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Abstract

The 4 Color Theorem (4CT) implies that every n-vertex planar graph has an independent

set of size at least 7; this is best possible, as shown by the disjoint union of many copies of

K,. In 1968, Erdds asked whether this bound on independence number could be proved more

easily than the full 4CT. In 1976 Albertson showed (independently of the 4CT) that every

n-vertex planar graph has an independent set of size at least %". Until now, this remained

the best bound independent of the 4CT. Our main result improves this bound to %‘

1 Introduction

An independent set is a subset of vertices that induce no edges. The independence number
a(G) of a graph G is the size of a largest independent set in G. Determining the independence
number of an arbitrary graph G is widely-studied and well-known to be NP-complete. In fact,
this problem remains NP-complete, even when restricted to planar graphs of maximum degree 3
(see, for example, [5, Lemma 1]). Thus, much work in this area focuses on proving lower bounds
for the independence number of some special class of graphs, often in terms of |V(G)|. The
independence ratio of a graph G is the quantity %

An immediate consequence of the 4 Color Theorem [2, [3] is that every planar graph has
independence ratio at least i; simply take the largest color class. In fact, this bound is best
possible, as shown by the disjoint union of many copies of K4. In 1968, Erdds [4] suggested
that perhaps this corollary could be proved more easily than the full 4 Color Theorem. And in
1976, Albertson [1I] showed (independently of the 4 Color Theorem) that every planar graph has

independence ratio at least %. Our main theorem improves this bound to 13—3
Theorem 1. Fvery planar graph has independent ratio at least %

The proof of Theorem [I]is heavily influenced by Albertson’s proof. One apparent difference
is that our proof uses the discharging method, while his does not. However, this distinction is
largely cosmetic. To demonstrate this point, we begin with a short discharging version of the
final step in Albertson’s proof, which he verified using edge-counting. Although the arguments
are essentially equivalent, the discharging method is somewhat more flexible. In part it was this
added flexibility that allowed us to push his ideas further.
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The proof of our main result has the following outline. The bulk of the work consists in show-
ing that certain configurations are reducible, i.e., they cannot appear in a minimal counterex-
ample to the theorem. The remainder of the proof is a counting argument (called discharging),
where we show that every planar graph contains one of the forbidden configurations; hence, it
is not a minimal counterexample.

In the discharging section, we give each vertex v initial charge d(v) — 6, where d(v) is the
degree of v. By Euler’s formula the sum of the initial charges is —12. Our goal is to redistribute
charge, without changing the sum, (assuming that G contains no reducible configuration) so that
every vertex finishes with nonnegative charge. This contradiction proves that, in fact, G must
contain a reducible configuration. To this end, we want to show that G contains a reducible
configuration whenever it has many vertices of degree at most 6 near each other, since vertices
of degree 5 will need to receive charge and vertices of degree 6 will have no spare charge to give
away. (We will see in Lemma |§| that G must have minimum degree 5.) Most of the work in the
reducibility section goes into proving various formalizations of this intuition.

Typically, proofs like ours present the reducibility portion before the discharging portion.
However, because many of our reducibility arguments are quite technical, we make the unusual
choice to give the discharging first, with the goal of providing context for the reducible config-
urations. (Usually the process of finding a proof switches back and forth between discharging
and reducibility. By necessity, though, the proof must present one of these first.)

We start with definitions. A k-verter is a vertex of degree k; similarly, a k~-vertex (resp. k-
vertex) has degree at most (resp. at least) k. A k-neighbor of a vertex v is a k-vertex that is
a neighbor of v; and k™ -neighbors and k*-neigbors are defined analogously. A k-cycle is a
cycle of length k. A vertex set V7 in a connected graph G is separating if G \ Vi has at least
two components. A cycle C is separating if V(C) is separating. An independent k-set is an
independent set of size k. When vertices u and v are adjacent, we write u <> v; otherwise u - v.

For a vertex v, let H, denote the subgraph induced by the 5-neighbors and 6-neighbors of v.
Throughout the proof we consider a (hypothetical) minimal counterexample G, which will be a
triangulation. In Lemmal[2] we show that G has no separating 3-cycle. These properties together
imply that, for every vertex v, the subgraph induced by the neighbors of v is a cycle. If some
w € V(Hy) has dy,(w) = 0, then w is an isolated neighbor of v; otherwise w is a non-isolated
neighbor. A non-isolated 5-neighbor of a vertex v is crowded (with respect to v) if it has two
6-neighbors in H,. We use crowded 5-neighbors in the discharging proof to help ensure that
7-vertices finish with sufficient charge, specifically to handle the configuration in Figure

Figure 1: A 7-vertex v gives no charge to any crowded 5-neighbor.
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(a) Adjacent vertices u and v, with nonad- (b) Adjacent vertices u and v, with non-

jacent common 5-neighbors w and x. adjacent common neighbors w and x, of
degree 5 and 6.

Figure 2: The two instances of configuration H.

2 Discharging: A Warmup

As a warmup to our main proof, in this section we give a short discharging proof that every
planar triangulation with minimum degree 5 and no separating 3-cycle must contain a certain
configuration, which Albertson showed could not appear in a minimal planar graph with inde-
pendence ratio less than 2. (In fact, finding this proof helped encourage us to begin work on

9
the present paper.)

Lemma A. Let u and v be adjacent vertices, such that vow and uvz are 3-faces and d(w) =5
and d(z) < 6; call this configuration H. (See Figure[d) If G is a plane triangulation with
minimum degree 5 and no separating 3-cycle, then G contains a copy of H.

Proof. Assume that G has minimum degree 5 and no separating 3-cycle, but also has no copy
of H. This assumption leads to a contradiction, which implies the result. An immediate conse-
quence of this assumption (by Pigeonhole) is that the number of 5-neighbors of each vertex v
d(v)
2

is at most { J Below, when we verify that each vertex finishes with nonnegative charge, we

consider both the degree of v and its number of 5-neighbors. We write (a, b)-vertex to denote a
vertex of degree a that has b 5-neighbors.

We assign to each vertex v a charge ch(v), where ch(v) = d(v) — 6. Note that ), ch(v) =
2|E(G)| — 6]V(G)|. Since G is a plane triangulation, Euler’s formula implies that 2|E(G)| —
6|V (G)| = —12. Now we redistribute the charge, without changing the sum, so that each vertex
finishes with nonnegative charge. This redistribution is called discharging, and we write ch*(v)
to denote the charge at each vertex v after discharging. Since each vertex finishes with non-
negative charge, we get the obvious contradiction —12 = Y i, ch(v) = > -y ch*(v) > 0. We
redistribute the charge via the following three discharging rules, which we apply simultaneously
everywhere they are applicable.

(R1) Each 7T-vertex gives charge § to each 5-neighbor.

(R2) Each 7T-vertex gives charge % to each 6-neighbor that has at least one 5-neighbor.

(R3) Each 6-vertex gives charge % to each 5-neighbor.

We now verify that after discharging, each vertex v has nonnegative charge. We repeatedly
use that G has no copy of configuration H. In particular, this implies that the number of
5-neighbors for each vertex v is at most @.
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d(v) =5: Each (5,0)-vertex v has five 6™-neighbors, so ch*(v) > —1+5(2) > 0. Each
(5,1)-vertex v has four 6-neighbors, at least two of which are 7*-neighbors; so ch*(v) > —1 +
2(3) +2(2) > 0. Each (5,2)-vertex v has three 7"-neighbors (otherwise G contains a copy of
H), so ch*(v) = —=1+3(3) = 0.

d(v) = 6: Each (6,0)-vertex v has ch*(v) = ch(v) = 0. Each (6, 1)-vertex v has at least two
7+-neighbors, so ch*(v) > 0+ 2 (%) — (%) = 0. Each (6,2)-vertex v has four 7"-neighbors, so
ch*(v) =0+4(3) —2(3) =0.

d(v) =T: Each (7,0)-vertex v has ch*(v) > 1 —7(%) = 0. Each (7,1)-vertex v has six
6T -neighbors, at least two of which are 7*-vertices (namely, the neighbors that are two further
clockwise and two further counterclockwise around v from the 5-vertex; otherwise G has a copy
of H). Soch*(v) >1-1 (%) —4 (%) > 0. Each (7,2)-vertex has five 6T-neighbors, at least
three of which are 7T-vertices; so ch*(v) > 1 —2(3) —2(2) > 0. Each (7,3)-vertex has four
7*-neighbors, so ch*(v) =1 -3 (3) =0.

d(v) = 8: Now v has at most four 5-neighbors, and gives each of these charge %; also v gives
each other neighbor charge at most 1. Thus ch*(v) > 8 — 6 —4(3) — 4(2) > 0.

d(v) > 9: Now v gives each neighbor charge at most %, so ch*(v) > d(v) — 6 — d(v)(3) =
2(d(v) —9) = 0.

Thus =12 =" .y ch(v) = > oy ch*(v) > 0. This contradiction implies the result. O

3 Discharging

In this section we present the discharging argument for the proof of Theorem [I| It is convenient
to collect all of the reducibitiy lemmas that we use to analyze the discharging (but prove later).

