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1 Introduction

Let &,, be the symmetric group of all permutations of [n], where [n] = {1,2,...,n}. We
write an element 7w in &, as 7 = 7(1)m(2) ---m(n). An excedance in 7 is an index 7 such
that (i) > i and a fized point in 7w is an index i such that 7(i) = i. A fixed-point-
free permutation is called a derangement. Denote by D,, the set of derangements of [n].
As usual, let exc (7), fix (7) and cyc (7) denote the number of excedances, fixed points
and cycles in 7 respectively. For example, the permutation 7 = 3142765 has the cycle
decomposition (1342)(57)(6), so cyc (m) = 3, exc (7) = 3 and fix (7) = 1.
The Eulerian polynomials A, (x) are defined by

Ap(z) =1, An(z)= > 2" forn>1,
TeS,
and have been extensively investigated. Foata and Schiitzenberger [7] introduced a ¢-

analog of the Fulerian polynomials defined by

An(l’, q) — Z oxe (ﬂ')quC (7’1’)

eSS,

Brenti [2, 3| further studied g-Eulerian polynomials and established the link with g¢-
symmetric functions arising from plethysm. Brenti [3, Proposition 7.3] obtained the

exponential generating function for A, (z;q):

2" 1—z 4
L+ ) Ayl 6)— = <—62(9&—1) ~ x) .

n=>1

Remarkably, Brenti [3, Corollary 7.4] derived the following identity:

Z xoxc(w)(_:l)Cyc(w) _ —(I‘ . 1)n—1. (1>
TeS,
From then on, there is a large of literature devoted to various generalizations and refine-
ments of the joint distribution of excedances and cycles (see [1, 6, 9, 15] for instance).
For example, Ksavrelof and Zeng [9] constructed bijective proofs of (1) and the following

formula:
Z xexc(ﬂ)(_l)cyc(ﬂ) — —r— 33'2 L xnfl'

ﬂEDn

In particular, their bijection leads to a refinement of the above identity:

Z 2°%¢ (W)(_l)CyC (m) _ _xn—i7

7T€'Dn,7;
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where D, ; is the set of derangements 7 of [n] such that 7(n) = 1.

A standard cycle decomposition of m € &,, is defined by requiring that each cycle is
written with its smallest element first, and the cycles are written in increasing order of
their smallest element. A permutation is said to be cyclic if there is only one cycle in its
cycle decomposition. Let (¢, ¢a, ..., ¢;) be a cycle in the standard cycle decomposition of
m. We say that ¢; is a cycle descentif ¢; > c¢j41, where 1 < j < i. Denote by CDES () the
set of cycle descents of 7 and let cdes (1) = |[CDES(7)| be the number of cycle descents
of m. For example, for 7 = (1342)(57)(6), we have CDES(7w) = {4} and cdes (7) = 1.
For m € &, it is clear that exc () 4 cyc () + cdes (7) = n. Thus

2\ ¢ (m) 1 cdes ()
An(miq) =¢" > (—) (—) -
€6y, q q

Let &,,; be the set of permutations 7 € &,, with 7(i) = 1. For any 7 € &,,, let 7!
denote the inverse of 7, so 771(1) =i if 7 € &,,;. For n > 2, we recently observed the

following formulas:

M2 if =1,

D (—pesmri O = £ if i=2,...,n—1,
TEGn.s 2n2n if i =n,
Z (_1)cdes(7r)t7r*1(1) _ 2n_2(t + tn),
ﬂ'EGn
Z s 7r) cdes(Tr) 1) _ - (_1)n—ixi—1ti’
T€Dy =2
1
S (-1 = L ey
WEDn

The above formulas can be easily proved by taking = 1 in Theorem 1 of Section 2.
Motivated by these formulas, we shall study the cycle descent statistic of permutations.
In the next section, we present the main results of this paper and collect some notation

and definitions that will be needed in the rest of the paper.

2 Definitions and main results

Consider the following enumerative polynomials

exc 7r c es 7r x (m) g1
Poi(z,y,qt)= Y = des () gfx (mygm= (1),
ST
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It is remarkable that the polynomials P, ;(z,—1,1,t) and P, ,;(x,—1,0,¢) have simple

closed formulas. We state them as the first main result of this paper.
Theorem 1. For n > 2, we have

t(l+z)" 2 if i=1,
Ppi(x,—1,1,t) = ¢ 0 if i=2,...,n—1, (2)
the(l+2)" 2 if i=mn,

and
Pn,i<x> _]-7 07 t) - (_1)71—11,2—11(:7, (3)

A signed permutation (m,¢) of [n] is a permutation 7 € &,, together with a map
¢ : [n] = {+1,—1} and we call ¢(i) the sign of 7. For simplicity, we indicate the sign of
7(7) by writing 7(i)* or m(i)~. The group, which consists of all the signed permutations
of [n] with composition as the group operation, is called the signed permutation group of
order n.

Let (7, ¢) be a signed permutation. Let NEG(m, ¢) be the set of numbers 7 (i) with
the sign —1, i.e.

NEG(7, ¢) = {n(i) | ¢(7(i)) = —1},

and let neg (7, ¢) = [INEG(7, ¢)|.

Definition 2. A negative cycle descent permutation (mw,¢) of [n] is a signed permutation
(7, ¢) such that NEG(mw,¢) C CDES(w).

Let §
bn<y7 q) = Z Pn,i(]-7 Y, dq, ]-) = Z yCdeS(ﬂ—)qﬁX(W).
=1

7'('6671
It is easy to verify that b,(2,1) is the number of negative cycle descent permutations of

[n] since

bn(27 1) — Z 2cdes (71')

WEGTL

and b,(2,0) is the number of negative cycle descent derangements of [n] since

bn<270) _ Z gedes (W)Oﬁx (m) _ Z gcdes (71')

71'6671, WEDn

We present the second main result of this paper as follows.
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Theorem 3. Forn > 1, we have

n

b)) = )+ Y00 (" )1 )

i=1
with the initial condition by(y,1) =1, and

n—1

brs(3:0) = 3 () B0 0) 4 80 (= 17 o)

i=0
with initial conditions by(y,0) = 1,b1(y,0) = 0.

