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Abstract

For k., ¢ > 1, a broom By, is a tree on n = k +.£ vertices obtained by connecting the
central vertex of a star K ;. with an end-vertex of a path on £ — 1 vertices. As B, 52 is a
star and B ,_1 is a path, their Ramsey number have been determined among rarely known
R(T,,) of trees T,, of order n. Erdés, Faudree, Rousseau and Schelp determined the value of
R(By ) for £ = 2k > 2. We shall determine all other R(By ;) in this paper, which says that,
for fixed n, R(Byn—¢.¢) decreases first on 1 < € < 2n/3 from 2n — 2 or 2n. -3 to [4] — 1, and
then it increases on 2n/3 < ¢ < n from [4] — 1 to [ 3| — 1. Hence R(B,_¢,¢) may attain
the maximum and minimum values of R(T},) as £ varies.
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1 Introduction

Given a graph G, the Ramsey number R(G) is the smallest integer N such that every red-
blue coloring of the edges of Ky contains a monochromatic G. Let T, be a tree of order n.
Finding R(T;,) for an arbitrary 75, is a difficult unsolved problem in Ramsey theory. Most works
focus on improving the known bounds, see [10]. Erdds and Sés conjectured that if a graph G
with average degree greater than n — 1, then G contains every tree of n edges, which implies
that R(T,) < 2n — 2 for n > 2. A result of Erdds, Faudree, Rousseau and Schelp in (4] yields

r(Ty) > [%”] _1, (1)

which is from (2) by minimizing the lower bound with b = 2a, and the lower bound can be
attained b}_' some brooms. For k¢ > 1, a broom By is a tree on k + £ vertices obtained by
connecting the central vertex of a star K; j with an end-vertex of a path on ¢ —1 vertices. Thus
By = K1k, Br2 = Ky p+1 and By ¢ = Ppyq, where Ppyq is a path of order £+ 1. They obtained
the following result.

Theorem 1. ([4]) Let k and ¢ be integers with £ > 2k > 2 and n = k + . Then

R(Bps) =n + {; Y



Thus R(Bgy) = f%} — 1 for £ € {2k, 2k + 1.2k + 2} and n = k + [, which attain the lower
bound in (1). In this paper, we shall determine the values of R(Bj.¢) for 1 < ¢ < 2k — 1.

Note that when k is fixed and ¢ is sufficient large, By ¢ is like the path P,; when ¢ is fixed
and k is sufficient large, By ¢ is like the star K . Among ruro!y'kl_u';wn Ramsey number of
trees, R(P,) and R(K,,-1) have been determined. For n > 2, “the exact value of R(P,) was
determined in [7] as

3.
BB = |5 -1,
and R(Kj,—1) was determined in [3] as

2n — 3 if n is odd,
2n — 2 otherwise.

R(I{Ln—l) = {

As B¢ = Pps1, Bry = K and Bgs = K g4, their Ramsey numbers can be determined by
the above results. It was proved that R(By3) = R(Kjg+1) in [1]. Thus we shall consider the
case { > 4 and k > 2.

Theorem 2. Let k and ¢ be integers with k > 2 and n =k + £. Then

if £€=2k—1,

ﬂ--l—[% -1
=i $fdis -2

_ ]
R(Brs) = { 2n — 2[%]

Remark. Roughly speaking, for fixed n, R(B,—_¢) decreases first on 2 < ¢ < 2"'3—_1 from
2n — 2 or 2n — 3 to [42] — 1, and then increases on 2=l < ¢ < n from [%"] —1to 3] -1
Hence R(B, _s¢) may attain the maximum and minimum values of R(T,) as ¢ varies.

2 Proofs

For any red-blue edge-coloring of Ky, denote R and B be the induced red and blue sub-
graph, respectively, and Ng(z) and Np(z) be the red neighborhood and blue neighborhood of
z, respectively. Let Ng[z] = Ng(z) U {z}, Nplz] = Np(z) U {z}, degr(z) = |Ng(z)|, and
degp = |Np(x)|. For a graph G and disjoint subset A and D, denote by G(A) the subgraph of
G induced by A, and G(A, D) the bipartite subgraph of G induced by A and D. If G is the
red-blue edge-colored Ky, we write Gr(A) = G(A)NR and Gg(A4, D) = G(A, D)N R. Notation
not specifically mentioned will follow from [2]. We do not distinguish the vertex set and the
graph if no danger of confusion.