Lemma 8. FEvery independent set J in a minimal G with |J| = 2, satisfies |[N(J)| > 9.

Lemma 9. A minimal G cannot have two nonadjacent 5-vertices with at least two common
neighbors. In particular, each vertex v in G has %d(v) or more 6T -neighbors.

Lemma 17. Every minimal G has no 6-vertex v with 6~ -neighbors uy, us, and us that are
pairwise nonadjacent.

Lemma 18. Every minimal G has no 6-verter v with pairwise nonadjacent neighbors uy, us,
and ug, where d(ui) =5, d(u2) <6, and d(uz) = 7.

Lemma 19. Let uy be a 6-verter with nonadjacent vertices us and uz each at distance two from
u1, where us is a b-vertex and ug is a 6~ -verter. A minimal G cannot have uy and ug with two
common neighbors, and also w1 and uz with two common neighbors.

Lemma 20. Every minimal G has no 7-vertex v with a 5-neighbor and two other 6~ -neighbors,
uy1, u2, and us, that are pairwise nonadjacent.

Lemma 21. Let vy, va, v3 be the corners of a 3-face, each a 6" -vertex. Let ui, us, ug be the
other pairwise common neighbors of vy, va, v3, i.e., ui 1S adjacent to v1 and va, ug is adjacent
to vo and vs, and us is adjacent to vs and vi. We cannot have |N({ui,us,us})] < 13. In
particular, we cannot have d(uy) = d(uz) =5 and d(us) < 6.

Lemma 22. Let uy be a T-vertex with nonadjacent 5-vertices us and us each at distance two
from ui. A minimal G cannot have uy and us with two common neighbors and also uy and ug
with two common neighbors.
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Lemma 23. Suppose that a minimal G contains a T-vertexr v with no 5-neighbor. Now v cannot
have at least five 6-neighbors, each of which has a 5-neighbor.

Theorem 1. Every planar graph G has independence ratio at least %

Proof. We assume that the theorem is false, and let G be a minimal counterexample to the
theorem; by “minimal” we mean having the fewest vertices and, subject to that, the fewest
non-triangular faces (thus, G is a triangulation). We will use discharging with initial charge
ch(v) = d(v) — 6. We use the following five discharging rules to guarantee that each vertex
finishes with nonnegative charge, which yields a contradiction.

(R1) Each 6-vertex gives % to each 5-neighbor unless either they share a common 6-neighbor and
no common 5-neighbor or else the 5-neighbor receives charge from at least four vertices;
in either of these cases, the 6-vertex gives the 5-neighbor i.

(R2) Each 8"-vertex v gives i—i— h?w to each 6~ -neighbor w where h,, is the number of 7*-vertices
in N(v) N N(w).

(R3) Each 7-vertex gives % to each isolated 5-neighbor; gives 0 to each crowded 5-neighbor; gives
% to each other 5-neighbor; and gives % to each 6-neighbor unless neither the 7-vertex nor
the 6-vertex has a 5-neighbor.

(R4) After applying (R1)—(R3), each 5-vertex with positive charge splits it equally among its

6-neighbors that gave it %

(R5) After applying (R1)—(R4), each 6-vertex with positive charge splits it equally among its
6-neighbors with negative charge.

Now we show that after applying these five discharging rules, each vertex v finishes with
nonnegative charge, i.e., ch*(v) > 0. (It is worth noting that if some vertex v has nonnegative
charge after applying only (R1)—(R3), then v also has nonnegative charge after applying (R1)—
(R5), i.e., ch*(v) > 0. In fact, the analysis for most cases only needs (R1)—(R3). The final two
rules are used only in Cases (iv)—(vi), near the end of the proof.) Since the sum of the initial
charges is —12, this contradicts our assumption that G was a minimal counterexample. Subject
to proving the needed reducibility lemmas, this contradiction completes the proof of Theorem

d(v) > 8 We will show that v gives away charge at most @. To see that it does, let v

first give charge i to each neighbor. Now let each 6™ -neighbor w take % from each 7T-vertex in
N(v) NN (w). Since G[N(v)] is a cycle, each 7"-neighbor gives away at most the 7 it got from
v. Each neighbor of v has received at least as much charge as by rule (R2) and v has given away
charge @. Now ch*(v) > ch(v) — 1d(v) = d(v) — 6 — 2d(v) = 2(d(v) — 8) > 0.

d(v) = 17: Let ug,...,ur denote the neighbors of v in clockwise order. First suppose that v
has an isolated 5-neighbor. By Lemma the subgraph induced by the remaining 6~ -neighbors
must have independence number at most 1. Hence v gives away charge at most either % + %
or 3 +2(); in either case, ch*(v) > ch(v) — 1 = 0. Assume instead that v has no isolated
5-neighbor. Suppose first that v has a (non-isolated) 5-neighbor. Now v has at most five total
6~ -neighbors, again by Lemma If v has at most four 6~ neighbors, then, since each 6~ -
neighbor receives charge at most 3, we have ch*(v) > ch(v) — 4(3) = 0. By Lemma 20} if v has
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exactly five 67 -neighbors, then one is a crowded 5-neighbor, which receives no charge from wv.
So, again, ch*(v) > 1 — 4(%) = 0. Finally, suppose that v has only 6"-neighbors. By Lemma
v gives charge to at most four 6-neighbors, so ch*(v) > ch(v) — 4(3) = 0.

d(v) =5: Since ch(v) = —1, we must show that v receives total charge at least 1. Let
ui,...,us be the neighbors of v. First suppose that v has five 6T-neighbors. Now v will
receive charge at least 4(%) unless exactly two of these neighbors are 7-vertices for which v is
a crowded 5-neighbor. However, in this case the other three neighbors are all 6-neighbors, so
ch*(v) > -1+ 2(%) + % = 0. Now suppose that v has exactly four 6™-neighbors, say u1, ..., us.
If v receives charge from each, then ch*(v) > —1 4 4(%) = 0; so suppose that v receives charge
from at most three neighbors. In total, v receives charge at least % from u; and wuo: at least
2(%) if uy is not a 6-vertex and at least % + 0 if u; is a 6-vertex. Similarly, v receives at least
3 in total from ug and us; so, ch*(v) > —1 4 2(3) = 0. Now suppose that v has exactly three
6T -neighbors, say u1,us,u3. Lemma |§| implies that uq, uo, ug are consecutive neighbors of v. If
u1 and ug are both 6-vertices, then v receives charge % from each. If both are 7T-vertices, then
v receives charge % from each and charge % from uo. So assume that exactly one of u; and us
is a 6-vertex, say ui. Now v receives charge % from u; and charge % from each of us and wus, for
a total of 3 + 2(3). In every case ch*(v) > ch(v) +1 = 0.

d(v) = 6: Note that (R5) will never cause a 6-vertex to have negative charge. Thus, in
showing that a 6-vertex has nonnegative charge, we need not consider it.

Clearly, a 6-vertex with no 5-neighbor finishes (R1)—(R3) with nonnegative charge. Suppose
that v is a 6-vertex with exactly one 5-neighbor. We will show that v finishes (R1)-(R3) with

charge at least %. Let u1,...,ug denote the neighbors of v and assume that wq is the only
5-vertex. By Lemma at least one of ui,us,us is a 7T-vertex, so it gives v charge i. If

one of ug and usg is a 6-vertex, then v gives charge only % to w1, finishing with charge at least
2(3) — 1. Otherwise, v receives charge at least % from each of ug and ug, so finishes with charge
at least 3(%) — % Similarly, if v has no 5-neighbor and at least one 8 -neighbor, then v finishes
(R1)—(R3) with charge at least 1.

Now suppose that v has at least two 5-neighbors. By Lemma [9] At most one of uy,us, us
can be a 5-vertex. Similarly, for uo,u4, ug; hence, assume that v has exactly two 5-neighbors.
These 5-neighbors can either be “across”, say u; and uy, or “adjacent”, say u; and wus.

Suppose that v has 5-neighbors u; and u4. Note that all of its remaining neighbors must
be 6T-vertices. At least one of uy,us, us must be a 7 -vertex; similarly for us, 14, ug. Now we
show that the total net charge that v gives to ug, u4, us is 0. Similarly, the total net charge that
v gives to ug, u1,us is 0. If both ug and us are 7*-vertices, then v gets % from each and gives
% to u4. Otherwise, one of usz and us is a 6-vertex and the other is a 7T-vertex; now v gets %
from the 7T -vertex and gives only % to uy. The same is true for ug, uq, us. Thus, v finishes with
charge 0.