By taking y = 2 in the identity (4), we obtain Klazar’s recurrence for wis(n) (see [8,

Eq. (39)] for details), which can be written as follows:
2 n
by1(2,1) = b, (2,1 b2, 6
RCRRICHED SRS )
In [4, 8, 12], the sets of some combinatorial objects, which have cardinality b,(2, 1), were
studied. We list some of them as follows:
(i) The set of drawings of rooted plane trees with n + 1 vertices (see [8]);

(ii) The set of Klazar trees with n + 1 vertices (see [4]);

(iii) The set of perfect matchings on the set [2n] in which no even number is matched to

a larger odd number (see [4]).

(iv) The set of ordered partitions of [n] all of whose left-to-right minima occur at odd

locations (see [12]).

Now we begin to introduce the concept of perfect matchings (see [5, 11] for instance).
Let P4, = A x {0,1}, where A = {iy,...,ix} is a finite set of positive integers with
i1 <9 < -+ <ix. When A = [n], we write P4 as P,,. A perfect matching is a partition of
P4 into 2-element subsets or matches. For any match {(i,z), (,y)} in a perfect matching,
we say that (i, x) is the partner of (j,y). For convenience, we represent a perfect matching

as a dot diagram with vertices arranged in two rows.

Example 4. We give a dot diagram of a perfect matching M of Pg as follows:
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(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(1,00 (2,00 (3,00 (4,0 (5,00 (6,0 (7,0) (8,0)

Fig.1. A perfect matching M of Pg

Thus, for any perfect matching M of P4, we say that P4 is the vertex set of M and every
match is an edge of M. We use V(M) and E(M) to denote vertices set and edges set in
M respectively. Moreover, an edge is called an arc if it joins two dots in the same row;
otherwise, this edge is called a line. For any line {(7,0), (4,1)}, it is said to be a upline
if © < j, a downline if i > j and a vertical line if + = 5. For any perfect matching M, let
arc (M),down (M) and ver (M) be the numbers of arc, down lines and vertical lines in

M, respectively.

Example 5. In the perfect matching of Example 4, the edge {(1,1),(1,0)} is a vertical
line, the edges {(3,1),(6,0)} and {(6,1), (8,0)} are two downlines, the edges {(5,1),(2,0)},
{(7,1),(5,0)} and {(8,1),(4,0)} are three uplines, the edges {(2,1), (4,1)} and {(3,0),(7,0)}
are two arcs; finally, arc(M) = 2, down(M) = 2,ver(M) = 1.

Definition 6. A perfect matching M of P, is a Callan perfect matching if M has no

uplines.
Example 7. We give a dot diagram of a Callan perfect matching M of Pg as follows:
(1, 1) (2,1) (3,1) 4, 1) (5,1) (6,1) (7,1) (8,1)
@ e e
« e 0 __° o
(1,0) (2,00 (3,00 (4,0) (5,00 (6,00 (7,0) (8,0)
Fig.2. A Callan perfect matching M of Pg

Let m,, be the number of Callan perfect matchings of P,. Callan [4] proved that m,,
satisfies the recurrence (6). So the number of negative cycle descent permutations of [n]
equals to the number of Callan perfect matching of P,,.

Let M be a perfect matching of P,,. We say that M’ is a sub-perfect matching of M
if M’ is a perfect matching such that V(M') C V(M) and E(M') C E(M). For any
V' C [n], if there is a sub-perfect matching M’ of M with V(M') =V x {0,1}, then M’
is said to be the sub-perfect matching induced by V and is denoted by M[V].
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Denote by G(M) a graph which is obtained from M by identifying each two vertices
(7,0) and (,1) as a new vertex ¢ for any ¢ € [n]. It is easy to see that the graph G(M) is
the union of some disjoint cycles. For a cycle C' in G(M), suppose C' has the vertices set
V. Note that there is a sub-perfect matching of M induced by V. We say that M[V] is
a connected component of M. Let com (M) be the number of connected components in
a perfect matching M. If a perfect matching M has exactly one connected component,

i.e., com (M) = 1, then we say that M is a connected perfect matching.

Example 8. For the perfect matching M of Example 7, we draw the graph G(M) as

[IA.O

Fig.8. A graph G(M

follows:

So we have com (M) = 3.
We state the third main result of this paper as follows.

Theorem 9. There is a bijection I';, between the set of negative cycle descent permutations
of [n] and the set of Callan perfect matchings of P,. Moreover, for any negative cycle

descent permutation (7, ¢) of [n], we have

com (I',, (7, ¢)) = cyc (m), ver (I'y (7, ¢)) = fix (7),
and

neg (7, @) if (1,1) and its partner are in the same row,

down (I',(7, ¢)) = { neg (m,¢) + 1 otherwise.

Let I'|p, denote the restriction of I',, on the set of negative cycle descent derangements

of [n]. So the following corollary is immediate.

Corollary 10. I'|p, is a bijection between the set of negative cycle descent derangements

of [n] and the set of Callan perfect matchings of P,, which have no vertical lines.

The rest of this paper is organized as follows. In Section 3 and Section 4, we respective-
ly prove (2) and (3) in Theorem 1. In Section 5 and Section 6, we respectively prove (4)

and (5) in Theorem 3. In Section 7, we construct the bijection I',, in Theorem 9.
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3 Proof of the explicit formula (2) in Theorem 1

Suppose that m = 7(iq) ... 7(ix) is a permutation on the set {iy, ..., s} of positive integers

with 41 < iy < --- <4, Throughout this paper, we always let
red (7) :=red (w(i1)) - - - red (7(ix)) € Sy,

where red is a increasing map from {iy,...,4;} to {1,2,...,k} defined by red (i;) = j for
any 7 =1,2,... k.

