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Abstract

We prove that the external activity complex Act<(M) of a matroid is shellable.
In fact, we show that every linear extension of LasVergnas’s external/internal order
<ext/int on M provides a shelling of Act<(M). We also show that every linear
extension of LasVergnas’s internal order <int on M provides a shelling of the in-
dependence complex IN(M). As a corollary, Act<(M) and M have the same h-
vector. We prove that, after removing its cone points, the external activity complex
is contractible if M contains U1,3 as a minor, and a sphere otherwise.

1 Introduction

Wider context of this work. Matroid theory is a combinatorial theory of independence
which has its roots in linear algebra and graph theory, but which turns out to have
deep connections with many fields. There are natural notions of independence in linear
algebra, graph theory, matching theory, the theory of field extensions, and the theory of
routings, among others. Matroids capture the combinatorial essence that those notions
share.

A matroid can be described in many equivalent ways, arising from the many contexts
where matroids are found: the bases, the circuits, the lattice of flats, and the matroid
polytope, among others. One important approach, which is the most relevant one to this
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paper, has been to model a matroid in terms of a simplicial or polyhedral complex. In fact,
most of these topological models arise naturally in algebraic and geometric contexts, and
offer new tools to prove combinatorial theorems. A celebrated recent example is the proof
by Huh [10] and Huh and Katz [11] of Rota’s 1971 conjecture [22] that the coefficients of
the characteristic polynomial of a linear matroid are unimodal. A key ingredient of this
proof is the Bergman complex B(M) described below.

Let us describe a few constructions of this flavor, and provide a few references for the
interested reader. The notion of shellability is a very useful unifying tool in this approach,
as explained in [4].
• [20, 4] The independence complex or matroid complex IN(M) is homotopy equiva-

lent to a wedge of TM(0, 1) = |µ(M∗)| spheres of dimension r(M)− 1 if M is coloopless.
This complex is shellable, and its shelling polynomial is TM(x, 1). The shellability of
IN(M) naturally leads to the important notions of internal and external activity of M .
• [27, 21, 6] The broken circuit complex BC<(M) is, a cone over a space homotopy

equivalent to a wedge of |β(M)| spheres of dimension r(M) − 2. It can be naturally
embedded into IN(M). It is shellable and its shelling polynomial is TM(x, 0). The em-
bedding is a combinatorial witness of such a result. Its face numbers equal the coefficients
of the characteristic polynomial of M up to sign.
• [9, 24, 18] the (proper part of the) order complex of the lattice of flats ∆(LM\{0̂, 1̂})

is homotopy equivalent to a wedge of TM(1, 0) = |µ(M)| spheres of dimension r(M)− 2.
It is shellable. This is a motivating example for the theory of Cohen Macaulay posets.
It also arises naturally in Orlik and Solomon’s presentation of the cohomology of the
complement of a complex hyperplane arrangement.
• [25, 3] The Bergman complex B(M) is the link of the origin in the tropical linear

space Trop(M). It is not always simplicial. Though not obvious from its definition,
B(M) is a coarsening of ∆(LM\{0̂, 1̂}) and hence shares its topological properties. These
complexes are fundamental objects in tropical geometry because Trop(M) is the tropical
analog of a linear space.

The purpose of this paper is to describe a new member of this family.

• The external activity complex Act<(M) is, after removing cone points, either con-
tractible or a sphere of dimension n+r−1−|AE(M)| where AE(M) is the set of externally
absolute elements. It contains a copy of IN(M) as a subcomplex. It is shellable, and its
shelling polynomial is TM(x, 1). Its shellability is closely related to Las Vergnas’s active
orders on the bases of M .

Hence the external activity complex sheds new light on the shelling polynomial TM(x, 1)
of a matroid M . This is a subject of great attention thanks to Stanley’s 1977 h-vector
conjecture, one of the most intriguing open problems in matroid theory:

Conjecture 1.1. [24] For any matroid M , there exists a set X of monomials such that:
- if m and m′ are monomials such that m ∈ X and m′|m, then m′ ∈ X,
- all the maximal monomials in X have the same degree,
- there are exactly hi monomials of degree i in X, where

∑
i hix

r−i = T (x, 1).

This conjecture has been proved, using rather different methods, for several families:
cographic matroids, [15], lattice path matroids [23], cotransversal matroids [17], paving
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matroids [16], and matroids up to rank 4 or corank 2 [8, 12]. The general case remains
open.

Motivation for this work. The external activity complex Act<(M) of a matroid is a
simplicial complex associated to a matroid M and a linear order < on its ground set.
This complex arose in work of the first author with Adam Boocher [2]. They started with
a linear subspace L of affine space An with a chosen system of coordinates. There is a
natural embedding An ↪→ (P1)n into a product of projective lines, and they considered

the closure L̃ of L in (P1)n. They proved that many geometric and algebraic invariants

of the variety L̃ are determined by the matroid of L.
As is common in combinatorial commutative algebra, a key ingredient of [2] was to

consider the initial ideals in<L̃ under various term orders. These initial ideals are the
Stanley-Reisner ideals of the external activity complexes Act<(M) under the different
linear orders < of the ground set. This led them to consider and describe the complexes
Act<(M).

The ideals in<L̃ are shown to be Cohen-Macaulay in [2], and the authors asked the
stronger question: Are the external activity complexes Act<(M) shellable? The purpose
of this note is to answer this question affirmatively.