Suppose instead that v has 5-neighbors u; and us. By Lemmas and either both of
us and us are 7t-vertices or one is a 6-vertex and the other an 8T-vertex. The same holds
for uq and ug. Let wi,...,wg be the common neighbors of successive pairs of vertices in the
list ug, u1, ug, us, ug, us, ug. Note that wy <> wa, since u is a 5-vertex and {v, ug, w1, wo,uz} C
N(up). Similarly, wy ¢+ ws. (See Figure [3]) By Lemma [9] since G has no separating 3-cycle,
wy and w3 are 6T-vertices. Consider the possible degrees for us, u4, us, ug. Up to symmetry,
they are (i) 7+,7T, 7T, 7%, (ii) 7*,8%,71,6, (iii) 87,7+,6,71, (iv) 8",6,6,8", (v) 6,6,8",8T,
and (vi) 6,8",8% 6.

In Case (i), v receives charge at least 4(3), so ch*(v) > 0. In Case (ii), v receives charge
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Figure 3: The closed neighborhood of v and some nearby vertices.

at least T+ (5 + & + &)+ 1, s0 ch*(v) > 1— (3 + 1) = 0. In Case (iii), v receives charge at
least (§+ 1)+ 3+ 7 = 2. Recall that wg is a 6T-vertex, by Lemma @ If wo is a 6T -vertex, then
v gives only 1 to ug, so ch*(v) > £ — (3 +3) = 0. So suppose that wy is a 5-vertex. Now in
each case v gets charge at least % back from wg, via (R4). If wg is a 6-vertex, then ugy receives
charge 2(%) + i and sends back % to each of v and ws. Otherwise, ws is a 7T-vertex, so uz sends
ug charge at least %, and v gets back at least %. Thus, in each instance of Case (iii), we have
ch*(v) > 0. So we are in Cases (iv), (v), or (vi).

Case (iv): 81,6,6,8". If wy is a 6T-vertex, then both u; and us are sent charge by four
vertices and hence v gives away at most 2(%). Since v gets at least % from each of ug and wug,
we have ch*(v) > 2(3) — 2(3) = 0. Hence, we assume that w, is a 5-vertex.

Now if w; is a 6-vertex, then u; receives charge %, so gives back % to v. If instead w; is a
7t-vertex, then u; receives charge at least % from v and w; together and then charge at least
% + % from ug for a total of %. Since w1 has only one 6-neighbor, it gives the extra % back to v
by (R4). The same holds for ug, so v gets % back from each of w; and wy. So, the total charge
that v gets from wug, w1, uo, ug is at least % + % + % + % = %.

Suppose that us has at least two 5-neighbors. Now one of them, call it x, is a common
neighbor with either ug or us, so we can apply Lemma [19to {v, we, z} (again x ¢ we, since wo
has two other 5-neighbors; x cannot be identified with one of these other 5-neighbors, since G
has no separating 3-cycle). Similarly, us has at most one 5-neighbor. Hence, by our argument
above, both us and us finish (R1)-(R3) with charge at least 3. Now we show that us has at
most three 6-neighbors; similarly for us.

Suppose that uy4 has at least four 6-neighbors. Define y by N(u4) = {v,us, ws,y, wq, us}.
Recall that we <> w; and wy <> w3, as noted before Case (i). If y is a 6-vertex, then we can
apply Lemma 19| to {us,y,u1}. (We cannot have y = wy, since letting J = {ug, us, w1} gives
|J| =3 and [N(J)| < 6+6+5—1—2—23 =11, which contradicts Lemma [6]) So instead,
both w4 and ws must be 6-vertices. We can apply Lemma to {v,we, w5} unless wy > ws,
so assume this. Also, we can apply Lemma to {v,we, ws} unless wy <> wy; so assume this.
Hence, N(w2) 2 {u1, ug, w1, ws, wy, ws}, which is a contradiction since d(ws) = 5.

Thus, we conclude that u4 has at most two 6-neighbors other than us, so at most two 6-
neighbors that finish (R1)-(R3) with negative charge. An analogous argument holds for us.

Hence v gets at least & from each of uy and us via (R5), so ch*(v) >0 —2(3) + 3 +2(3) = 0.
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Case (v): 6,6,8",8T. Note that v receives charge at least 2(2) = 2 from us and ug. If
woy is a 6T-vertex, then wu; receives charge from four neighbors, so v gives away charge at most
74 %. Thus ch*(v) > 0. So assume w, is a 5-vertex. First, we show that v gets back at least
% from wy. If d(wy) = 6, then uy gets charge % + i + % = %, so returns charge % to each of v
and w;. Otherwise w; is a 7T-vertex, so ug sends charge % to u1, and uq returns at least % to
v. Thus, the total charge that v gets from us, ug, and uy is at least 2(%) + % = g.

If ws is a 6-vertex, then v gets back charge & from ug, via (R4), so ch*(v)0—2(3)+Z+1 = 0.
Instead, assume w3 is a 7"-vertex. Now we show that v gets charge at least % from uz by (R5).
Let y be the neighbor of ug other than v, ug, ws, w4, ug. Applying Lemmato {ua,uq,y}, shows
that y is an 8T-vertex. If wy is a 5-vertex, then we apply Lemma (19| to {v, w2, w4} to get a
contradiction (w4 cannot be adjacent to we, since wo already has two other 5-neighbors, and wy
cannot be identified with u; or ws, since G has no separating 3-cycles). Hence wy is a 6T-vertex.
So us receives charge at least i from w3 and at least %—I—% from y. After us gives charge % to ug,
it has charge at least %. So, by (R5), us gives each of its at most three 6-neighbors (including
v) charge at least 1(2) = L. Thus, ch*(v) > -1+ +1=0.

Case (vi): 6,8%,8%,6. First suppose that wy is a 6*-vertex. Note that v gets charge at
least 2(%) from u4 and wus, so it suffices to show that v gives net charge at most % to each of uy
and uo. We consider uyp; the case for ug is symmetric. If wy gives charge to uy, then uy receives
charge from four neighbors, so it gets charge only i from v. Recall that w; must be a 6T-vertex,
as noted before Case (i). Thus wy fails to give charge to u; only if uy is a crowded 5-neighbor
of wy; suppose this is the case. So w; is a 7T-vertex and ws is a 6-vertex. Now u; gets charge
% + i + % = %, so up returns charge % to each of wy and v, via (R4), as desired. By symmetry,
uy also returns 3 to v. Thus ch*(v) > 0—2(3) + 2(2) 4+ 2(§) = 0. So instead, assume that ws
is a H-vertex.

Now we show that ug returns é to v via (R4). By symmetry the same is true of u;. If ws is
a 6-vertex, then v gets back % from ug, since uo receives % + i + % and returns % to each of wsg
and v. So assume, that ws is a 7T-vertex. If wy <> wo, then we apply Lemma |8 to {w2, us}; so
wy ¥ we. If wy is a 67 -vertex, then we apply Lemma (19| to {v, we, w4} to get a contradiction
(as above, wy cannot be identified with u; or ws, since G has no separating 3-cycle). Thus, wy
is a 7T-vertex. So ug has at least three 7T-neighbors and at most two 6-neighbors. Thus, after
ug gives charge i to ug, by (R5) it gives charge %(%) = i to v. So in each case, ug gives at least
1 to v via (R5). Since the same is true of ug, we have ch*(v) > 0—2(3) +2(2) +2(3) =0. O

4 Reducibility

It is quite useful to know that a minimal counterexample has no separating 3-cycle; we prove
this in Lemma [2l When proving coloring results, such a lemma is nearly trivial. However, for
independence results, it requires much more work. Albertson proved an analogous lemma when
showing that planar graphs have independence ratio at least %. Our proof generalizes his to the
broader context of showing that a minor-closed family of graphs has independence ratio at least
¢ for some rational c¢. We will apply this lemma to planar graphs and will let ¢ = %

Lemma 2. Let ¢ > 0 be rational. Let G be a minor-closed family of graphs. If G is a minimal
counterexample to the statement that every n-vertex graph in G has an independent set of size
at least cn, then G has no separating 3-cycle.
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Proof. Suppose to the contrary that G has a separating 3-cycle X. Let A; and Ay be induced
subgraphs of G with V(A1) NV (A) = X and A1 U Ay = G.

Our plan is to find big independent sets in two smaller graphs in G (by minimality) and piece
those independent sets together to get an independent set in G of size at least ¢|G| (for brevity,
we write |G| for |[V(G)|). More precisely, we consider independent sets in each A;, either with
X deleted, or with some pair of vertices in X identified. In Claims 1-3, we prove lower bounds
on «(G) in terms of [A;| and [Az|. In Claim 4, we examine |A;| and |Az| modulo b, where ¢ = #
in lowest terms. In each case, we show that one of the independent sets constructed in Claims
1-3 has size at least ¢|G|. Our proof relies heavily on the fact that a(H) is an integer (for every
graph H), which often allows us to gain slightly over c|H|.

Claim 1. a(G) = [c(|A1| — 3)] + [c(]A2]| — 3)].

The union of the independent sets obtained by applying minimality of G to A; \ X and
Ay \ X is independent in G.

Claim 2. o(G) > [c(|A;| — 2)] + [¢|A4;]] — 1 whenever {i,j} = {1,2}.