Let P,(z,y,1,1) = > P,i(z,y,1,1). We give a recurrence for P, ;(x,y,1,1) in the
i=1
following lemma.

Lemma 11. For any n > 2, we have

¢ Pn(l',y,l,l) Zf i = 1’
i—1
Pn-i—l,i(xa Y, 1; ]-) = IL'Pn_1<q;7 Y ]" ]'> + [E]; ij(l', Y, ]-; 1)+
Yy Poj(z,y,1,1) if =241,
\ J=i

with initial conditions
Pl,l(xvya 17 1) = 17 P2,1(-T7y7 17 1) = 17 P2,2($U7Z/> 17 1) =T

Proof. For any # = n(1)m(2)...7(n + 1) € S,411, we have 7(1) = 1. Let 7 =
m(2)...m(n 4+ 1). Then 7 is a permutation on the set {2,3,...,n} and red (7) € &,,.
Obviously,

exc () = exc (red (7)) and cdes () = cdes (red (7).

So we have P111(z,y,1,1) = P,(z,y,1,1).

For any i > 2, let m = m(1)7(2)...71(n + 1) € Spq14. Let 0 = (1,¢1,¢0,...,¢m) be
the cycle in the standard cycle decomposition of m which contains the entry 1. So 7 can
be split into the cycle o and a permutation 7 on the set {1,2,....n+1}\ {1, c1,...,cn},
ie, m=0-7. Clearly, m > 1, ¢ > 2 and ¢,, = i since 7 € &,,41,. We distinguish between
the following two cases:

Case 1. m = 1.

Deleting the cycle (1,¢1) = (1,4) from the standard cycle decomposition of m, we

obtain the permutation
T=n2)--m@i—-Dr(i+1)---w(n+1)
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which is defined on the set {1,2,...,n+ 1} \ {1,7}. Note that red (7) € &,,_1 and
exc (m) = exc (red (7)) + 1, cdes (7) = cdes (red (7)).

This provides the term
xP,_4(z,y,1,1).

Case 2. m > 2.
Suppose that ¢,,_1 = j for some 2 < j < n+ 1. Deleting the number ¢,, = i from the

standard cycle decomposition of 7, we obtaln a permutation
7= 1,c1,...,Cp1) T

which is defined on the set {1,...,7—1,i+1,...,n+ 1}. Hence red (7) € &,,. Moreover,
if ¢,y =J <i—1, then

red (7) € 6,,;,exc (1) = exc (red (7)) + 1, cdes (1) = cdes (red (77)).

This provides the term
i1

xZPnJ(x,y, 1,1).

j=2
Ifep,o1=j>21i+1, then

red (7) € 6,1, exc (1) = exc (red (7)), cdes (7) = cdes (red (7)) + 1.

This provides the term
Yy E P, i(z,y,1,1).
j=i

In conclusion, for any ¢ > 2 we have

i—1

Poiri(z,y,1,1) =aP,_1(z,y,1,1) —l—xZPM z,y,1,1) +yZPnJ (x,y,1,1).

Jj=2 Jj=t

A proof of the identity (2) in Theorem 1:

Note that
Z mexc ) cdes (Tl')tﬂ _ tz Z :Eexc ) Cdes (m) _ tzP ( z, _17 1’ 1)
TI'GGn 2 7T€Gn i
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In order to prove the identity (2) in Theorem 1, it is sufficient to show that
1+z)"2 if =1,

P i(z,—1,1,1) = ¢ 0 if 1=2,...,n—1, (7)
r(l+z)" 2 if i=n.

(i) An inductive proof of the explicit formula (7).

Proof. 1t is easy to verify that P (z,—1,1,1) = 1, Pyo(x, —1,1,1) = 2. Assume that the
explicit formula (7) holds for any 2 < k < n. By Lemma 11, we have

Poyia(z,—1,1,1) = P,(x,—1,1,1)
= Poi(z,—1,1,1) 4 P, (x,—1,1,1)
= (1+2)" +z(l+2)"?=1+z2)" ",

Poiini(z,—1,1,1) = 2Pz, —1,1,1)+ 2> Pz, —1,1,1)
j=2

= Z'Pn,1’1<l', _17 ) 17 1) + xPnfl,n71<x7 _17 17 1) + xPn,n<x7 _17 17 1)
= z(1+2)" 2+ 2214+ 2)" =21 +2)" !

and

n

i—1
Poiri(z,—1,1,1) = aPyy(e,—1,1,1) +2 ) Pojle,—1,1,1) = > Pz, -1,1,1)
j=2 j=i
= mpnfl,l(xa _17 17 1) + :L'Pnfl,nfl(:v? _17 17 1) - Pn,n(xa _17 17 1)

= 2(1+2)" %= P,,(x,~1,1,1) =0

for any 2 <i < n.

(ii) A bijective proof of the explicit formula (7).
Now we give a bijective proof of (7) by establishing an involution ¢, ; on &,, ;.

For any m € G,,, suppose that 7 = (' ... C} is the standard cycle decomposition of .
Let

T=a1as" - ay
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be the permutation obtained from 7 by erasing the parentheses in its standard cycle
decomposition. Furthermore, for any ¢ = 1,2,...,n — 1, the number q; is said to be a
value-descent of 7 if a; > a;y1 in the sequence 7, and let ¢, be the last value-descent
which appears in the sequence 7. For example, the permutation m = 1472365 in Gy
has the standard cycle decomposition (1)(24)(375)(6), so # = 1243756, it has exactly
two value-descents 4 and 7, and ¢, = 7. The process of erasing the parentheses from
the standard cycle decomposition of a permutation is well-known bijection of Foata and
Schiitzenberger, the “fundamental transformation”, see also [7].