Our results. The facets of Act<(M) are indexed by the bases B of M , and [2] sug-
gested a possible connection between Act<(M) and LasVergnas’s internal order <int on
B. Suprisingly, we find that it is the external/internal order <ext/int on B, also defined
in [14], which plays a key role. Our main result is the following:

Theorem 1.2. Let M = (E,B) be a matroid, and let < be a linear order on the ground
set E. Any linear extension of LasVergnas’s external/internal order <ext/int of B induces
a shelling of the external activity complex Act<(M).

As a corollary we obtain that these orders also shell the independence complex IN(M),
and in fact we show a stronger statement.

Theorem 1.3. Any linear extension of the internal order <int gives a shelling order of
the independence complex IN(M).

These theorems are as strong as possible in the context of LasVergnas’s active orders.
We also obtain the following enumerative corollary.

Theorem 1.4. The h-vector of Act<(M) equals the h-vector of M .

It is easy to see that Act<(M) is a cone, and hence trivially contractible. It is more
interesting to study the reduced external activity complex Act•<(M), obtained by removing
all the cone points of Act<(M). Our main topological result is the following.

Theorem 1.5. Let M be a matroid and < be a linear order on its ground set. The
reduced external activity complex Act•<(M) is contractible if M contains U1,3 as a minor,
and a sphere otherwise.

In Proposition 6.5 we will see there is an embedding of the independence complex
IN(M) in Act•<(M), and both complexes have the same h-vector. If M is coloopless its
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independence complex is homotopy equivalent to a wedge of |µ(M∗)| spheres, while the
external activity complex is contractible or a sphere. Thus Act•<(M) can be seen as a
topologically simpler model than IN(M) for the matroid M .

The paper is organized as follows. In Section 2 we introduce the necessary definitions
and preliminaries. In Section 3 we carry out an example in detail, and show that the
hypotheses of Theorems 1.2 and 1.3 are best possible. In Section 4 we prove our main
Theorem 1.2 on the shellability of the external activity complex Act<(M), and Theorem
1.3, which gives many new shellings of the independence complex IN(M). In Section 5
we show that Act<(M) and IN(M) have the same h-vector. Finally, in Section 6, we
describe the topology of the reduced external activity complex in Theorem 1.5.

2 Preliminaries

In this section we collect the background information on matroids and shellability that
we will need to prove our results.

2.1 Matroids

Basic definitions. A simplicial complex ∆ = (E, I) is a pair where E is a finite set and
I is a non empty family of subsets of E, such that if A ∈ I and B ⊂ A, then B ∈ A.
Elements of I are called faces of the complex. The maximal elements of I are called
facets. A complex is said to be pure if all facets have the same number of elements.

The following is one of many equivalent ways of defining a matroid:

Definition 2.1. A matroid M = (E, I) is a simplicial complex such that the restriction
of M to any subset of E is pure.

Since there are several simplicial complexes associated to M , we will denote this one
IN(M) = (E, I). It is often called the independence complex of M .

The two most important motivating examples of matroids are the following.

• (Linear Algebra) Let E be a set of vectors in a vector space, and let I consist of
the subsets of E which are linearly independent. Then (E, I) is a linear matroid.

• (Graph Theory) Let E be the set of edges of an undirected graphG, and let I consist
of the sets of edges which contain no cycle. Then (E, I) is a graphic matroid.

For any matroid M = (E, I), it is customary to call the sets in I independent. The
facets of a matroid are called bases. The set of all bases is denoted B.

Example 2.2. The simplest example of a matroid is the uniform matroid Uk,n, whose
ground set is [n] and whose independent sets are all the subsets of [n] of cardinality at
most k. The uniform matroid U1,3 is going to play an important role later.

The minimal non-faces of M , that is, the minimal dependent sets, are called circuits.
The circuits of a matroid have a special structure [19]:

Lemma 2.3 (Circuit Elimination Property). If γ1 and γ2 are circuits of a matroid and
c ∈ γ1 ∩ γ2, then there is a circuit γ3 that is contained in γ1 ∪ γ2 − c.
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Duality. Matroids have a notion of duality which generalizes orthogonal complements in
linear algebra and dual graphs in graph theory.

Let M be a matroid with bases B. Then the set

B∗ = {E −B : B is a basis of M}

is the collection of bases of a matroid M∗ = (E,B∗), called the dual matroid M∗. The
circuits of the dual matroid M∗ are called the cocircuits of M .

Deletion, contraction, and minors. We say that an element e ∈ E is a loop of a matroid
M if it is contained in no basis; that is, if {e} is a dependent set. Dually, e is a coloop if
it is contained in every basis of M .

The deletion M\e of a non-coloop e ∈ E is the matroid on E− e whose bases are the
bases of M that do not contain e. We also call this the restriction of M to E− e. Dually,
the contraction M/e of a non-loop e ∈ E is the matroid on E − e whose bases are the
subsets B of E − e such that B ∪ e is a basis of M .

It is easy to see that any sequence of deletions and contractions of different elements
commutes. We say that a matroid M ′ is a minor of a matroid M if M ′ is isomorphic to
a matroid obtained from M by performing a sequence of deletions and contractions.

Fundamental circuits and cocircuits. Given a basis B and an element e ∈ E −B there
is a unique circuit contained in B ∪ e, called the fundamental circuit of e with respect to
B. It is given by

Circ(B, e) = {x ∈ E : B ∪ e− x ∈ B} .
Given a basis B and an element i ∈ B there is a unique cocircuit disjoint with B − i,

called the fundamental cocircuit of i with respect to B. It is given by

Cocirc(B, i) = {x ∈ E : B ∪ x− i ∈ B} .

Note that the cocircuit Cocirc(B, i) in M equals the circuit Circ(E − B, i) in the dual
M∗.

