosen uniformly at random from the already obtained tree, and then we
insert the leaves that have labels in ¢; using the isomorphism (2).

The complexity of the sampler for B,[n] is clearly linear in n and needs no precompu-
tation of coefficients. However, step (1) of the random generator requires a table of p(n)
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coefficients, where p(n) is the number of binary partitions of n, which is slightly super-
polynomial [4], since p(n) = n®1°s() It is however possible to do step (1) in polynomial
time. For this, we consider, for ¢ > 0 and n, 7 > 1 the coefficient SY%9) defined as the sum
of 7y¥ /2, over all binary partitions of n where the largest part is 2° and has multiplicity
j. Note that S%9) = 0 unless j-2° < n; we denote by E, the set of pairs of positive
integers (7,7) such that j - 2° < n. Since ry = 1 and z, = || if X has one part, we have
the initial condition SV = 1 /n for j = 1 and 2/ = n. In addition, using the fact that
rx = (2]AM\A1| = 1) -7a\n, if A has at least 2 parts, and the formula for 2y, we easily obtain
the recurrence:

(2(n — 2¢) — 1)F

§d) = o S for (i, §) € E, with 20 < n,
valid for 7 = 1 upon defining by convention SU as the sum of S over all pairs

(7, j") € E, such that ¢/ < i.

Thus in step (1), instead of directly drawing A under P(\), we may first choose the
pair (i,7) such that the largest part of A is 2° and has multiplicity j, that is, we draw
(i,7) € E, under distribution P(i,j) = S /Sn. Then we continue recursively at size
n’ = n — 2%, but conditioned on the largest part to be smaller than 2° (that is, for the
second step and similarly for later steps, we draw the pair (i, j') in E,» N {i’ < i} under

distribution S,Sl;/’j/)/ST(j’O)). Note that |E.| = 37, m[17/2'] = ©(n). Since we need

all coefficients S57) for m < n and (i,j) € En, we have to store ©(n?) coefficients. In
addition, looking at the first expression in (4), it is easy to see that each coefficient SLind)
is a rational number of the form a/m! with a an integer having O(mlog(m)) bits. Hence
the overall storage bit-complexity is O(n®log(n)). About time complexity, starting at
size n we first choose the pair (7, ) (with 2 the largest part and j its multiplicity), which
takes O(|E,|) = O(n) comparisons, and then we continue recursively at size n — j - 2. At
each step the choice of a pair (7, j) takes time O(m) with m < n the current size, and the
number of steps is the number of distinct part-sizes in the finally output binary partition
A n. Since the number of distinct part-sizes in a binary partition of n is O(log(n)), we
conclude that the time complexity (in terms of the number of real-arithmetic comparisons)
to draw A is O(nlog(n)).
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