We define a map ® : 6,, — &,, as follows:

For any 7 € G, if ¢, is the last element of a cycle C; for some i, then let & ()
be the permutation obtained from 7 by erasing the right and left parentheses “)(” after
the number ¢, in the standard cycle decomposition of 7; otherwise, let ®(7) be the
permutation obtained from 7 by inserting a right parenthesis “)” and a left parenthesis
“(” after the number ¢, in the standard cycle decomposition of 7. For example, if 7 =
(1)(24)(375)(6), then 7 = 1243756 and ¢, = 7, and so ®(m) = (1)(24)(37)(5)(6). If
o= (1)(24)(37)(5)(6), then ®(o) = (1)(24)(375)(6). Clearly, we have

T = (IT(TI'\), Ix = Qa(r), exc(m) = exc(P(m)), cdes (m) — cdes (P(m)) = £1.

Denote by €2, ; the set of the permutations m € &,, ;1 such that 7 = 123 ---n. For any

m € (1,1, suppose that

= (1)C1Cy -+ Cr_1Cy
is the standard cycle decomposition of 7. Let 75 be the largest number in the cycle C; for
every s = 1,2,..., k—1. Then the set {i1, 4, ...,i,_1} is a subset of the set {2,3,...,n—1}
and 41 < ig < -0 < Gp_q.

Conversely, suppose that {i1,42,...,i,_1} is a subset of the set {2,3,...,n — 1} and
i <t <...<1,_1. Let

= (1)(2,3,... i) (01 +1, 0142, ... o) - (Gp—2t 1, ip—2+2, . o 1) (Gp—1 1, 0142, ...,
We have m € Q,,; and exc (w) =n — k — 1. Thus, the weight of €, ; is

—1
Z l,exc ) cdeb (m) Z xexc Z (n - 2) n—k—1 _ (LL' + 1)n—2

WEQn 1 TEQ 1

For any permutation 7 € &,,1 \ 2,1, we have ®(7) € &,, 1\ Q2,1. So for any 7 € &,,1,

let
d(r) if meG, Q1,
wn,l(”) - { ( ) )1 \ 1

T it me,,.
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Note that

Z 7€ () (_ 1)cdes (m) —  _ Z %€ (®(m)) (_ 1)cdes (®(m))

WEGTL,]_\QTL,]_ F€6n71\9n71

_ Z 2°%¢ (@(ﬂ))(_l)cdes (®(m))
7T/€67L,1\Q7L,177r:q>(7r/)

- _ Z exe (ﬂ’)(_l)cdes (7'('/).

7T'IGGn,I\Qn,l

This implies that

Z 2°%¢ (W)(_l)CdeS (m) _ 0.

T€6n,1\Qn 1
Hence,
Z xexc(w)(_l)cdes(ﬂ) _ Z xexc(w)(_l)cdes(ﬂ) i Z xexc(ﬂ')(_l)cdes(w)
TE€Gn1 7€ €61\ 1
Z % () (1 )yedes (1) _ Z 2 — (1 4 )
TEQn 1 TEQn 1

For example, we list all 7 € &4 and 1, (7) in Table 1.

™€ &y, gexe (™) (—q)edes(m) | 7 Gr | Vaa(m0)
(D(2)(3)4) | 1 1234 (1)(2)(3)(4)
(1)(23)(4) | = 1234 (1)(23)(4)
(1)(2)(34) |z 1234 (1)(2)(34)
(1)(234) 2 1234 (1)(234)
(1)(24)(3) |z 1243 (1)(243)
(1)(243) —z 1243 (1)(24)(3)

Table.1. Involution 1,1

For 2 < i < n, denote by A, ; the set of permutations 7 € &,,; such that the number
¢ isn’t in the first cycle in the standard cycle decomposition of 7. Let A;’iw- =G \ Anji
for short. For any m € A}, ;, let 7 = C ... Cy be the standard cycle decomposition of T,

suppose the length of the cycle C is [ + 1 and
T = 1,...,i,a1,...,an,l,1.

Then we have

ap < ag <--- < 0ap_j-1,
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since ¢, is an element in the cycle (.
Now suppose that Cy = (1,¢11,...,¢1;). Let @ be the set of indices j € {1,2,...,1}

such that cy; is not the largest number in the set {1,2,...,n}\ {c1j41,...,cu}, ie,

Q={jl1<j<land ¢;; <max{l,2,...,n}\{c14+1,---,cu}t}

Let €2, ; be the set of permutations m € Aj; ; such that @ = (). Forany 1 =2,...,n —1,

we have [ € ) since i < n, and so Q,; = 0. Moreover, 7 € §,,, if and only if
T=1kk+1,..n—1,n,2,3,....k—2k—1

for some k > 1.
We define a map ¥ from Ay ; \ Q,; to itself as follows:
For any 7 € Aj,; \ Qn4, let m = m; = min Q since Q # (). If m = 1, then there are at

least two cycles in the standard cycle decomposition of 7. If m > 2, then we have
ci1 < - < Crim—1 and € m_1 > Cip.

Furthermore, we distinguish between the following two cases:

Case 1. 2<m <.

Let

U(m) = (L, cim, .- cu) - Co. . . Ck - (c11, -+ Clim—1)-

Then ¥(7) has at least two cycles, mg(r) = 1 since cip, < €11, and so U(7r) € A ;\ Q.
Moreover, we have exc () = exc (¥(7)) and cdes (1) = cdes (¥U(7)) + 1

Case 2. m = 1.

Suppose that C; = (1, ¢11,...,cy) and Cy = (g1, - - ., Crs) are the first cycle and the

last cycle in the standard cycle decomposition of 7 respectively, where s is the length of
the cycle C. Let

‘I’(T{') = (1,Ck1, v ey Clsy C11,y - - - 7cll) . C2 . -Ckfl-
Then
My =s+122

and so ¥(m) € A}, \ Q,;. Moreover, we have exc(m) = exc(¥(r)) and cdes(m) =
cdes (¥(m)) — 1
When 2 <t <n—1, forany 7 € G,,,, let

CD(W) if we An,ia
wn,i(TO = .
\I/(ﬂ') if me 671’1‘ \ -An,i-
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For example, we list all 7 € G4 and 94 () in Table 2, and 7 € &4 3 and 14 3(7) in Table
3.