For concreteness, let ¢ = 1 and j = 2; the other case is analogous. Apply minimality to
A to get an independent set Iy in Ag with |Ia] > [c¢|As]]. Form A} from A; by contracting
X to a single vertex w. Apply minimality to A} to get an independent set I; in A} with
|I] = Je(|A1] —2)]. If u € I, then I U I \ {u} is independent in G' and has the desired size.
Otherwise, I} U Iy \ X is an independent set of the desired size in G.

Claim 3. a(G) = [c¢(JA1| = 1)] + [e(|A2] = 1)] — 1.

Let X = {x1,22,23}. For each k € {1,2} and t € {2,3}, form A, from A by contracting
r12¢ to a vertex xp;. Applying minimality to Aj; gives an independent set Ij; in Ay with
[Tial > [e(l44] - 1)].

If at most one of I;; and Iz; contains a vertex of X (or a contraction of two vertices in
X), then to get a big independent set, we take their union, discarding this at most one vertex.
Formally, if {z+,x5—¢+} NI = 0, then (I1; UI>4) \ X is an independent set in G of the desired
size. So assume that each of I, and I, contains a vertex (or a contraction of an edge) of X.

Now we look for a vertex x, of X such that each of I1; and I>; contains x, or a contraction
of z,. Formally, if x5y € I y N Io4, then ([;;UI>;)\ X is an independent set in G of the desired
size. Similarly, if x14 € I and xo; € Iy, then ([;; Uy U{x1}) \ {21+, 22} is an independent
set in G of the desired size.

So, by symmetry, we may assume that x19 € I12 and z3 € Iz. Also, either 13 € I; 3 or
x93 € Inz. If 13 € I13, then (l22 UI13) \ {z13} is an independent set in G of the desired
size. Otherwise, xo3 € Iz 3 and ([12U 23U {z1})\ {z1,2, 223} is an independent set in G of the
desired size.

Claim 4. The lemma holds.

Let a and b be positive integers such that ¢ = ¢ and ged(a,b) = 1. For each i € {1,2}, let

N; = |A;| — 3 and for each j € {0,1,2,3}, choose k‘zj such that 1 < k:f < b and k:lj = a(N; + j)

(mod b). In other words, [¢(N; +j)| = §(Ni +j) + b_bkg. Intuitively, if there exist ¢ and j such

that &) is small compared to b, then we improve our lower bound on the independence number
(in some smaller graph) by the fact that the independence number is always an integer. In the
present claim, we show that if some k] is small, then G has an independent set of the desired

size. In contrast, if all k‘f are big, then we get a contradiction.
By symmetry, we may assume that k) < k9.
Subclaim 4a. k) + k9 > 2b+1—3a and ki + k3 >b+a+1 and k} + kI > b+a+1 and
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k2 +k3>b+a+ 1.
If any independent set constructed in Claims 1-3 has size at least ¢|G|, then we are done. So
we assume not; more precisely, we assume that each of these independent sets has size at most

a‘Glfl Fach of the four desired bounds follow from simplifying the inequalities in Claims 1-3.
Note that |G| = N1 + Ny + 3.

_ 1.0 _ 1.0
By Claim 1, we have a(G) > [c(|A1] — 3)] + [¢(|A2] = 3)] = &(Ny + Np) + 255 4 22k —

b|G\+M Hence kY + k9 > 2b+ 1 — 3a.

By Claim 2, we have a(G) > [c(|A1| — 2)]+[c|Az2|] -1 = $(N1+14+N2+3)+ bik%-l-bibkg—l =
b|G\+M 1. Hence kl +k2 b+ a+ 1. Similarly, k3+k2 b+a+1.

By Claim 3, we have a(G) > [c(|A1| = 1)] +[e(|A2] = 1)] =1 = §(N1+2+ No+2) + b;k% +
b b|G|+M 1. Hence k¥ + k3 > b+a+ 1.

NOW to get a contradiction, it suffices to show that k:f < a for some i € {1,2} and some
j € {1,2,3}; since k:f < b for all ¢ and 7, this will contradict one of the equalities above.
Subclaim 4b. Either k% <a or k% < a. In each case we get a contradiction, so the claim is
true, and the lemma holds.

By Subclaim 4a, we have k? + kY > 2b+ 1 — 3a. By symmetry, we assumed k9 > kY, so we
have k9 > 2H=3¢ GSince, k3 = k9 +2a (mod b) and 2+5=3¢ + 24 > b, we have k% < k9 +2a—b.
Now we consider two cases, depending on whether k9 <b—aor k9 >b—a+1. Ifk) <b—a
then k3 < kY +2a—b < (b—a)+2a—b = a, a contradiction. Suppose instead that k9 > b—a+1.
Now ki = k§+a (mod b). Since kJ > b—a+1, we see that k) +a > b+1,s0 ki < k)+a—b < a,
a contradiction. O

Now we turn to proving a series of lemmas showing that G' cannot have too many 6~ -vertices
near each other. Many of these lemmas will rely on applications of the following result, which
we think may be of independent interest. The idea for the proof is to find big independent sets
for two smaller graphs, and piece them together to get a big independent set in G.

For S C V(G), let the interior of S be Z(S) = {x € S | N(z) C S}. For vertex sets
Vi, Vo C V(G) we write Vi <> Va if there exists an edge vive € E(G) with v1 € V] and vg € Vy;
otherwise, we write V; ¢ V.

Lemma 3. Let G be a minor-closed family of graphs. Let G be a minimal counterexample to
the statement that every n-vertex graph in G has an independent set of size at least cn (for some
fized ¢ > 0). Let Si,...,S; be pairwise disjoint subsets of a nonempty set S C V(G) such that
t < |S| and G[S;] is connected for all i € {1,...,t}. Now there exists X C {1,...,t} such that
Si ¢ Sj for all distinct i,j € X and o (G [Z(S) U U;ex Si]) < 1X] + [e(|S] = 6)].

Proof. Suppose to the contrary that a (G [Z(S)UU;ex Si]) = |X| + [e(|S] —t)] for all X C
{1,...,t} such that S; ¢ S; for all distinct 7,5 € X. Create G’ from G by contracting S; to
a single vertex w; for each ¢ € {1,...,t} and removing the rest of S. (Note that we allow
t = 0.) Since t < |S], we have |G'| < |G| and hence minimality of G gives an independent
set I in G' with |[I| > ¢|G'| = ¢(|G| — |S| +t). Let W = I N{ws,...,wt}. By assumption,
we have « (G [Z(S) U U, ew Si]) = W[+ [e(]S| —¢)]. If T is a maximum independent set in
GIlZ(S)u U, ew S;], then (I\W)UT is an independent set in G of size at least |I| —|W|+|T| >
c(|G] = |S| + t) W]+ (IW]+ [e(|S| —t)]) = |G|, a contradiction. O
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We will often apply Lemma [3| with S = J U N(J) for an independent set J. In this case, we
always have J C Z(S). We state this case explicitly in Lemma [4]

Lemma 4. Let G be a minor-closed family of graphs. Let G be a minimal counterexample to
the statement that every n-vertex graph in G has an independent set of size at least cn (for some
fized ¢ > 0). No independent set J of G and nonnegative integer k simultaneously satisfy the
following conditions.

L. 7] = e(IN ()| + k).

2. For at least |J| — k vertices x € J, there is an independent set {uy, vy} of size 2 in

N@)\ ] Nw).

yeJ\{z}

Proof. Suppose the lemma is false. Let S = JUN(J) and t = |J| — k. Pick x1,...,2¢4 € J
satisfying condition (2). For i € {1,...,t}, let S; = {x;,ug,;, vy, }. Applying Lemma 3| we
get X C {1,...,t} such that S; ¢ S; for all distinct 4,j € X and a (G [JUU;ex Si]) <
X|+Te(]S] ~ 6)]- By (2), we have o (G [ UUsex $1]) > (7\X) U,y {ua.vs} | > (U] |X])+
2| X[ = [X[+]J]. Hence [X[+[c(|S] = t)] > [X][+]J], giving [c(|S| = )] > [J] = [e(IN(J)| + k)]
by (1). But [S| —t = (|| + [N(J)]) = (|J| = k) = [N(J)[ + k; so [c(|S| = )] = [e(IN ()| + k)],
contradicting the previous inequality. This contradiction finishes the proof. O

As a simple example of how to apply Lemma [ we note that it immediately implies that
every planar graph G has independence ratio at least % By Euler’s theorem, GG has a 5~ -vertex
v. If d(v) < 4, then let G’ = G\ (vU N(v)). Let I’ be an independent set in G’ of size at least
(n—>5)/5, and let I =I' U {v}. If instead d(v) = 5, then apply Lemma with ¢ = %, J = {v},
and k = 0; since Kg is nonplanar, v has some pair of nonadjacent neighbors. This completes
the proof.