Basis activities. Let < be a linear order on the ground set E. For a basis B, define the
sets:

EA(B) = {e ∈ E −B : min (Circ(B, e)) = e}
EP (B) = {e ∈ E −B : min (Circ(B, e)) 6= e}

The elements of EA(B) and EP (B) are called externally active and externally passive
with respect to B, respectively. Note that EA(B) ] EP (B) = E − B, where ] denotes
a disjoint union.

Dually, let

IA(B) = {i ∈ B : min (Cocirc(B, i)) = i}
IP (B) = {i ∈ B : min (Cocirc(B, i)) 6= i}

The elements of IA(B) and IP (B) are called internally active and internally passive with
respect to B, respectively. Note that IA(B)] IP (B) = B. Also note that the internally
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active/passive elements with respect to basis B in M are the externally active/passive
elements with respect to basis E −B in M∗.

The following elegant result of Tutte [26] (for graphs) and Crapo [7] (for arbitrary
matroids) underlies many of the results of [2] and this paper.

Theorem 2.4. [7, Proposition 5.12] Let M be a matroid on the ground set E and let <
be a linear order on E.

1. Every subset A of E can be uniquely written in the form A = B ∪X − Y for some
basis B, some subset X ⊆ EA(B), and some subset Y ⊆ IA(B). Equivalently, the
intervals [B − IA(B), B ∪EA(B)] form a partition of the poset 2E of subsets of E
ordered by inclusion.

2. Every independent set I of E can be uniquely written in the form I = B−Y for some
basis B and some subset Y ⊆ IA(B). Equivalently, the intervals [B − IA(B), B]
form a partition of the independence complex IN(M).

The Tutte polynomial of M is

TM(x, y) =
∑

B basis

x|IA(B)|y|EA(B)|.

It follows from the work of Crapo and Tutte [7, 26] that this polynomial does not depend
on the chosen order <. The Tutte polynomial is the most important matroid invariant,
because it answers an innumerable amount of questions about the combinatorics, algebra,
geometry, and topology of matroids and related objects. For more information, see [5].

The external activity complex. Let M be a matroid on E. Let E = {e : e ∈ E} be a
second copy of E, and let [[E]] = E]E. This set of size 2|E| will be the ground set of the
external activity complex of M . For each subset S ⊆ E we write S := {s | s ∈ S} ⊂ E.
Therefore, each subset of [[E]] can be written uniquely in the form S1∪S2 for S1, S2 ⊆ E.

Our main object of study is the following.

Theorem 2.1. [2] Let M = (E,B) be a matroid and let < be a linear order on E. M .
There is a simplicial complex called the external activity complex Act<(M) on ground set
[[E]] such that

1. The facets are F (B) := B ∪ EP (B) ∪B ∪ EA(B) for every basis B ∈ B.

2. The minimal non-faces are S(γ) = c ∪ γ − c for every circuit γ, where c is the
<-smallest element of γ.

The complement of the facet F (B) in [[E]] is G(B) = EA(B) ∪ EP (B).

Las Vergnas’s three active orders. Given a matroid M = (E,B) and a total order <
on the ground set of M , LasVergnas introduced the following three active orders. In each
case, he proved that there are several equivalent definitions.
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Definition 2.5. The external order <ext on B is characterized by the following equivalent
properties for two bases A and B:

1. A 6ext B,
2. A ⊆ B ∪ EA(B),
3. A ∪ EA(A) ⊆ B ∪ EA(B),
4. B is the lexicographically largest basis contained in A ∪B.

This poset is graded with r(B) = |EA(B)|. Adding a minimum element turns it into a
lattice.

Definition 2.6. The internal order <int on B is characterized by the following equivalent
properties for two bases A and B:

1. A 6int B,
2. A− IA(A) ⊆ B,
3. A− IA(A) ⊆ B − IA(B),
4. A is the lexicographically smallest basis containing A ∪B.

This poset is graded with r(B) = r− |IA(B)|. Adding a maximum element turns it into
a lattice.

The internal and external orders are consistent in the sense that A 6int B and B 6ext

A imply A = B. Therefore the following definition makes sense.

Definition 2.7. The external/internal order <ext/int is the weakest order which simulta-
neously extends the external and the internal order. It is characterized by the following
equivalent properties for two bases A and B:

1. A 6ext/int B,
2. IP (A) ∩ EP (B) = ∅,

This poset is a lattice. It is not necessarily graded.

Note that Theorem 2.5.4 and 2.6.4 imply the following.

Proposition 2.8. The lexicographic order <lex on B is a linear extension of the three
posets <int, <ext, and <ext/int. In symbols, any of A <int B, A <ext B or A <ext/int B
implies A <lex B.

2.2 Shellability and the h-vector

Shellability. Shellability is a combinatorial condition on a simplicial complex that allows
us to describe its topology easily. A simplicial complex is shellable if it can be built
up by introducing one facet at a time, so that whenever we introduce a new facet, its
intersection with the previous ones is pure of codimension 1. More precisely:

Definition 2.9. Let ∆ be a pure simplicial complex. A shelling order is an order of the
facets F1, . . . Fk such for every i < j there exist k < j and f ∈ Fj such that Fi ∩ Fj ⊆
Fk ∩ Fj = Fj − f . If a shelling order exists, then we call ∆ shellable.