TE Gy |ae(—1)cdes(m) | 7 Qr | My | Yya(m)
(12)(3)(4) | « 1234 |1 | (142)(3)
(142)(3) | —a 1423 14 |2 | (12)(3)(4)
(12)(34) |22 1234 |1 |(1342)
(1342) | —a? 1342 |4 |3 | (12)(34
(1432) |z 14323 |2 | (132)4)
(132)(4) | —x 13243 |1 [ (1432)

Table.2. Involution 1)y

TES 3 xexc(w)(_l)cdes(w) & Gr | My w43(7r)

4, ’
(13)(2)(4) | = 13243 |1 | (143)(2)
(143)(2) | —x 14323 |2 | (13)(2)(4)
(13)(24) | 22 13243 |1 | (1243)
(1243) | —a? 12434 |3 | (13)(24)
(1423) —x? 1423 14 |2 (123)(4)
(123)(4) | 22 1234 |1 | (1423)
Table.3. Involution 143

Hence,

Z :L,exc(ﬂ)(_1>cdes(7r) _ Z Iexc(w)(_l)cdes(w)_i_ Z xexc(w)(_l)cdes(w) —=0.

TrEGmi 7T€-An,7; WEGn,i\An,i

When i = n, we claim that the weight of €, is (1 + x)"" 2. For any 7 € Qs
suppose that
mT = (]_, C11,C12, . .. ,615)0102 . Ck

is the standard cycle decomposition of 7, where ¢;; = n. Let
7T/ = (1)0102 Ce Ck(clla C12,. .. 7015).

Then 7’ € Q,,; and exc (m) = exc (n’) + 1. So, the weight of €2,,,, is

Z xexc(ﬂ')(_l)cdes(ﬂ’) _ Z xexc(ﬂ') _ Z xexc(ﬂ")Jrl :x(1+x)"72

7T€Qn,n ﬂ'eﬂn,n 71'/6977”1
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For any m € G,,,,, let

V() = U(r) if 7€ S, \ (AnnUQnn),
s it m™el,,.

For example, we list all 7 € S44 and ¥, 4(7) in Table 4.

T goxe (M) (—1)edes(m) | & G | M | Vua(m)
(14)(2)(3) | = 1423 (14)(2)(3)
(14)(23) | 22 1423 (14)(23)
(134)(2) | 22 1342 (134)(2)
(1234) x? 1234 (1234)
(124)(3) | 22 1243 14 |1 (1324)
(1324) —? 1324 13 |2 (124)(3)
Table.4. Involution 144
Hence,
Z xexc(w)(_l)cdes(ﬂ')
T€Gn,n
_ Z xexc(ﬂ')(_1>cdes(7r)_|_ Z Iexc(w)(_l)cdes(ﬂ)+ Z Iexc(ﬁ)(_l)cdes(ﬂ)
TE€EAn N TE€SH n \(An,nUn n) TEQn,n
_ Z xexc(w)(_l)cdes(ﬂ') = 2(1+2)"2
7€Qnn

4 Proof of the explicit formula (3) in Theorem 1

n

Let P,(z,y,0,1) =Y P,i(z,y,0,1). We first give the recurrence for P,(z,y,0,1).

=1

Lemma 12. For anyn > 2 and 2 < i < n+ 1, we have

i—1 n
Pn+1’i<$,y, 0, 1) = LEPnfl(I‘,y, 0, 1) + JZZPHJ(JT, Yy, 0, 1) + yz Pn,j(xvyu 07 1)
=2 j=i

Proof. For any m = w(1)m(2)...7(n + 1) € D114, let 0 = (1,¢1,¢9,...,¢) be the cycle

in the standard cycle decomposition of © which contains the number 1. So 7 can be split
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into the cycle o and a permutation 7 on the set {1,2,...,n+ 1} \ {1,¢1,...,q}, ie,
m=o0-7. Clearly, l > 1,47 > 2 and ¢, = i since 7 € D,,41,. We distinguish between the
following two cases:

Case 1. [ = 1.

Deleting the cycle (1,¢1) = (1,4) from the standard cycle decomposition of m, we

obtain the permutation
T=n(2)..7(i —1)w(i+1)...71(n+1)
which is defined on the set {2,...,i—1,i+1,...,n+ 1}. Note that red (1) € D,,_1,
exc (r) = exc (red (1)) + 1 and cdes (7) = cdes (red (7)).

This provides the term xP,_1(z,y,0,1).
Case 2. [ > 2.
Suppose that ¢;_; = j for some 2 < j < n + 1. Deleting the number ¢; = ¢ from the

standard cycle decomposition of 7, we obtain a permutation
7=1c1,...,q0) T

which is defined on the set {1,...,i—1,i+1,...,n+1}. Note that red (7) € D,,. Moreover,
if g1 =7 <1—1, then

red (7) € D, j, exc (m) = exc (red (7)) + 1, cdes () = cdes (red (7)).
This provides the term

i1
x Z P, (z,y,0,1).
=2
Ifc,1=7>1i+1, then
red (7) € Dy, j_1,exc (m) = exc (red (7)), cdes () = cdes (red (7)) + 1.
This provides the term

Y Z P, i(z,y,0,1).

j=i
Thus, for any ¢+ > 2 we have
i—1 n
PnJrl,i(:[;?ya 07 1) = xpn71<x7y> Oa 1) + xzpn,j(aja Y, 07 1) + yz Pn,j(x>y7 07 1)
=2 j=i
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A proof of the identity (3) in Theorem 1:

Proof. Note that

Z 2°%¢ (7r)<_ cdes(w)tw — 4 Z 2°%C 7r) cdes(Tr) _ tiPnZ‘(ZL', —1,0, 1)

WEDn’i ﬂ'EDn )i

Therefore, it is sufficient to show that
Poi(r,—1,0,1) = (=1)" 2" (8)

for any n > 2 and 2 < i < n.
(i) An inductive proof of the explicit formula (8):
It is easy to check that

Pyo(x,—1,0,1) =

Assume that the formula holds for any 2 < k£ < n. By Lemma 12, we have

i—1 n
Poi(z,—1,0,1) = aP_y(x,~1,0,1) + 2y P, (x,~1,0,1) = > P, ;(z,~1,0,1)
g —

i—1 n
:meu ~1,0,1)+ 2 Poy(x,—1,0,1) = > P, ;(x,~1,0,1)
j=2 Jj=i
n—1 n

= S (-t Z el =3 (1)

j=2 j=i
— ( 1)n+1 i, .0—1

for any 2 < i < n.