Lemma 5. Let G be a minor-closed family of graphs. Let G be a minimal counterexample to
the statement that every n-vertex graph in G has an independent set of size at least cn (for some
fized ¢ > 0). For any non-mazximal independent set J in G, we have

1_
C!J|J +2.
C

N> |

Proof. Assume the lemma is false and choose a counterexample J minimizing |J|. Suppose
G[J U N(J)] is not connected. Now we choose a partition {Ji, ..., Ji} of J, minimizing k, such
that £ > 2 and G[J; U N(J;)] is connected for each i € {1,...,k}. Applying the minimality of
|J| to each J; we conclude that |N(J;)| = |1¢|J;|| + 2 for each i € {1,...,k}. The minimality
of k gives N(J)| = U N(| = S INCE)L so NG| > 2k + S8, [L590]] > b+
Ele =¢| 1| = 2+ L=<]J], a contradiction. Hence, G[J U N(J)] is connected.

Let S = JU N(J). Apply Lemma [3| with ¢ = 1 and S; = S. This shows that either
V| < a(GIZ(S)]) < [e(|S]—1)] or a(G[S]) < 1+ [e(|S] —1)], since the only possibilities
are X = () and X = {1}. By assumption J is a counterexample, so |[N(J)| < |1=<[J|] +1,
which implies that |S| = |J| + [N(J)| < [J| + |[E£41J]] +1 = LL‘!'J + 1. Now [¢(|S]—1)] <

{c(({'—i'J +1)— 1)1 = {c U—‘C]'H < [|J]|] = |J|- Hence, we cannot have X = () in Lemma

THE ELECTRONIC JOURNAL OF COMBINATORICS 23 (2016), #P00 11



Instead, we must have X = {1}, which implies that «(G[S]) < 1+ [¢(|S|—1)]. Since J
is non-maximal, we have S # V(G), so we may apply minimality of G to G[S] to conclude
that a(G[S]) = [¢|S|]. Combining this inequality with the previous one, we have [c|S|] =
[¢(]S| —1)]. Now the upper bound on [¢(]|S| — 1)] from the previous paragraph gives [¢|S|]| =
[¢(]S] = 1)] < |J|. Finally, applying Lemma[3]with ¢ = 0 (simply deleting JUN(.J)) shows that
|J] < [e(]S])]. These two final inequalities contradict each other, which finishes the proof. [

Lemmas hold in a more general setting than just ¢ = =, as we showed. In the rest of this

13>
section, we consider only a planar graph G that is minimal among those with independence ratio
less than % To remind the reader of this, we often call it a minimal G. Applying Lemma

with ¢ = % gives the following corollary.

Lemma 6. For any non-maximal independent set J in a minimal G, we have
10
N> |G| +2

In particular, if |J| = 1, then |N(J)| = 5; if |J| = 2, then |N(J)| = 8; and if |J| = 3, then
IN(J)| > 12.

The case |J| = 1 shows that G has minimum degree 5, and this is the best we can hope for
when |J| = 1. Recall that G is a planar triangulation, since we chose it to have as few non-
triangular faces as possible. As a result, we can improve the bound when |J| = 2 to |[N(J)| > 9.
Similarly, in many cases we can improve the bound when |J| = 3 to |N(J)| > 13. These
improvements are the focus of the next ten lemmas. In many instances, the proofs are easy
applications of Lemma |3] First, we need a few basic facts about planar graphs.

Lemma 7. If G is a plane triangulation with no separating 3-cycle and 6(G) =5, then
(a) If v € V(G), then G|N(v)] is a cycle; and
(b) G is 4-connected with |V (G)| > 12; and

(c) If v,w € V(Q) are distinct, then G[N(v) NN (w)] is the disjoint union of copies of K1 and
K.

Proof. Plane triangulations are well-known to be 3-connected. Property (a) follows by noting
that G\ {v} is 2-connected and hence each face boundary is a cycle; so G[N (v)] has a hamiltonian
cycle. This cycle must be induced since G has no separating 3-cycle.

For (b), suppose that G has a separating set {z,y,z}. Since G has no separating 3-cycle,
we assume that zy ¢ E(G). By (a), N(z) induces a cycle C. Since G is 3-connected, x must
have a neighbor in each component of G\ {z,y,z}. So C has a vertex in each component of
G\ {z,y,z} and hence C'\ {z,y, 2} is disconnected. But = ¢ V(C) and since zy ¢ E(G), also
y & V(C). So, C \ {z} is disconnected, which is impossible. Since G is a plane triangulation
and 6(G) = 5, we have 5|G| < 2|E(G)| = 6|G| — 12, so |G| > 12.

By (a) and 6(G) = 5, it follows that no neighborhood contains K3 or Cy. If G[N(v) N N (w)]
had an induced P3 (path on 3 vertices), then the neighborhood of the center of this P would
contain K3 or Cy. This proves (c). O

Lemma 8. FEvery independent set J in a minimal G with |J| = 2, satisfies |[N(J)| > 9.
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Proof. By Lemma [7|(b), |G| > 12; so J cannot be a maximal independent set when [N (.J)| < 7.
Hence, by Lemma [6| we may assume |[N(J)| = 8. Let J = {x,y}. If we can apply Lemma
with k = 0, then we are done. If we cannot, then by symmetry we may assume that there is
no independent 2-set in N(x) \ N(y). So N(z)\ N(y) is a clique. Since d(z) > 5 and N(x)
induces a cycle, |[N(z)\ N(y)| < 2. Now, since x is a 5t -vertex, G[N(x) N N (y)] induces Ps; this
contradicts Lemma [7]c). O

A direct consequence of Lemma [§is the following useful fact.

Lemma 9. A minimal G cannot have two nonadjacent 5-vertices with at least two common
d(v

neighbors. In particular, each verter v in G has (T or more 6T -neighbors.

Proof. The first statement follows immediately from Lemma Now we consider the second.
Let v be a vertex with d(v) = k and neighbors u, ..., u; in clockwise order. If more than k/2
neighbors of v are 5-vertices, then (by Pigeonhole) there exists an integer ¢ such that u; and
u;4+2 are b-vertices (subscripts are modulo k). Now we apply Lemma [§ to u; and u;+2. Recall
that u; and ;42 are nonadjacent, since G has no separating 3-cycle, as shown in Lemma[2l O

Now we consider the case when |.J| = 3. Lemma [6] gives |N(J)| > 12. Our next few lemmas
show certain conditions under which we can conclude that |N(J)| > 13.

Lemma 10. Let J be an independent set in a minimal G with |J| = 3 and |[N(J)| > 12.
Choose S1,S2 € JU N(J) such that S N Sy = 0 and both G[S1] and G[S2] are connected. If
a(G[S; U J)) = 4 for each i € {1,2}, then |[N(J)| > 13.

Proof. Suppose not and choose a counterexample minimizing |J U N(J)| — |S; U Sa|. Clearly
|IN(J)| = 12. First we show that S; U Sy = J U N(J). It suffices to show that G[J U N(J)]
is connected, since then we can add to either S; or Sy any vertex in N(S7 U Sq2) \ (S1 U S2).
In particular, we show that every x € J satisfies (x U N(2)) N (Uyen\(zp)(y U N(y))) # 0.
Suppose not. By Lemma we have | Uye (o3 N(y)] = 9. Now [Uyes N(y)| = 9+d(z) > 14, a
contradiction. Now we must have G[JU N (J)] connected, so we can assume S; U Sy = JUN(J).
Similarly, we assume S; <+ Ss.

Now we apply Lemmawith S=JUN(J),t=2,and S; and Sy as above. Since S; <> Sa,
we have |X| < 1. We cannot have |X| = 1 since, by hypothesis, «(G[S; U J]) > 4 for each
i € {1,2}. So suppose that X = (). Now we have a(G[J]) > |J| =3 = [Z(|JUN(J)|—2)] =
{%(3 + 12 — 2)]. This contradiction completes the proof. O]

Lemma 11. Let J = {uy,uz,us}. If J is an independent set in a minimal G where
1. N(u1) \ (N(u2) U N(u3)) contains an independent 2-set; and
2. a(G[J U N(u2) UN(us)]) >4,

then |[N(J)| > 13.

Proof. Since G is a planar triangulation with minimum degree 5 and at least three 61-vertices
by Lemma [0} we have 5|G| + 3 < 2|E(G)| = 6|G| — 12 and hence |G| > 15. Thus J cannot be a
maximal independent set when |N(J)| < 11. So, by Lemma [} we know that |N(J)| > 12. Let
I be an independent set of size 2 in N(uq) \ (V(u2) U N(u3)).

First, suppose N(uz) N N(u3) # 0. We apply Lemma (10| with S; = {u;} U I and Sy =
{ug,us} U N(uz) U N(ug). Clearly, G[S1] is connected. Also, G[Ss] is connected since N (uz) N
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N(u3) # 0, by assumption. The set I U{ug,us} shows that a(G[S; U J]) > 4 and hypothesis (2)
shows that a(G[S2 U J]) = 4. So the hypotheses of Lemma [10] are satisfied, giving |N(J)| > 13.