Given a shelling order and a facet Fj, there is a subset R(Fj) such that for every
A ⊆ Fj, we have A * Fi for all i < j if and only if R(Fj) ⊆ A. Equivalently, when we
add facet Fj to the complex, the new faces that we introduce are precisely those in the
interval [R(Fj), Fj]. The set R(Fj) is called the restriction set of Fj in the shelling.
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The f -vector and h-vector. The f -vector of a (d − 1)-dimensional simplicial complex
∆ is (f0, . . . , fd) where fi is the number of faces of ∆ of size i. The h-vector (h0, . . . , hd)
is an equivalent way of storing this information; it is defined by the relation

f0(x− 1)d + f1(x− 1)d−1 + · · ·+ fd(x− 1)0 = h0x
d + h1x

d−1 + · · ·+ hdx
0.

This polynomial is also known as the shelling polynomial h∆(x), due to the following
description of the h-vector for shellable complexes.

Proposition 2.10. [4, Proposition 7.2.3] If F1, . . . , Fk is a shelling order for a (d − 1)-
dimensional simplicial complex ∆, then

hi := | {j : |R(Fj)| = i}| .

Note that it is not clear a priori that these numbers should be the same for any shelling
order.

Understanding the topology of a shellable simplicial complex is easy once we know
the last entry of the h-vector, thanks to the following result.

Theorem 2.11. [13, Theorem 12.2(2)] Any geometric realization of a (d−1)-dimensional
shellable simplicial complex ∆ is homotopy equivalent to a wedge of hd spheres of dimen-
sion d− 1. In particular, if hd = 0, then every geometric realization of ∆ is contractible.

An important property for matroids is their shellability:

Theorem 2.12. [4, Theorem 7.3.3] The lexicographic order <lex on the bases of a ma-
troid M gives a shelling order of the independence complex IN(M). Furthermore, the
restriction set of a basis B in this shelling order is given by IP (B).

A straightforward consequence of the previous theorem is that the internal order poset
is equal to the poset of bases of M where the order is given by inclusion of restriction
sets of the lexicographic shelling order.

3 Example

Before proving our theorems, we illustrate them in an example. Consider the graphic
matroid given by the graph of Figure 1. Its bases are all the 3-subsets of [5] except
{1, 2, 3} and {1, 4, 5}. Under the standard order 1 < 2 < 3 < 4 < 5 on the ground set,
Table 1 records the basis activity of the various bases.

1

2

34

5

Figure 1: A graphic matroid.
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B EP (B) EA(B) IP (B) IA(B)
124 35 ∅ ∅ 124
125 45 ∅ 5 12
134 25 ∅ 3 14
135 24 ∅ 35 1
234 5 1 23 4
235 4 1 235 ∅
245 3 1 45 2
345 ∅ 12 345 ∅

Table 1: The bases B together with their sets of externally passive, externally active,
internally passive, and internally active elements.

124

134125

234
135245

235345

134 124 125 135

234 245 235

345

124

125 134

234

235

345

135245

Figure 2: The active orders <int, <ext, and <ext/int, respectively.

The resulting internal, external, and external/internal orders <int, <ext, <ext/int are
shown in Figure 2. By Theorems 2.5, 2.6, and 2.7, these three orders are isomorphic
to the three families of sets {B ∪ EA(B) : B basis}, {B − IA(B) : B basis}, and
{B ∪ EA(B)− IA(B) : B basis}, partially ordered by containment.

Table 1 lists the bases in lexicographic order <lex, and this is a shelling order for
the independence complex IN(M) by Theorem 2.12. The restriction set for each basis
B is R(B) = IP (B). For example, when we add facet 134 in the third step of the
shelling, this means that the new faces that appear are the four sets in the interval
[R(134), 134] = [3, 134]; that is, faces 3, 13, 34, and 134.

Our goal is to shell the external activity complex Act<(M) whose facets, listed in
Table 2, are the sets F (B) = B ∪ EP (B) ∪ B ∪ EA(B). Since 1, 3, 4, and 5 are in all
facets of Act<(M), we remove them, and shell the resulting reduced external activity
complex Act•<(M). Our main result, Theorem 1.2, states that any linear extension of the
external/internal order <ext/int gives a shelling order for this complex. For example, we
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may again consider the lexicographic order, which is indeed a linear extension of <ext/int.

B F (B) F (B)• R(F (B))
124 12345124 1224 ∅
125 12345125 1225 5
134 12345134 1234 3
135 12345135 1235 35
234 23451234 2234 23
235 23451235 2235 235
245 23451245 2245 45
345 34512345 2345 345

Table 2: The bases B of M , the corresponding facets F (B) and F (B)• of Act<(M) and
Act•<(M), and their (shared) restriction set R(F (B)) in the shelling.

For each basis B, Table 2 lists the corresponding facet F (B) of Act<(M), the cor-
responding facet F (B)• of Act•<(M), and the restriction set of the facet F (B) in the

shelling. This restriction set is R(F (B)) = IP (B). For example, when we add facet 1234
to the complex Act•<(M) in the third step of the shelling, the new faces that appear are
the eight sets in the interval [R(1234), 1234] = [3, 1234].

Notice that we can embed IN(M) −→ Act•<(M) by sending 1→ 1, 2→ 2, 3→ 3, 4→
4, 5 → 5. The latter complex has the same h-vector and is contractible. Therefore, it is
no coincidence that the shellings of IN(M) and Act<(M) are related. In fact, we will
prove that any shelling order for Act<(M) is a shelling order for IN(M). Theorem 1.2
then gives:

any linear extension of <ext/int is a shelling order for IN(M) and Act<(M). (1)

We conclude this section with two examples showing that the linear extensions of
the internal and external orders <int and of <ext are not necessarily shelling orders for
Act<(M).

Example 3.1. Consider any linear extension of <ext starting with 124 and 135 in that
order, such as:

124, 135, 125, 134, 234, 235, 245, 345.