(ii) A bijective proof of the explicit formula (8):
Next we give a bijective proof of the explicit formula (8) by establishing an involution ¢, ;
on D, ;. Fixi € {2,...,n}. By definition, the weight of each 7 € D, ; is (—1)°des (M) gexe (™)

hence the weight of the cyclic permutation

o' =(1,2,....i—1,n,n—1,...,i) € Dy,

)

is (—1)" "tz h

For any m € D,,;, suppose that m = C} ... C} is the standard cycle decomposition of 7
and Cy = (ck1,-..,Cks). We distinguish among the following three cases:

Case 1. k=1land Cy, =(1,2,...,i—1,n,n—1,...,17).
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Then let ¢, (1) = 7.
Case 2. k> 2 and red (Cy) = (1,2,...,r—1,s,s —1,...,7) for some r =23,...,s.

Suppose that Cy_1 = (Cr—1,1,Ck-12,- - -, Ck—1,) and ¢ ; is the largest number in the set
{ckiscra,... crs} for some j € {1,2,...,s}. If cy_12 < g j_1, then let
SDn,i(W) =C- - Cha- (%—1,1, Ck1,Ck2;5 - - -y Cksy; Ck—1,25 - - - >Ck—1,t)7

and so we have
exc (m) = exc (p,(m)) and cdes () = cdes (¢ i(7)) — 1.

For example, we consider a permutation = = (1397)(24586) € Dg7. The largest

number in the cycle (24586) is 8, and so j = 4. Since ¢;2 = 3 < ¢23 = b, we have
©o7(m) = (124586397)

and

exc (m) = exc (pg 7(m)) = 5, cdes (7) = 2, cdes (g 7(m)) = 3.
If cx—12 > cx j—1, then let
SOn,i(W) =C1-Cpg- (Ckf1,1, Ckly---3Ckj—2,Ckj - -y Cks; Ckj—1,Ck—1,2y - - - ;Clcfl,t)a
and so we have
exc (m) = exc (pn,(m)) and cdes (7) = cdes (¢, (7)) — 1.

For example, we consider a permutation 7 = (1793)(24586) € Dgs. The largest
number in the cycle (24586) is 8, and so j = 4. Since ¢ 2 =7 > o3 = 5, we have

©o.3(m) = (124865793)

and

exc (1) = exc (pg3(m)) = 5, cdes (7) = 2, cdes (g 3(m)) = 3.

Case 3. red (Cy) # (1,2,...,7r—1,8,s—1,...,r) forany r = 2,3,...,s.

There exists a unique index § such that
red (cg1, Cra, - Ckz) = 1,2,...,r =185 —1,...,r
for some r =2,3,...,5 and
red (Ck1, Ch2, -+ Chs1) # 1,2, , T — 1,84+ 1,5,...,7
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for any 7 = 2,3,...,5 4+ 1. It is easy to check 3 < § < s — 1. Moreover, suppose that c;

is the largest number in the set {cg1, cg2, - . ., cks}. Then we have

Ck,5+1 < Ckj—1 OF Cps+1 > Cks-

If Ck5+1 < Ckj—1 then

SDn,i(W) =C- - Cha- (Ckl, Ck,54+1y - - - 7Cks) : (CkQ, cee ,Ckg),
we have
exc (m) = exc (pn(m)) and cdes (1) = cdes (ni(7)) + 1.

For example, we consider a permutation = = (124586397) € Dy 7. Then § = 6 and the
largest number in the set {1,2,4,5,8,6} is 8, and so j = 5. Since 17 =3 > ¢14 = 5, we
have

wo7(m) = (1397)(24586)
and

exc (m) = exc (pg 7(m)) = 5, cdes (7) = 3, cdes (g 3(m)) = 2.

If ¢k 541 > ck 5, then let

Pni(m) = C1-++ Crz - (Ch1, Char1y - -+ Chs) * (Ch2, - - - ) Ck,j—15 Ck,5) Ckjy - - - , Chi1),
we have
exc (m) = exc (pn(m)) and cdes (1) = cdes (¢y,i(m)) + 1.
For example, we consider a permutation = = (124865793) € Dy 5. Then § = 6 and the
largest number in the set {1,2,4,8,6,5} is 8, and so j = 4. Since 17 =7 > ¢145 = 5, we

have g 3(r) = (1793)(24586) and
exc (m) = exc (pg3(m)) = 5, cdes (m) = 3, cdes (g 3(m)) = 2.

For the case with n = 4, we list all 7 and ¢, ;(7) in Table. 5.

T € Dys | ap(m) || 7€ Dag | as(m) | mE Daa| paa(m)
(12)(34) | (1342) (13)(24) | (1423) (14)(23) | (1324)
(1342) | (12)(34) | (1423) | (13)(24) || (1324) | (14)(23)
(1432) | (1432) | (1243) | (1243) || (1234) | (1234)
Table. 5. Involutions ¢, ;(7) for n =4
Hence,
Z xexc(ﬂ')(_l)cdes(w) _ (_1)n7i$i71 + Z I,exc(w)(_l)cdes(ﬂ') _ (_1)n7imi71‘
TE€Dn i wE€Dy,i\{o?}
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5 Proof of the recurrence relation (4)

Suppose that y is a positive integer. Let &,(y) denote the set of pairs [m, ¢] such that
m € &, and ¢ is a map from the set CDES() to the set {0,1,--- ,y — 1}. It is easy to
see that G,,(y) is a subset of the wreath product of Z,! S,, and b,(y,1) = |6, (y)|.