Consider a tree 1), as a bipartite graph with two parts of size a and b, respectively, where
a < b. Observing that a red-blue edge-colored Kopip—2 with R = K,_1 U K,qp-1 contains
no monochromatic T},, and a red-blue edge-colored Ko, o with R = Kj_1 U K} contains no
monochromatic Tn, PHs Wi o0 W, 0k — wox ] 2

r 1
R, = max{za+ b—1,2b—1), bs b @

Note that By, is a bipartite graphs on parts of sizes a = [%] and b=k + L%, then

R(By¢) > max{k 4 %] _1, 2%+ QEJ " 1}. (3)



| Then G(A, D) contains a cycle Coy .

V \O\

We shall prove the cases { = 2k — 1 and ¢ = 4 in Theorem 2 jr the following two lemmas.

Lemma 1. Let k > 2 be an integer. Then
R(By2k-1) = 4k — 2.
Lemma 2. Let k > 2 be an integer. Then
R(Br4) =2k +3 ‘_"1“\
In order to prove Lemma 1, we need a result from [9]. “

Lemma 3. ([9]) Let G(A, D) be a bipartite graph on parts A and.D with |A| = k and |D| = 2k—2
such that
min{d(z): z€ A} > k(

]

Proof of Lemma 1. It is easy to see that R(Ba3) = 6, we assume that & > 3. As the lower
bound (3) implies R(Byor—1) = 4k — 2, it suffices to show the inverse inequality.

Let G be a red-blue edge-colored Kyr_». We ghall show that G contains a monochromatic
By ok-1- Since R(Co) = 3k — 1 for k > 3| see [6] G contains a monochromatic cycle Cyy.
Without loss of generality, we assume that this Cy; is blue and denote it by C:Ef). Let D =
G\ Céf). Then |D| = 2k — 2. If there exists a vertex z € Céf) such that |Ng(z) N D| > k — 1,
then G contains a blue By ar_;. We then assume that |[Ng(x) N D| < k — 2 for each = € CékB].
The fact +, o0

INg(z) N D| + |[Ng(z)ND|=|D| =2k -2

implies that |[Ng(z) N D| > k for each z € Céf), hence the number of red edges between Céf}
and D is at least 2k2. So there exists a vertex u € D such that

2k 2k?
E+1.

Ni)n€ P = =—— 2k
INr(u) N o' 2 157 = 35 =3 2

Let {ug,uy,...,ux} € Nr(u)N Céf), and A = C‘éf) \ {u1,us,...,ux}. Then |A| = k. Consider
the bipartite graph Gr(A, D). By Lemma 3, there is a red cycle Cy;. between A and D. Denote

by C,gf) the red Cy;,. Since Céf) contains A hence ug, so the graph on {us, ua, ..., ux}, u, ug, Céf}
induced by red edges contains a red By oj_1. E

Proof of Lemma 2. The lower bound (3) implies R(Byj4) = 2k + 3, and we shall show
R(Bi4) < 2k + 3. Let G be a red-blue edge-colored Kopy3. Assume that G contains no
monochromatic By 4.

Ifhk =2 2+3=7 As R(P;) = 6 < 7, we suppose that G contain a red P5. Label
the vertices of the path in order as {z,zs, ..., 25}, denote another two vertices as y;,y2. Since
there is no red By, all the edges between {x2,24} and {y1,y2} are red. If there is red edge
between {x1,z5} and {y1,y2}, say edge z5y2 is red. Then edges x5y1, Z3y1,73y2 are blue. Now



{xa, 23}, Y. T4, Y1, x5 contain a blue By 4, a contradiction. If all the edges between {z, 5} and
{y1,y2} are blue, then {x1.x2},y2, x4, y1, x5 contain a blue By 4, a contradiction.
Now we consider the case k > 3. As R(Kyr41) < 2k + 3, we suppose that there is a blue

(B) 4 _ (B

star K j+1, which is denoted by Kﬁ}_.rl. Let  be the center of K}/ ,, 1k+1 \ 1z} and

D=G\K®", . Then |[A|=|D|=k+1.

Claim. D induces a red Kj4;.

Proof. Suppose to the contrary, there is a blue edge uv in D. Since G contains no blue By 4,
the edges between {u,v} and A are all red, and thus all the edges between {u,v} and D\ {u,v}
are blue from the assumption that G contains no red By 4. Now consider the blue edges between
{u,v} and A. With a similar analysis, we get that D induces a blue K}, and all edges between
D and A are red.

Now, consider the adjacency between x and a vertex of D, say xu, no matter what the color
of zu is, we have a monochromatic By 4. leading to a contradiction and the claim is proved.