This is not a shelling order for IN(M) because the second facet 135 intersects the first
facet 124 in codimension 2. By Corollary 4.3 (or directly by inspection), this is not a
shelling order for Act<(M) either. Therefore:

a linear extension of <ext need not be a shelling order for IN(M) or for Act<(M). (2)

Example 3.2. Consider the following linear extension of <int:

124, 125, 134, 135, 245, 345, 234, 235

which gives the following order on the facets:

1224, 1225, 1234, 1235, 2245, 2345, 2234, 2235,
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This is a shelling of IN(M) by Theorem 1.3. However, it is not a shelling of Act<(M)
and Act•<(M). To see this, suppose we introduce the facets of Act•<(M) in the order
above. When we introduce the sixth facet 2345 we introduce two new minimal faces: 23
and 345; so this is not a shelling order for Act<(M). Hence

a linear extension of <int is a shelling order for IN(M), but not necessarily for Act<(M).
(3)

In summary, combining (1), (2), and (3), we see that the hypotheses of Theorems 1.2
and 1.3 are as strong as possible in the context of LasVergnas’s active orders.

4 Shellability of the external activity complex

In this section we prove our main result, which states that the external activity complex
is shellable. We begin by proving two technical lemmas.

Lemma 4.1. Let M be a matroid on an ordered ground set, and let A,C be bases of
M . There exist c ∈ EP (A) ∩ C and a < c such that C − c ∪ a is a basis if and only if
A �ext/int C in LasVergnas’s external/internal order.

Proof. Given c ∈ C, we can find an element a < c with C − c ∪ a ∈ B if and only if c ∈
IP (C). To find such an element c with the additional condition that c ∈ EP (A), we need
IP (C) ∩EP (A) 6= ∅; this is equivalent to A �ext/int C in LasVergnas’s external/internal
order by Theorem 2.7.2.

A total order < on the set B of bases of M induces an order on the set of facets
{F (B) : B ∈ B} of the external activity complex Act<(M). We now characterize the
shelling orders on Act<(M).

Lemma 4.2. Let B be the set of bases of a matroid M . A total order < on the set B
induces a shelling of the external activity complex Act<(M) if and only if for any bases
A < C there exists a basis B < C such that

(a) B = X ∪ b and C = X ∪ c for some b 6= c.

(b) c /∈ A and c ∈ EA(B) if and only if c ∈ EA(A).

(c) For any d /∈ B ∪ C = X ∪ b ∪ c we have d ∈ EA(B) if and only if d ∈ EA(C)

Proof. By definition, < induces a shelling order if for every A < C there exist B < C
and c± ∈ F (C) (where c± equals c or c for some c ∈ E) such that

F (A) ∩ F (C) ⊂ F (B) ∩ F (C) = F (C)− c±.

Recalling that G(D) = EA(D) ∪ EP (D) is the complement of F (D) in [[E]] for each
basis D, this is equivalent to

G(A) ∪G(C) ⊃ G(B) ∪G(C) = G(C) ∪ c±.
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Define the support of S ⊂ [[E]] to be supp(S) = {i ∈ E : i ∈ S or i ∈ S}. Notice that
we have supp(G(D)) = E −D for any basis D. Then

|E| − |B ∩ C| = |supp(G(B) ∪G(C))| = |supp(G(C) ∪ c±)| = |E| − r + 1.

where r is the rank of the matroid. This implies (a).
If (c) was not satisfied for some d /∈ B ∪ C, we would find both d and d in G(B) ∪

G(C) = G(C) ∪ c, a contradiction. Finally, c± is in G(A) and G(B), which implies (b).
The converse follows by a very similar argument.

Corollary 4.3. If a total order < on B induces a shelling of the external activity complex
Act<(M), then it also induces a shelling of the independence complex IN(M).

Proof. Let A < C and assume that B < C satisfy conditions (a), (b), and (c) of Lemma
4.2. Since supp(G(D)) = E − D for every basis D, the containment G(A) ∪ G(C) ⊃
G(B)∪G(C) gives E−(A∩C) ⊃ E−(B∩C), which implies A∩C ⊂ B∩C = X = C−c.
Hence the total order < induces a shelling order of IN(M).

Now we are ready to prove our main theorem.

Theorem 1.2. Let M = (E,B) be a matroid, and let < be a linear order on the ground
set E. Any linear extension of LasVergnas’s external/internal order <ext/int of B induces
a shelling of the external activity complex Act<(M).

Proof. We use the characterization of Lemma 4.2. Consider bases A < C; we will find
the desired basis in two steps. We construct a basis B and, if necessary, a second basis
B′, and we will show that one of them satisfies the conditions (a),(b),(c) of Lemma 4.2.

Step 1. Since A �ext/int C, we first use Lemma 4.1 to find c ∈ EP (A)∩C and a minimal
element b < c such that

B = X ∪ b
is a basis, whereX = C−c. The minimality of b implies that b is minimum in Cocirc(B, b),
so b ∈ IA(B). Therefore B\IA(B) ⊆ X ⊆ C. Theorem 2.6 then implies that B <int C,
which in turn gives B <ext/int C, and hence B < C.

Property (a) is clearly satisfied. By construction c /∈ A and c ∈ EP (A). Since b < c
is in Circ(B, c), we have c ∈ EP (B). Therefore (b) is also satisfied. Property (c) does
not always hold; let us analyze how it can fail, and adjust B accordingly if necessary.