For any (7, ¢| € &,,41(y), we distinguish the following two cases:

Case 1. 7(1) = 1.

Let 7 =7(2)...m(n+1). Then 7 is a permutation defined on the set {2,3,...,n+ 1}

and

red (1) € 6,,.

Define a map ¢’ : [n] — {0,1,...,y — 1} by letting ¢'(i) = ¢p(red "' (4)) for i = 1,2,...,n.
Then
[red (7), ¢'] € Gn(y),

and so this provides the term b,(y, 1).

Case 2. (1) # 1.

Let 0 = (1,¢1,¢a,...,¢) be the cycle in the standard cycle decomposition of 7 which
contains the number 1. So, 7 is split into the cycle ¢ and a permutation 7 on the set
{1,2,....n+1}\{L,c1,...,¢}, ie., m=0-7. Clearly, [ > 1 since w(1) # 1.

Note that there is a unique index k > 1 which satisfies ¢;,_1 < ¢ and ¢ > cpy1 >
.-+ > ¢. For the sequence ¢ . ..¢, if ¢(c;) = 0 for some k < i <1 — 1 then let &’ be the
largest index in {k,k + 1,...,l — 1} such that ¢(cy) = 0; otherwise, k' = k — 1. Let

o =(1,¢1,...,¢cp) and ¥ =0 - T.
Then 7’ is a permutation defined on the set [n 4 1]\ B, where
B = {Ck’—i-la s 7cl}a

and

red (7T/> S 6n+1,|3|.

Define a map ¢’ : [n+1—|B|] — {0,1,...,y — 1} by letting
¢/ (i) = d(red (i)
for any 1 <i<n+1—|B|. Then
[red (1), ¢'] € &ni1-15(y)-
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Note that 1 < |B] < n and B\ {¢} € CDES,1(m). For any k < i <1 —1, let
0(c;) = ¢(c;). Then 6 is a map from the set {cxri1,...,¢-1} to {1,2,...,y— 1}. So there

are (“g') ways to form the set B and (y — 1)/®I=! ways to form the map #. This provides

an+1 i(y,1 ( )(y—l)

Hence we derive the recurrence relation

the term

bua(y,1) = baly, 1 +an+1zy, ()(y—l)

= ba(y,1 +Zby,( )(y—l)

6 Proof of the recurrence relation (5)

Clearly, we have by(y,0) = 1 and b;(y,0) = 0. Suppose that y is a positive integer.
Let D, (y) denote the set of pairs [m, ¢] such that 7 € D,, and ¢ is a map from the set
CDES(m) to the set {0,1,--- ,y — 1}. Hence b,(y,0) = |D,(y)|.

For any [m,¢] € Dpy1(y), let 0 = (1,¢1,¢2,...,¢) be the cycle in the standard cycle
decomposition of 7 which contains the number 1. So, 7 is split into the cycle o and a
permutation 7 on the set [n + 1] \ {1,¢1,...,¢}, ie., 7 = o - 7. Clearly, [ > 1 since
(1) # 1.

Note that there is a unique index k£ > 1 which satisfies cx_1 < ¢ and ¢ > cpy1 >

- > ¢;. For the sequence ¢y . .. ¢, if ¢(¢;) = 0 for some k < i <[ — 1 then let &’ be the
largest index in {k,k +1,...,1 — 1} such that ¢(cp) = 0; otherw1se, E=k-—1.

We distinguish between the following two cases:

Case 1. k' = 0.

Let

B={c,....q}.

Note that 7 is a permutation defined on the set [n + 1]\ {1,¢1,...,¢} and
red (7') S 6n—|B|-
Define a map ¢’ : [n — |B|] — {0,1,...,y — 1} by letting

¢ (i) = p(red "' (7))
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for any 1 < i < n —|B|. Then

red (7), '] € &, y/(y)

and there are b,_5/(y,0) ways to form the pairs [red (1), ¢'.
Note that 1 < |B] < n and B\ {¢} € CDES, (7). For any k < i <1 —1, let
0(c;) = ¢(c;). Then 6 is a map from the set {ck,...,c_1} to {1,2,...,y — 1}. So there

|B|-1

are (UTSL,') ways to form the set B and (y — 1) ways to form the mapping 6.

This provides the term

Zl ba-i(y,0) (ZL) (y—1)"

Case 2. k' > 1.
Let

o =(1,¢1,...,¢cp) and @ =0 - T.

Then 7' is a permutation defined on the set [n + 1] \ B, where

B = {ck’+17 s 7Cl}7

and
red (71'/) € 6n+1_|3|.

Define a map ¢’ : [n+1—|BJ|] — {0,1,...,y — 1} by letting
¢/ (i) = ¢red (1))
for any 1 <i<n+1—|B|. Then

[red (7'), ¢'] € Dpi1-15/(y)

and there are b,11_p|(y,0) ways to form the pairs (red ('), ¢').

Note that 1 < |B| < n—1and B\ {¢} C CDES(w). For any k < i <[ —1, let
0(c;) = ¢(c;). Then 0 is a map from the set {cxri1,...,¢-1} to {1,2,...,y —1}. So there
are (“’;') ways to form the set B and (y — 1)/ZI=! ways to form the map 6.

This provides the term

gbm—l—i(y, 0) (?) (v 1)

Hence we have

n n—1

ba0) = 3 (7 )huns 00 - 1) 4

i=1

CZ) bn1-i(y, 0)(y — 1)

i=1
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7 Proof of theorem 9

Lemma 13. There is a bijection ©,, from the set of cyclic negative cycle descent permu-

tations of [n| to the set of connected Callan perfect matchings of P,,.