Now D is a red Kjyq. If there exists a red edge xw with w € D, then D U {z} induces a
red K;x1 with center w. As A = V(G) \ (D U {z}), a similar analysis for the above claim
tells us that A is a blue Kj,q. If the number of blue edges between A and D is at least
k + 2, then there exists a vertex y € A such that |[Ng(y) N D| > 2. Now choose two vertices
{y1,y2} € Ng(y)ND and two vertices {a1,a2} C A\y, then (A\{a1, a2,y Uy, 2}, y, a1, a2,
contains a blue By 4, a contradiction. Thus assume to the contrary, there exists a vertex z € D
such that |[Ng(z) N Al > {—%'(iﬂ = k > 2. If w,z are the same vertex, we can choose
two vertices {z1,22} C Ng(z) N A and three vertices {dy,d2,d3} € D\ z for [D| = k+1 > 4.
Then (D \ {d1,ds,d3,z}) U {21, 22,2}, 2,d1,dp,d3 contain a red B4 If w,z are differente
choose a vertex d; € D\ {z,w}, then (D\ {z,w,d1})U {21, 22}, z,d1, w, = contain a red By 4, a
contradiction.

Finally, assume that z is adjacent to D completely blue. Choose any set F' C AU D such
that |F| = k4 1 and denote rM =V(G)\ (FUz). A similar analysis for the claim says that M
is a red Kj1. The choice ofi,F‘:':tells us that AU D is a red Koo, hence G contains a red By 4,
which is a contradiction too. 0

Lemma 4. For integers k, 6, N with5 < £ <2k —2 and N > 2k + 2[§j — 1, let the edges of Kn
be colored by two colors i = 0,1 (mod 2). Suppose i is a color and x is a vertex such that

1Y) Yo

deg;(z) s mfltx{_iiegz-(v), deg; 1 (v)}-
If there exist vertices y,z C N;1(x), not necessarily distinct, satisfying
1. |Niy1{y) N Ni(z)| = k, and
2. deg;1(z) =N —¢

then G contains a monochromatic By r.



Proof. Since |N,.1(y) N N;(z)| = k, we can choose a subset A in N;y;(y) N N;(x) such that
|A| = k. Let H = G\ A, then |H| = N — k. Since R(Cy) = 3t — 1 for t > 3, H contains a

monochromatic Cy; in color j, denoted by Cg ), where

for 5 < ¢ < 2k — 2. The choice of vertex x implies deg,(x) > deg,,(z) > N — £, and thus

|Nifa] \ 4] + |8

> |H|+1,  |[Niale]\ A|+|C)] = 8] +1,

which implies that both N;[z]\ A and N;y;[z] \ A contain a vertex of Cé“:}.

Case 1. y = z. If j = i, namely, Céf) = Céi) is in color 1, there is a monochromatic By in
color 1 in AU {z}U Cr_(,?, and otherwise j = i + 1, there exists a monochromatic By ¢ in color
t+1in AU{y} U Cz(iﬂ}.

Case 2. y # z. Similarly, we can find a monochromatic By ¢ either in AU {z} U Cé':) or in
AU{y,z, z} UC&?. o

The next two lemmas are results about the extremal edges in graph that contains no path
~/Pt, in which e(G) is the number of edges of G.

A pof\d

Lemma 5. (/5]) Let t > 2 be an integer, and G a graph of order N that contains no P,. Then
e(G) < 2N

Lemma 6. (/8]) Let G(Xp,XR) be a bipartite graph on parts Xp and Xp with | Xg| < |Xp|.
If G(Xp, XR) contains no Psy with 2(t — 1) < |XRg|, then

e(G(Xp, Xr)) < (t — 1)[| X + | Xl - 2(t ~ 1)]-

Proof of Theorem 2. We may assume that 5 < ¢ < 2k — 2 from Theorem 1, Lemma 1 and
Lemma 2.
Set N = 2n — 2[£] —1 =2k +2|£] — 1. Let G be a regd-blue edge-colored Ky, and let R
and B be the induced red and blue subgraph, respectively. Without loss of generality, we may
assume that the maximal monochromatic degree of G is the maximum blue degree and r is a
vertex such that ; - sy 2 oYY
degp(z) = max{degp(v), degp(v)}. ¥ D4 TTEAA :

To simplify the notation, we write Xg = Np(z), Xp = Ng(z) and
t=¢+k—|Xp|l -1

The choice of = implies Ng(u) N Xg # 0 for each vertex u € X as otherwise Ng[z] C Ng(u)
and thus degp(u) > degg(zr), which is impossible. We shall separate the proof into three cases
depending on | Xpg|.