Suppose (c) fails for an element d /∈ B ∪ C; call such an element a {B,C} external
disagreement. This means that d is minimum in one of the fundamental circuits β =
Circ(B, d) and γ = Circ(C, d) but not in the other one.

Since they have different minima, we have β 6= γ; so using circuit elimination, we
can find a circuit α ⊆ β ∪ γ − d. This circuit must contain b and c, or else it would be
contained in basis B or C. This implies that

b, c ∈ α, b, d ∈ β, c, d ∈ γ.
It follows that D = X ∪ d = (B ∪ d) − b is a basis. By the uniqueness of fundamental
circuits, we must have

α = Circ(B, c) = Circ(C, b), β = Circ(B, d) = Circ(D, b), γ = Circ(C, d) = Circ(D, c).

Taking into account that b < c, we consider three cases:
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Figure 3: The bases B = X ∪ b, C = X ∪ c, and D = X ∪ d and the fundamental circuits
β, γ, α.

• 1. b < c < d: Since b ∈ Circ(B, d) = β and c ∈ Circ(C, d) = γ, d is minimum in
neither β nor γ, a contradiction.

• 2. d < b < c: The minimality of b implies that X ∪ d = D is not a basis, a
contradiction.

• 3. b < d < c: Since d is not minimum in Circ(B, d) = β 3 b, we have d ∈ EP (B);
so d is a {B,C} external disagreement if and only if d ∈ EA(C).

We conclude that, under the above hypotheses,

d is a {B,C} external disagreement ⇐⇒ X ∪ d is a basis, b < d < c, and d ∈ EA(C).
(4)

If there are no {B,C} external disagreements, B is our desired basis. Otherwise, proceed
as follows.

Step 2. Define the basis
B′ = X ∪ b′

where b′ is the largest {B,C} external disagreement. We have b < b′ < c and b′ ∈ EA(C).
It follows that B′ ⊂ C ∪ EA(C), so B′ <ext C by Theorem 2.5. This implies that
B′ <ext/int C, which in turn gives B′ < C. Now we claim that B′ satisfies conditions
(a),(b),(c) of Lemma 4.2.

Property (a) is clearly satisfied. By construction c /∈ A and c ∈ EP (A). Since b′ < c
is in Circ(B′, c), we have c ∈ EP (B′), so (b) holds. To show (c), assume contrariwise
that d′ /∈ X ∪ b′ ∪ c is a {B′, C} external disagreement; that is, it is minimum in one of
the fundamental circuits β′ = Circ(B′, d′) and γ′ = Circ(C, d′) but not in the other.

As in Step 1, D′ = X ∪ d′ must be a basis, and we have circuits

α′ = Circ(B′, c) = Circ(C, b′), β′ = Circ(B′, d′) = Circ(D′, b′), γ′ = Circ(C, d′) = Circ(D′, c).

with
b′, c ∈ α′, b′, d′ ∈ β′, c, d′ ∈ γ′.

Once again, in view of b′ < c, we consider three cases:
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Figure 4: The bases B′ = X ∪ b′, C = X ∪ c, and D′ = X ∪ d′ and the fundamental
circuits β′, γ′, α′.

• Case 1 b′ < c < d′: Since b′ ∈ Circ(B, d′) = β′ and c ∈ Circ(C, d′) = γ, d′ is
minimum in neither β nor γ, a contradiction.

• Case 2 d′ < b′ < c: If d′ ∈ EA(B′) then d′ = min β′. Since b′ ∈ EA(C), we
have b′ = minα′. Because they have different minima, we have β′ 6= α′, so we
can use circuit elimination to find a circuit γ′′ ⊆ (α′ ∪ β′)− b′. Again, that circuit
must contain c and d′ or else it would be contained in C or D′. Therefore, by the
uniqueness of fundamental circuits, γ′′ = γ′. Now, since γ′ ⊆ (α′ ∪ β′) − b′ and
d′ ∈ γ′, we have d′ = min γ′ and d′ ∈ EA(C).

Similarly, if d′ ∈ EA(C) then d′ = min γ′. Since b′ ∈ EA(C), we have b′ = minα′.
As above, we can conlcude that β′ ⊆ (α′ ∪ γ′)− c and d′ ∈ β′, we have d′ = min β′

and d′ ∈ EA(B′).

In either case, we get a contradiction.

• Case 3 b′ < d′ < c Since d′ is not minimum in β′ = Circ(B, d′) 3 b′, if d′ is
a {B′, C} external disagreement, it must be minimum in γ = Circ(C, d′); that is,
d′ ∈ EA(C). We have b < b′ < d′ < c, and X ∪ d′ is a basis. Therefore, recalling
(4), d′ is also a {B,C} external disagreement, contradicting the maximality of b′.

In conclusion, there are no {B′, C} external disagreements, and property (c) holds.
Therefore the basis B′ has all required properties.

Corollary 4.4. Any linear extension of the external/internal order<ext/int gives a shelling
order for the independence complex IN(M).

Proof. This follows from Theorem 1.2 and Corollary 4.3.

In fact, we now prove a stronger result. We begin with a useful lemma.

Lemma 4.5. Let I be an independent set of M and let C be any basis that contains I.
If B is the lexicographically smallest basis that contains I then B 6int C.

Proof. By Theorem 2.6.4, we need to show that B is the lexicographically smallest basis
that contains B ∩ C. To do so, assume there is a basis A ⊇ B ∩ C with A <lex B Then
A ⊇ B ∩ C ⊇ I, contradicting the minimality of B.
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Theorem 1.3. Any linear extension of the internal order <int gives a shelling order of
the independence complex IN(M).