Instead, suppose N (u2) NN (ug) = (). This implies N (uz2)\ (N (u1)UN(ug)) = N(uz)\ N(u1).
If N(u2)\ N(u1) contains an independent 2-set as well, then applying Lemma [4] with k = 1 gives
IN(J)| > 13, as desired. Otherwise, |N(uz2) \ N(u1)|] < 2, so G[N(uz2) N N(u1)] contains Ps,
contradicting Lemma [7(c). O

One particular case of Lemmal(l1]is easy to verify in our applications, so we state it separately,
as Lemma First, we need the following lemma.

Lemma 12. Let v be a Tt -vertez in G. If S C V(G) with {v} UN(v) C S and |S| > 10, then
a(G[S]) = 4.

Proof. If d(v) > 8, then the neighbors of v induce an 8*-cycle (by Lemma [7[(a)), which has
independence number at least 4; so we are done. So suppose d(v) = 7. Let uq, ..., u7 denote the
neighbors of v in clockwise order; note that G[N(v)] is a 7-cycle, again by Lemma [7j(a). Pick
wr,wg € S\ {v} UN(v)). Let H; = G[N(v) \ N(w;)] for each i € {1,2}. If H; contains an
independent 3-set J for some i € {1,2}, then J U {w;} is the desired independent 4-set, so we
are done. Therefore, we must have |H;| < 4 for each i € {1,2}. So, |[N(v) N N(w;)| > 3 and
hence Lemma [7|c) shows that N(v) N N(w;) has at least two components; therefore, so does
H;. It must have exactly two components or we get an independent 3-set in H;. Similarly, if
|H;| = 4, then H; has no isolated vertex. So, either H; is 2K5 or |H;| < 3. Now in each case we
get a subdivision of K3 3; the branch vertices of one part are v, wy, w2 and the branch vertices
of the other are three of the u;. This contradiction finishes the proof. O

Lemma 13. Let J = {uy,u2,us}. If J is an independent set in a minimal G where

1. N(u1) \ (N(u2) U N(u3)) contains an independent 2-set; and

2. G[JU N (uz2) U N (u3)] contains a 7T -vertex and its neighborhood,
then |[N(J)| > 13.

Proof. We apply Lemma using Lemma to verify hypothesis (2). To do so, we let S =
{u1,u2,us} U N(uz) U N(us), and we need that |{ui,ue,us} U N(uz) U N(ug)| > 10. This is
immediate from Lemma [§] since |S| > [{u1,uo, uz}| + [N (u2) UN(ug)| = 3+ 9 = 12. O

Lemma 14. Let J be an independent 3-set in G. Choose Si,S2,53 C JUN(J) such that G[S;]
is connected and S; N S; =0 for all distinct i,j € {1,2,3}. If IN(J)| < 13, then either

1. S; #» S; for some {i,j} C {1,2,3}; or
2. a(G[S; U J]) < 3 for some i € {1,2,3}.

Proof. This is an immediate corollary of Lemma [3| with S = JUN(J) and t = 3. If S; <> S; for
all {i,j} € {1,2,3}, then in Lemma 3| either |X| =1 or | X| = 0. We cannot have |X| = 0, since
a(GIZ(9)]) = a(GlJ]) = |J| =3 = [5(13+ 3 — 3)]. Hence |X| = 1, which implies (2). O

The next lemma can be viewed as a variant on the result we get by applying Lemma [ with
|J| =3 and k =0 (and ¢ = ). As in that case, we require that each of N (uy)\ (N (uz) UN (u3))
and N(us2) \ (N(u1) U N(us)) contains an independent 2-set. However, here we do not require
that N(ug) \ (N(u1) U N(uz)) contains an independent 2-set. Instead, we have hypothesis (2)

below. Not surprisingly, the proof is similar to that of Lemma [
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Lemma 15. Let J = {uy,uz,us}. If J is an independent set in a minimal G such that
1. N(u;) \ (N(uj) UN(u3)) contains an independent 2-set M; for all {i,j} = {1,2}; and
2. ao(G[JUV(H)]) = 4, where H is uz’s component in G[{us} U N(J)]\ (M; U M,),
then |[N(J)| > 14.

Proof. First, we show that ug is distance two from each of u; and us. Suppose not; by symmetry,
assume that ug is distance at least three from uq. Now N (u3)\ (N (u1)UN (u2)) = N(uz)\ N (us2).
By Lemma (7} N(u3) N N(ug) consists of disjoint copies of K1 and K. Thus, since d(us) > 5,
we see that N (us3) \ (N(u1) U N(u2)) contains an independent 2-set. Now, if |[N(J)| < 13, then
applying Lemma [4] with k& = 0 gives a contradiction. Hence, ug is distance two from each of wuy
and us.

Choose disjoint subsets S, S2, 53 C J U N(J) where G[S;] is connected for all i € {1,2,3}
and {u;} UM; C S; for each i € {1,2} and uz € Ss, first maximizing |S3| and subject to that
maximizing |Si| + [Sa| + |S3]. Since J C S; U Sp U S3, maximality of |[S1| + |S2| + [S3| gives
S1USUSs =JUN(J).

Now we apply Lemma [3] with S = 57 U S2US3. To get a contradiction, we need only verify,
for each possible X, that a(G[Z(S)UU;cx Sil) = |X|+ [ (S| = [J])] = [X|+3. Since S3 «+ S
and S3 <> So, either | X| < 1 orelse X = {1,2}. In the latter case, M1 UMyU {u3} is the desired
independent 5-set. If instead X = (), then J is the desired independent 3-set.

So we must have X = {i} for some ¢ € {1,2,3}. If i € {1,2}, then M; U {us,uz_;}) is the
desired independent set. So instead assume that X = {3}. But, by the maximality of |Ss],
G[J U S3] contains ug’s component in G[{us} U N(J)]\ M1\ Ma. So by (2), G[J U S3] has an
independent 4-set, as desired. O

Again, one particular case of Lemma, [15]is easy to verify, so we state it separately.
Lemma 16. Let J = {uj,ug,us}. If J is an independent set in a minimal G such that
1. N(u;) \ (N(uj) UN(u3)) contains an independent 2-set M; for all {i,j} = {1,2}; and

2. ug’s component H in G[{us}UN(J)|\(M1UM2) satisfies |JUV (H)| > 10 and G[JUV (H)]
contains a 7T wvertex and its neighborhood,

then |N(J)| > 14.
Proof. We apply Lemma using Lemma [12] to verify hypothesis (2). O

Thus far, our lemmas have not focused much on the actual planar embedding of G. At this
point we transition and start analyzing the embedding, as well.

Lemma 17. FEvery minimal G has no 6-vertex v with 6~ -neighbors wy, ug, and us that are
pairwise nonadjacent.

Proof. Lemma [6] applied with J = {u1, ug, us}, yields 12 < [N ({u1, u2, uz})| < d(u1) + d(u2) +
d(u3) — 5. Hence, by symmetry, assume that the vertices are arranged as in Figure (a) with all
vertices distinct as drawn or as in Figure (b) with at most one pair of vertices identified.

The first case is impossible by Lemma [4] with k£ = 1, using the vertices labeled 2 for us and
those labeled 3 for us. When the vertices in Figure b) are distinct as drawn, we apply Lemma
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(a) A 6-vertex, v, with non-adjacent (b) A 6-vertex, v, with non-adjacent
neighbors w1, u2, and uz such that 6-neighbors w1, u2, and us.
d(u1) =5 and d(u2) = d(us) = 6.

Figure 4: The two cases of Lemma

with k& = 0, using the vertices labeled 2 for us, the vertices labeled 3 for ug, and those labeled 4
for uy. Instead, by symmetry and the fact that G contains no separating 3-cycle, assume that the
vertices labeled 2 and 3 that are drawn at distance four are identified; so |N ({u1, u2, ug})| = 12.
Now the pairs of vertices labeled 1 each have a common neighbor, so the vertices labeled 1
must be an independent set, to avoid a separating 3-cycle. Now, we apply Lemma using
the vertices labeled 4 for the independent 2-set. This implies that |V ({1, u2,us})| > 13, which
contradicts our conclusion above that |N({u1,u2, us3})| = 12. O

Lemma 18. FEvery minimal G has no 6-verter v with pairwise nonadjacent neighbors wy, uo,
and ug, where d(ui) =5, d(u2) <6, and d(uz) = 7.

Proof. Let J = {u1,uz,u3}. By Lemmalf] 12 < [N(J)| <546+ 7 —5 = 13, so at most one
pair of vertices in Figure [5|(a) are identified.

First, suppose the vertices in the figure are distinct as drawn. Suppose z ¢ y, as in Fig-
ure[5|(b). For each i € {1,2,3}, let S; consist of the vertices labeled i. Now for each i € {1,2, 3},
G|[S;] is connected. Clearly, for each i € {1, 2} the vertices labeled I; form an independent 4-set.
Since = 4 y, the vertices labeled I3 also form an independent 4-set. Note that S; <> S3 and
Sy <+ S3; however, possibly S1 ¢ Sa. If Sy > S, then we can apply Lemma[I4] to get a contra-
diction. So, we assume that S; ¢ So. But now we have an independent 5-set consisting of uq,
the two vertices labeled {1, I;} and the two vertices labeled {2, I5}; hence a(G[S1US2 U J]) > 5.
So, we can apply Lemma [3| to get a contradiction. So, instead we assume x < .