Case 1. |Xp| < k + £ — 1, and either G(Xg) contains a blue P;, denoted by P*
_ G(Xpg, XR) contains a blue Py, denoted Pfgt ),
;n M-( 7 d 4w In G(Xg U XR), let PP be the longest blue path extended from Pt{ ) such that one of its
»" end-vertices is in Xp if G(Xg) contains a blue P, or that from Py otherwise. If |[P®)| > ¢—1, /|
then there exists a blue By ¢. Thus we assume that |P | < ¢ —2, then PB) fails to contain dt
least |Xp| — (f —2 —t) = k + 1 vertices of Xp. Let y be the other end-vertex of P(). Then
|Nr(y) N Xg| > k+ 1. The maximality of |P(®)| implies [Ng(y)| > N —1—(£—2) = N — £ +1,
which and Lemma 4 imply that G contains a monochromatic By ;.
Case 2. | Xpg| >k +£—1.
Let P'B) be the longest blue path in G(Xp U Xp) that has an end-vertex in Xp. A similar
analysis in Case 1 implies that G contains a monochromatic By 4.

Case 3. |Xp| < k+ ¢ —1, and neither G(Xg) contains a blue P, nor G(Xp, Xg) contains a
blue Py;.

Ast=(+k—|Xp|—1>2, then | Xp|<{+k—3and |Xp|=N-1-|Xp| >k

Since G(XRg) contains no blue P;, Lemma 5 implies e(Gp(Xg)) < (t —2)|Xg|/2. The choice
of x implies that the min{degp(v), degg(v)} > |Xg| for each vertex v of G, and thus

e(Ge(Xp, Xr)) 2 | Xg| - | Xg| = (t — 2)|X&| = (IXg| — t + 2)| Xg|.
Since G(Xp, Xp) contains no blue Py, Lemma 6 yields
e(Gp(Xgp,Xr)) < Mp,

where
Mp = (t = 1)[|X5] + | Xzl —2(t - 1)]

.~ Claim for Case 3. G(Xg, Xg) has at most |Xg|(|Xp — k|) — 1 blue edges.

T A - ) = ' 5
A, | Proof. Sinee ptherwise, duppeic < Haaint , Ha., .ﬂk“w )

e(Gp(Xp,XR)) > |Xg| - max{|Xg| — t + 2,|Xp| — k} > mp. i 7 . A ‘ -z
) G YT 7
where / }*/ / A
mp = k(| Xg| — t +2) + (| Xr| = #)(|XB| - ; L5 S

Note that Mp and mp are upper and lower bound of number of blue edges in G(Xg, Xg),
respectively, and thus Mg > mp.
Case 3.1. ¢ is even. In this subcase, | Xg| + | Xg| =2k + £ —2 and

tZE—l—k—|XB|—1= | Xg| —k+1,
mp = k(k+1) + (| Xgr| — k)| XB| — k),

Mp = (|Xa| - ¥) || Xzl + k - (| Xzl - k)]
we have

mp — Mg = k> — 2k(| Xg| — k) + (| Xg| — k)> + k= (2k — | Xg|)> + k> 0,



which is a contradiction.
Case 3.2. ¢ is odd. In this subcase, | Xp| + | Xp| =2k + ¢ — 3 and
e PR = T = [ = Bt
mp = k* + (| Xg| — k)(| X8| - k),
Mp = (| Xg| — k+1)[|Xp| + k - (|Xr| - k) —2|.

L

We have

mp—Mp = (2k—|Xg|)®+3|Xg| —|XB| — 4k +2
(2k — | XR|)(2k — | Xg| —4) + 2k — € + 5.
For £ < 2k — 2is odd, we get |Xg| < [&F!] < 2k —3. If [Xg| < 2k — 4, mp — Mp >

2k —L+5>0;if b =2k — 3, mp — Mg = 2k — {4+ 2 > 0, a contradiction, hence the claim
holds. O

We now have

e(Gr(Xg)) > (‘);ﬁﬂ) (= 22)|XRI 5 (k— 12)|XRI_

and

e((Gr(XB, Xr)) > | Xg| - |XB| - [| XRI(|XB| — k) — 1] = k|Xg|+1,
Recall X = Ng(z), and thus

> INg(v)| > e(Gr(XB, Xr)) + 2¢(Gr(XR)) + | Xg| = 2k|Xg| + 1.

veXp

Therefore, there exist y,z C Xp = NR(ijl’lOt necessarily distinct, such that |[Ng(y) N Ng(z)| >
k+1and |[Nr(z)| = 2k+1 > N —¢. Then, Lemma 4 implies that G contains a monochromatic
By y. O
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