Proof. Let < be any linear extension of <int, and let A < C be bases, so A 6>int C. We
claim that there exists B <int C (and hence B < C) such that A ∩ C ⊆ B ∩ C = C − c
for some c in C. This will prove the desired result.

To show this, let D be the lexicographically smallest basis that contains A∩C. Notice
that D 6= C because A 6>int C, using Theorem 2.6.4. Let d be smallest element in D−C
and let c be any element of C −D such that C ′ = C − c ∪ d is a basis. Also notice that
D <int C by Lemma 4.5; and since <lex is a linear extension of <int, we have D <lex C.
This gives d = min(D − C) < min(C −D) 6 c, and therefore C ′ <lex C.

Put X = C − c and let B be the lexicographically smallest basis that contains X.
Since C ′ contains X, B 6lex C ′ <lex C, so B 6= C. Therefore B <int C by Lemma
4.5. Also note that, since c /∈ D ⊃ A ∩ C and c ∈ C, we must have c /∈ A. This gives
A ∩ C ⊆ C − c = X, and therefore A ∩ C ⊆ B ∩ C = X. It follows that B satisfies the
desired properties.

5 The h-vector

We now describe the restriction sets for the shellings of Theorem 1.2.

Proposition 5.1. Let < be any linear extension of <ext/int, and regard it as a shelling
order for IN(M). Then the restriction set of each facet C (which is a basis of M) is
IP (C).

Proof. We need to show IP (C) is the minimum subset of C which is not a subset of a
basis B < C.

To show that IP (C) indeed has this property, assume that if IP (C) ⊆ B. Then by
Theorem 2.6.2, we have C 6int B and hence C 6 B, as desired.

To show minimality, let U ( IP (C). By Theorem 2.4.2 we can find a basis A such
that A − IA(A) ⊆ U ⊆ A. This gives A − IA(A) ⊆ U ( C − IA(C), which in light
of Theorem 2.6.3 gives A <int C, and hence A < C. Therefore U is a subset of A with
A < C, as desired.

Proposition 5.2. Let < be any linear extension of <ext/int, and regard it as a shelling
order for Act<(M). Then the restriction set of each facet F (C) (where C is a basis of
M) is IP (C).

Proof. We need to show IP (C) is the minimum subset of F (C) which is not a subset of
F (B) for any basis B < C.

To show IP (C) does have this property, assume that IP (C) ⊆ F (B) = B ∪EP (B)∪
B ∪ EA(B) for some basis B. Then IP (C) ⊂ B ∪ EA(B), so IP (C) ∩ EP (B) = ∅. By
Theorem 2.7.2, C <ext/int B so C < B, as desired.

To show minimality, let U ( IP (C), so U ( IP (C). By Proposition 5.1, U is
contained in a basis A < C, and hence U is contained in F (A) for that basis, as desired.

As an immediate consequence, we obtain our main enumerative result.
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Theorem 1.4. The h-vector of Act<(M) equals the h-vector of M .

Proof. This follows from the previous two results, in light of Proposition 2.10.

6 Topology

The external activity complex Act<(M) is a cone; for example, it is easy to see that
every facet contains minE and maxE. Therefore Act<(M) is trivially contractible. It is
more interesting to study the topology of the reduced external activity complex Act•<(M),
obtained by removing all cone points of Act<(M). It turns out that Corollary 1.4 gives
us enough information to describe it. First we need a few technical lemmas.

Definition 6.1. Define a loop of a simplicial complex ∆ to be an element l of the ground
set such that {l} is not a face of ∆.

Definition 6.2. An element e of a matroid M is absolutely externally active if it is
externally active with respect to every basis not containing it, or absolutely externally
passive if it is externally passive with respect to every basis not containing it.

Let AEA(M) and AEP (M) be the respective sets of elements, and call the elements
of AE(M) = AEA(M) ∪ AEP (M) externally absolute.

Lemma 6.3. The set of cone points of Act<(M) is AEP (M) ∪ AEA(M). The ground
set of Act•<(M) is {e : e /∈ AEP (M)}∪ {e : e /∈ AEA(M)}, and this simplicial complex
has no loops.

Proof. The first two statements are clear from the definitions. For the last one, if e /∈
AEP (M), then we can find a basis B with respect to which e is externally active, so
{e} ⊂ F (B) is a face of Act•<(M). Similarly, if e /∈ AEA(M), then we can find a basis B
with respect to which e is externally passive, so {e} ⊂ F (B) is a face of Act•<(M).

Lemma 6.4. Let M = (E,B) be a matroid. Every element e ∈ E is externally absolute
if and only if the circuits of M are pairwise disjoint.

Proof. The backward direction is a straightforward consequence of the definitions. To
prove the forward direction, we proceed by contradiction. Assume that every element of
M is externally absolute, and that we have two circuits γ1 and γ2 with γ1 ∩ γ2 6= ∅ whose
minimal elements are c1 and c2, respectively. Consider two cases.

1. If c1 = c2 then perform circuit elimination to get γ3 ⊂ γ1 ∪ γ2 − c1. Let c3 be the
minimal element of γ3; without loss of generality assume c3 ∈ γ1. Then c3 is externally
active for some basis, as testified by γ3, and it is externally passive for another basis, as
testified by γ1. Hence c3 is not absolute, a contradiction

2. If c1 6= c2 and c ∈ γ1 ∩ γ2, then perform circuit elimination with c to get a circuit
γ3 ⊂ γ1 ∪ γ2 − c. Let c3 be the minimal element of γ3; assume c3 ∈ γ1. If c3 = c1, then
case 1 applies to circuits γ1 and γ3, and we get a contradiction. Otherwise, we must have
c1 < c3 since c1 = min γ1. Therefore c3 is externally active for some basis, as testified by
γ3, and externally passive for another basis, as testified by γ1, a contradiction.
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Proposition 6.5. If a matroid is the disjoint union of circuits, then Act•<(M) ∼= IN(M).
Otherwise, Act•<(M) has a proper subcomplex which is isomorphic to IN(M). The
embedding may be chosen so that the image of facet B of IN(M) is a subset of the facet
F (B) of Act•<(M).