Suppose w # z, as in Figure[f|(c). For each i € {1,2,3}, let S; consist of the vertices labeled
i . Clearly G[S;] is connected for each i € {2,3}. Also, G[S1] is connected because x <> y. Note
that for each i € {1,3}, the vertices labeled I; form an independent 4-set. Since x <> y and
w 4 z, the vertices labeled I also form an independent 4-set. Note that S7 <+ Sy and S5 <+ S3;
however, possibly S; ¢ S3. If S1 + S3, then we apply Lemma [14] to get a contradiction. So
instead we assume that S7 ¥ S3. But now we again have an independent 5-set, consisting of uq,
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the two vertices labeled {1, I }, and the two vertices labeled {3, I3}; hence a(G[S1 US3UJ]) > 5.
So, again we apply Lemma [3| to get a contradiction. Thus, we instead assume w <> z.

Now consider Figure (d) For each i € {1,2,3}, let S; consist of the vertices labeled i. Note
that G[S;] is connected for each i € {2,3}. Also, G[S1] is connected because = <> y and w > z.
Clearly, the vertices labeled I; form an independent 4-set for each i € {1,3}. Since z «> y, the
vertices labeled I also form an independent 4-set. Note that S7 <+ So and Sy <> S3; however,
possibly S7 ¢ S3. If S1 <+ S3, then we apply Lemma [14] to get a contradiction. So, instead we
assume that S; ¢ S3. But now we have an independent 5-set, consisting of u1, the two vertices
labeled {1, I}, and the two vertices labeled {3, I3}; hence a(G[S1 U S3 U J]) = 5. So, we apply
Lemma [3] to get a contradiction.

Hence, we may assume that exactly one pair of vertices in Figure [ff(a) is identified. No
neighbor of u; can be identified with a neighbor of ug, since then w; and ug would have three
common neighbors, violating Lemma Hence, to avoid separating 3-cycles, we assume that
a vertex labeled 2a is identified with a vertex labeled @ (the case where a vertex labeled 2b
is identified with a vertex lableled @ is nearly identical, so we omit the details). But now the
rightmost vertex labeled 1 and the leftmost vertex labeled 1 are on opposite sides of a separating
cycle and hence nonadjacent. Therefore, uo together with the vertices labeled 1 is an independent
4-set. So, now we apply Lemma [11]|to get a contradiction, using the vertices labeled 2b for the
independent 2-set. O

Lemma 19. Let uy be a 6-vertex with nonadjacent vertices us and uz each at distance two from
u1, where us is a 5-vertex and ug is a 6~ -verter. A minimal G cannot have uq and ug with two
common neighbors, and also w1 and uz with two common neighbors.

Proof. Figure [6] shows the possible arrangements when uz is a 6-vertex. The case when ug
is a 5-vertex is similar, but easier. In particular, when us is a 5-vertex, we already know
IN ({u1,u2,us})| < 12, so all vertices in the corresponding figures must be distinct as drawn.
Furthermore, it now suffices to apply Lemma [l with ¥ = 1. We omit further details. So suppose
instead that d(us) = 6.

First, suppose all vertices in the figures are distinct as drawn. Now Figures @(a,c) are
impossible by Lemma 4| with & = 0; for each i € {1,2,3}, we use the vertices labeled i as the
independent 2-set for u;. For Figure @(b), let I; be the vertices labeled us or 1a and let I3 be the
vertices labeled ug or 1b. To avoid a separating 3-cycle, at least one of I1 or Iy is independent.
Hence Figure @(b) is impossible by Lemma for the independent 4-set, use I; or Iy and for
each i € {2,3}, use the vertices labeled i as the independent 2-set for w;.

By Lemma [6] |N(J)| > 12, so exactly one pair of vertices is identified in one of Fig-
ures @(a,b,c). First, consider Figures @(a,c) simultaneously. Since G has no separating 3-cycle,
the identified pair must contain a vertex labeled 3. Now we apply Lemma [] with k£ = 1, using
the vertices labeled 3b in place of those labeled 3.

Finally, for Figure @(b), we apply Lemma For the independent 2-set we use either the
vertices labeled 3 or the vertices labeled 4; at least one of these pairs contains no identified
vertex. For the independent 4-set, we use either ug and the vertices labeled 5a or else ug and
the vertices labeled 5b. Since G has no separating 3-cycle, at least one of these 4-sets will be
independent. O

Lemma 20. Every minimal G has no 7T-vertex v with a 5-neighbor and two other 6~ -neighbors,
ui, ug, and ug, that are pairwise nonadjacent. In other words, Figures @(afe) are forbidden.
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(a) Here uz and ug have a com-
mon neighbor in N (uq).

(b) Here uz and us have adjacent
neighbors in N (u1).

(c) Here uz and uz have neighbors at dis-
tance 2 in N(uq).

Figure 6: The cases of Lemma The three possibilities for an independent 3-set
{u1,u2,us} where d(uy) = 6, d(uz) < 6, d(uz) = 5, and each of us and uz has two
neighbors in common with u;.
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(a) A T-vertex, v, with non-adjacent (b) A 7-vertex, v, with a 6-neighbor,
5-neighbors, w1, u2, and us. us, and two 5-neighbors, u; and us.

(¢) A T-vertex, v, with a 6-neighbor, (d) A 7-vertex, v, with a 5-neighbor,
u2, and two 5-neighbors, u1 and us. u1, and two 6-neighbors, uz and us.

(e) A T-vertex, v, with a 5-neighbor,
u2, and two 6-neighbors, u1 and us.

Figure 7: The five cases of Lemma
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(a) A 3-face vivavs, such that the
pairwise common neighbors of v1, va,
vz have degrees 5, 5, and at most 6.

Figure 8: The key case of Lemma

Proof. Lemma [f]yields 12 < [N ({u1, ug, us})| < d(u1)+d(u2)+d(uz) —4 <5+6+6—-4 < 13. In
Figure[f(a), [N ({u1,u2,us})| = 11. So, by symmetry, we assume that the vertices are arranged
as in Figures (b,c) with all vertices distinct as drawn or as in Figures d,e) with at most one
pair of vertices identified.

First suppose the vertices are disinct as drawn. For Figures (b,c,d), we apply Lemma |4} for
(b) and (c) we use k = 1, and for (d) we use k = 0. For Figure [7|(e), we apply Lemma [16] using
the vertices labeled 1 for M; and the those labeled 2 for M. Now |N({u1,uz2,us})| > 14 is a
contradiction.

So, instead suppose that a single pair of vertices is identified in one of Figures (d,e). First
consider (d). If a vertex labeled 1 is identified with another vertex, then we apply Lemma
using the vertices labeled 2 for the independent 2-set (vertices labeled 1 and 2 cannot be iden-
tified, since they are drawn at distance at most 3). Otherwise, the identified vertices must be
those labeled 2 and 3 that are drawn at distance four. Now the vertices labeled 4 are pairwise at
distance two, so must be an independent 4-set. Now we get a contradiction, by applying Lemma
[11] using the vertices labeled 1 for the independent 2-set.

Finally, consider Figure E(e)7 with a single pair of vertices identified. Again we apply
Lemma [ with & = 1. Since u; has three possibilities for its pair of nonadjacent neighbors,
and no neighbor of u; appears in all three of these pairs, u; satisfies condition (2). Similarly, us
also satisfies condition (2). O

Lemma 21. Let vy, va, v3 be the corners of a 3-face, each a 6% -vertex. Let ui, uo, ug be the
other pairwise common neighbors of vy, ve, v3, t.e., ui 1S adjacent to v1 and va, ug is adjacent
to va and vs, and us is adjacent to vy and vi. We cannot have |N({ui,u2,us})] < 13. In
particular, we cannot have d(uy) = d(uz) =5 and d(us) < 6.

Proof. If the only pairwise common neighbors of the u; are the v;, then two wu; are 5-vertices and
the third is a 6™ -vertex. The case where the u; have more pairwise common neighbors is nearly
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identical, and we remark on it briefly at the end of the proof. So suppose that d(u;) = d(uz) =5
and d(uz) = 6, as shown in Figure 8 the case where d(u3) = 5 is nearly identical. We will apply
Lemma W] with J = {uj,ue,us} and k = 0. Clearly, J is an independent set. Now we verify
that each vertex of J satisfies condition (2). Since G has no separating 3-cycle, the two vertices
in each pair with a common label (among {1, 2,3}) are distinct and nonadjacent. Similarly, the
vertices with labels in {1,2,3} are distinct, since they are drawn at pairwise distance at most
three, and G has no separating 3-cycle. Thus, we can apply Lemma 4] as desired.

In the more general case where the u; have pairwise common neighbors in addition to the v;,
the argument above still shows that the vertices with labels in {1,2,3} are distinct. So again,
we can apply Lemma [4 with k& = 0. O

Lemma 22. Let uy be a 7-vertex with nonadjacent 5-vertices us and ug each at distance two
from ui. A minimal G cannot have uy and us with two common neighbors and also w1 and us
with two common neighbors.