Proof. For every e ∈ E let e′ = e if e is absolutely externally active, and e′ = e otherwise.
The set E ′ = {e′ : e ∈ E} is a subset of the vertices of Act•<(M) by Lemma 6.3. For
every basis B of M the set B′ = {b′ : b ∈ B} is a subset of F (B), and hence a face of
Act•<(M). This gives the desired embedding of IN(M) in Act•<(M).

If M is the disjoint union of circuits, then E ′ equals the ground set of Act•<(M), and
B′ equals F (B) ∩ E ′ for all bases B, so this embedding is actually an isomorphism.

If M is not the disjoint union of circuits, by Lemma 6.3, E ′ is a proper subset of
the ground set of Act•<(M), so the embedding of IN(M) is a proper subcomplex of
Act•<(M).

Lemma 6.6. If a matroid M of rank r is the disjoint union of circuits, then the inde-
pendence complex IN(M) is homeomorphic to an (r − 1)-sphere.

Proof. If M is a single circuit (necessarily of size r+ 1), then IN(M) is the boundary of
an r-simplex, and hence an (r − 1)-sphere.

IfM is the disjoint union of circuits γ1, . . . , γk then IN(M) is the join of IN(γ1), . . . , IN(γk);
that is, IN(M) = IN(γ1) ? · · · ? IN(γk) = {A1 ∪ · · · ∪ Ak : Ai ∈ IN(γi) for 1 6 i 6 k}.
The result then follows from the fact that the join of two spheres Sk and Sl is homeomor-
phic to the sphere Sk+l+1. [13, Chapter 2.2.2]

The matroids with pairwise disjoint cycles have a nice characterization in terms of
excluded minors.

Lemma 6.7. A matroid M contains two circuits with non empty intersection if and only
if U1,3 is a minor of M .

Proof. First suppose that M contains two intersecting circuits γ and δ which intersect at
e. Let c ∈ γ − δ and d ∈ δ − γ. Restricting to γ ∪ δ and then contracting every element
except for c, d, and e, we obtain U1,3 as a minor.

To show the converse consider any matroid N and an element e ∈ E. Notice that
every circuit of N\e is a circuit of N ; and if γ is a circuit of N , then either γ or γ ∪ e
is a circuit of N . It follows that if either N\e or N/e have two overlapping circuits, so
does N . Since U1,3 has two overlapping circuits, so does every matroid containing it as a
minor.

Now we are ready to prove our main topological result.

Theorem 1.5. Let M be a matroid and < be a linear order on its ground set. The
reduced external activity complex Act•<(M) is contractible if M contains U1,3 as a minor,
and a sphere otherwise.

Proof. Notice that if M has a coloop c, then both c and c are cone points of Act<(M),
and are invisible in Act•<(M). Therefore we may assume that M is coloop free.

Let r be the rank of M , and let d = dim(Act•<(M)) = dim(Act<(M)) − |AE(M)| =
n+ r − 1− |AE(M)|. We consider two cases.
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1. If M is not the disjoint union of circuits, |AE(M)| < n by Lemma 6.4, so d > r−1.
Clearly hd(Act•<(M)) = hd(Act<(M)), Theorem 1.4 gives hd(Act<(M)) = hd(IN(M)),
and since IN(M) is (r − 1)-dimensional, hd(IN(M)) = 0. Therefore, by Theorem 2.11,
Act•<(M) is contractible.

2. If M is the disjoint union of circuits, then Act•<(M) ∼= IN(M) is a sphere invoking
Proposition 6.5 and Lemma 6.6.

The result follows from Lemma 6.7.

We conclude that the simplicial complex Act•<(M) is a model for a matroid M which
is topologically simpler than the “usual” model IN(M).

7 Questions

• There should be “affine” analogs of the results of this paper. Geometrically, they
should correspond to taking the closure of an affine subspace L of An in (P1)n,
as opposed to a linear subspace, as explained in [2]. To a morphism of matroids
M → M ′, one may associate an external activity complex Act<(M → M ′) [2] and
active orders <int, <ext, <ext/int [14]. The analogous foundational results, such as
Theorems 2.4, 2.5, 2.6, 2.7 hold there as well. [1, 14] Do our main theorems hold
in that more general setting?

• Even though Act<(M) only pays attention to the external activities of the bases of
M , it is the external/internal order <ext/int which plays a crucial role in its shelling.
This makes the following question from [2] even more natural: is Act<(M) part of
a larger (and well-behaved) simplicial complex which simultaneously involves the
internal and external activities of the bases of M? Ideally we would like it to come
from a natural geometric construction.

• Notice that for an ordered matroid M , every linear extension of the poset of restric-
tion sets of the lexicographic shelling order of IN(M) gives another shelling order
with the same restriction sets. That means that every posible order of the facets
that could give a shelling with the same restriction sets gives another shelling of
IN(M). Does this property say something more about the independence complex.
Is there a wide class of examples of a shellable complex with a fix shelling order,
such that every linear extension of the poset is again a shelling. Notice that 3.2 is
an example that Act<(M) with the associated lexicographic shelling does not have
this property.
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