Proof. This situation is shown in Figures @(a,b,c), possibly with some vertices identified. Let
J = {u1,u2,uz}. Suppose that more than a single pair of vertices is identified, which implies
IN(J)| < 11. If J is a non-maximal independent set, then this contradicts Lemma @ So
suppose that J is a maximal independent set. If |[N(J)| < 10, then |G| < 13, so J is the desired
independent set of size £|G|. Otherwise, |G| = 14, so exactly three vertices are identified. Now
we find an independent 4-set. Either we can take the four vertices labeled 4, or the two labeled
i, together with J \ {w;}, for some i € {1,2,3}. Thus, at most one pair of vertices drawn as
distinct are identified.

If all vertices labeled 2 or 3 are distinct as drawn, then we apply Lemma and get a
contradiction. By Lemma [ the only other possibility is that exactly one pair of vertices is
identified. Such a pair must consist of vertices labeled 2 and 3 that are drawn at distance four
(otherwise we apply Lemma [ with & = 1). In Figure @(a), this is impossible, since the two
5-vertices ug and u3 would have two neighbors in common, violating Lemma [9]

Now we consider the cases shown in Figures @(b,c) simultaneously. We apply Lemma
using the vertices labeled 1 for the independent 2-set. Let I; be the set of vertices labeled 4. If
I is independent, then we are done; so assume not. Recall that a vertex labeled 2 is identified
with a vertex labeled 3.

Suppose the vertices labeled 4 in N (ug)\ N(u1) and N(u3)\ N(u1) are not adjacent. Now by
symmetry, we may assume that the vertex labeled 4 in N(u1) N N (u2) is adjacent to the vertex
labeled 4 in N(u3) \ N(u1). Let Iy be the set made from I; by replacing the vertex labeled 4
in N(u1) N N(u2) with the vertex labeled 4b. If I5 is independent, then we are done; so assume
not. Now the vertex labeled 4b must be adjacent to the vertex labeled 4 in N(us) \ N(u1),
but this makes a separating 3-cycle (consisting of two vertices labeled 4 and one labeled 4b), a
contradiction.

So, we may assume that the vertices labeled 4 in N(ug2) \ N(ui) and N(ug) \ N(u;) are
adjacent. Suppose the topmost vertex labeled 2 is identified with the topmost vertex labeled
3. Now again we are done; our independent 4-set consists of the two neighbors of u; labeled 4,
together with an independent 2-set from among the two leftmost and two rightmost vertices (by
planarity, they cannot all four be pairwise adjacent).

The only remaining possibility is that the bottommost vertex labeled 2 is identified with
the bottommost vertex labeled 3 (since the two topmost vertices labeled 4 are adjacent). If
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(a) Here uz and us have a common
neighbor in N (u1).

(b) Here uz and us have adjacent
neighbors in N (u1).

(c) Here u2 and us have neighbors at
distance 2 in N(u1).

Figure 9: The cases of Lemma The three possibilities for an independent 3-set
{u1,u2,us} where d(u1) = 7, d(uz) = d(uz) = 5, and each of ug and uz has two
neighbors in common with u;.
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we are in Figure @(b), then the vertex labeled 4b is a 5-vertex; since it shares two neighbors
with ug, another 5-vertex, we contradict Lemma @ Hence, we must be in Figure @(c) Now
our independent 4-set consists of the two neighbors of u; labeled 4b and 4c, together with an
indpendent 2-set from among the four topmost vertices (again, by planarity, they cannot all be
pairwise adjacent). O

Lemma 23. Suppose that a minimal G contains a 7-vertexr v with no 5-neighbor. Now v cannot
have at least five 6-neighbors, each of which has a 5-neighbor.

Proof. Suppose to the contrary. Denote the neighbors of v in clockwise order by u, ..., ur.

Case 1: Vertices uq, ug, us, uq are 6-vertices, each with a 5-neighbor.

First, suppose that us and us have a common 5-neighbor, wy. Consider the 5-neighbor w;
of uy. By Lemma ] it cannot be common with us; similarly, the 5-neighbor wy of uy cannot be
common with ug. (We must have w; and wy distinct, since otherwise we apply Lemma 21| to
{u1,uq,wa}. Also, we must have w; and wy each distinct from ws, since G has no separating
3-cycles.)

First, suppose that w; has two common neighbors with ug. If w; 4 w4, then we apply
Lemma to {wy,u2,us}; so assume w; <> ug. Now let J = {uy,uq,w2}. Clearly, J is an
independent 3-set. Also |[N(J)| < 6+ 6+ 5 —4 = 13, so we are done by Lemma So w
cannot have two common neighbors with ue. Similarly, w4 cannot have two common neighbors
with ug. Hence, w; <> uy and also wy <> us. Now we must have w; <> w,; otherwise we apply
Lemma to {v, w1, ws}. Similarly, we must have w; <> we and wy <> wy; these edges cut off
wy from wuy, so uy ¥ wy4. Since u; and w4 are nonadjacent, but have a 5-neighbor in common,
they must have two neighbors in common. So we apply Lemma (19| to {u1,us,ws}. Hence, we
conclude that the common neighbor of us and w3 is not a 5-neighbor.

Since u; and ug are 6~ -vertices, by Lemma vertex ug cannot have another 6~ -vertex that
is nonadjacent to u; and ug. Thus, a 5-neighbor of us must be a common neighbor of u;; call
this 5-neighbor w;. Similarly, the common neighbor wy of ug and u4 is a 5-vertex. We must
have wy <> wy, for otherwise we apply Lemma [22] We may assume that ug is a 6-vertex. If not,
then v’s five 6-neighbors, each with a 5-neighbor, are successive; so, by symmetry, we are in the
case above, where us and ug have a common 5-neighbor.

By planarity, either u; 4 w4 or else uyg ¢ wy; by symmetry, assume the former. Since u; and
wy share a 5-neighbor (and are nonadjacent), they have two common neighbors. Now if ug ¢ wy,
then we apply Lemma (19| to {u1,ug, ws}. Hence, assume ug <> wy. This implies that uy 4 w;.
Now, the same argument implies that ug <> wi. Now let J = {uj,uq,us}. Lemma |§| gives
12 < |N(J)] <646+ 6 —6 = 12. Thus the vertices of J have no additional pairwise common
neighbors. Hence, we have an independent 2-set M; in N(uj) \ (V(ua) U N(ug)). Similarly,
we have an independent 2-set My in N(u4) \ (V(u1) U N(ug)). Now we apply Lemma
with J = {uj,uq,ue} and S; = M; U {u1} and Sy = My U {ug}. In each case, we have
a(G[S; U J]) = |M; U{us—i,us} | = 4. This implies that |N(J)| > 13, a contradiction. Hence, v
cannot have four successive 6-neighbors, each with a 5-neighbor.

Case 2: Vertices uq, us, us, us, ug are 6-vertices, each with a 5-neighbor.

Suppose that the common neighbor ws of us and ug is a 5-vertex. By symmetry (between
up and ugz) and Lemma assume that the common neighbor wy of us and ug is a 5-vertex. If
wy 4 ws, then we apply Lemma[22} so assume that wy <> ws. If ug 4 we, then apply Lemma
to {ug,u1, w2} (note that ug and wy have two common neighbors, since they have a common
5-neighbor). So assume that ug <> we. Similarly, we assume that us <+ ws, since otherwise we
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apply Lemma [19[to {us, u;,ws}. Now consider the 5-neighbor w; of u;. By Lemma@ it cannot
be a common neighbor of us (because of wsq). If it is a common neighbor of u7, then we apply
Lemma to {w1, ws, v}; note that wy ¢ ws, since they are cut off by edge woug. Hence, wy is
neither a common neighbor of u7 nor of ug. Now we apply Lemma [19|to {uz, w1, ws}. Thus, we
conclude that the common neighbor of us and ug is not a 5-vertex.

Let x denote the common neighbor of us and ug; as shown in the previous paragraph, z
must be a 6T-vertex. Suppose that the 5-neighbor ws of us is also a neighbor of x. If ws ¢ uq,
then we apply Lemma [19| to {ug, u1,ws}; so assume that ws <> u1. Now if the 5-neighbor wg
of ug is also adjacent to x, then we apply Lemma (19| to {us,ws,us} (we must have wg 4 us
due to edge wsuy). So, by symmetry (between us and ug), we may assume that ws <> ug. Now,
by Lemma the 5-neighbor ws of uy has is adjacent to either u; or us. In either case, we
must have wy <> ws; otherwise, we apply Lemma [22| to {v, we, ws}. If wg <> uy, then wg <> wo
and wg < ws; otherwise, we apply Lemma to {v,we, w2} or {v,ws,ws}. Now we apply
Lemma (19| to {us, us, wg}. So instead wg 4 wy. Finally, we apply Lemma [19| to {us, we, us}.
This completes the proof. O
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