Proof. Let (m,¢) be a cyclic negative cycle descent permutation of [n]. Then there is
exactly one cycle C' in the standard cycle decomposition of 7. Suppose C' = (¢y, Ca, ..., ¢p),
where ¢; = 1. Erase the parentheses, draw a bar after each element ¢; which has sign +1,
and add a bar before ¢;. Regard the numbers between two consecutive bars as “blocks”.

So, we decompose (7, ¢) into a sequence of blocks
By, Bs, ..., B.

Suppose that the i-th block B; contains ¢; number b;1, ..., by, with by > ... > b;,. We

construct a perfect matchings M as follows:

e Step 1. For every block B;, we connect the vertex (b; ;,0) to the vertex (b; j11,1) as

a downline of M for any 1 < j <t — 1.

e Step 2. For any odd integer i € {1,2,...,k — 1}, we connect the vertex (b;s,,0) to
the vertex (bit14,,,,0) as an arc of M. For any even integer ¢ € {1,2,...,k—1}, we

connect the vertex (b; 1, 1) to the vertex (b;+11,1) as an arc of M.

e Step 3. If k is odd, we connect the vertex (by1,1) = (1, 1) to the vertex (by4,,0) as a
downline of M; otherwise, connect the vertex (by1,1) = (1,1) to the vertex (bgi, 1)

as an arc of M.

It is easy to check that M is connected and has no uplines. So, M is a connected Callan
perfect matching. Define ©,, as a map from the set of cyclic negative cycle descent
permutations of [n] to the set of connected Callan perfect matchings of P, by letting
On(m,¢) = M. Let (m,¢) and (7',¢') be two different cyclic negative cycle descent
permutations of [n]. Then the sequence of blocks of (7, ¢) and (7', ¢') are different. This
implies O, (7, ¢) # O, (7', ¢'), and so the map ©,, is an injection.

Conversely, let M be a connected Callan perfect matching of P,,. Delete the edge
incident with the vertex (1,1) from M, identify two vertices (¢,0) and (i,1) in M as a
new vertex i for each i = 1,2,...,n, denote by G*(M) the graph obtained from M. Then
the graph G*(M) is a path on the vertex set [n] and can be written as

ajay - - Qp,
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where a; = 1 and the set {ajas,asay,. .., a,_1a,} is the edge set of G*(M). Draw a bar

after each number a; which satisfies either (1) i = n or (2) there is an arc of M in

{{(a;,0), (aiy1,0)}, {(as, 1), (@i, 1)},

and add a bar before a;. Regard the numbers between two consecutive bars as “blocks”.

So, we obtain a sequence of blocks
B, B,,...,B;.
We construct a cyclic negative cycle descent permutations (7, @) of [n] as follows:

e Step 1’. For each block B!, we write the numbers in B, in decreasing order, denote

by 7; the obtained sequence, and let m = (71, 72, ..., Tx).

e Step 2. For any number j € [n], suppose j is in a block B; for some 1 <i < k. If j
is the smallest number in B, then let the sign of j be +1; otherwise, let the sign of
j be —1. In fact, this defines a map ¢ from [n] to {+1,—1}.

Then (7, ¢) is a cyclic negative cycle descent permutations of [n]. O
Example 14. Let us consider a cyclic negative cycle descent permutation
(176747372787 7751

on the set {1,2,...,8}. We erase the parentheses, draw a bar after each element which

has sign +1, and add a bar before 1. Thus we obtain
|11643]2|875
and the sequence of blocks
By =1,By, =643, B3 = 2, By = 875.

By Steps 1,2,and 3 in the proof of Lemma 13, we construct the following dot diagram.

(1, 1) 31)(41)(@1)(21 <51) (7,1) (8,1)

NN NN

<10> (3,0) (4,0) <60><2o (5,0) (7,0) (8,0)

Fig.4. A dot diagram constructed by Step 1,2, and 3 in the proof of Lemma 13
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Finally, we obtain a connected Callan perfect matching M corresponding with
(1167473727877 5™)
as follows:
(1,1 (2,1) B, 1) 4,1 (5,1 (6,1) (7,1) (8, 1)
o/\\\\‘.\
e s ° o
(1,0 (2,0 (3,0 &0 (5,0 (60 (7,0 (80

Fig.5. A connected Callan perfect matching M corresponding with (176-4-372T8~775)

Conversely, let us consider the connected perfect matching M in Fig.5. After deleting
the edge {(1,1),(8,1)}, we can obtain the graph G*(M) = 13462578, which has the edge
set {13,34,46,62,25,57,78}. Note that there are 3 arcs

{(1,0),(3,0)},{(6,1),(2,1)},{(2,0), (5,0)}

i M. So, we draw bars after the numbers 1,6,2,8, and add a bar before 1. Thus we

obtain

11]346|2|578]|
and the sequence of blocks
B} =1, By =346, B, = 2, B; = 578.

By Steps 1/ and 2" in the proof of Lemma 13, we construct a cyclic negative cycle descent
permutation (176747372787 775%) on the set {1,2,...,8}.

A bijective proof of Theorem 9

Proof. Let (m,¢) be a negative cycle descent permutations of [n]. Suppose that 7 =

C1 - - - C} is the standard cycle decomposition of 7w and
Ci=(ciny--sciy;)
for each i =1,2,..., k. Then red (C;) € &;,. Define a map ¢ : [I;] — {+1, —1} by letting
¢'(7) = p(red 7 (j)),
i.e., the sign of red (¢;;) is the same as that of ¢;;. Then
(red (C5), ¢')
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is a cyclic negative cycle descent permutations of [/;]. By Lemma 13, we have O, (red (C;), ¢')
is a connected Callan perfect matching. For any 1 < j < [;, we replace the labels (j,0)
and (j,1) of vertices in Oy, (red (C;), #') with (red ~'(j),0) and (red ~'(5),1) respectively
and denote by M? the perfect matching obtained from Oy, (red (C;), ¢'). At last, let

M=MUM?*U.--- UM,

where the notation M U M’ denotes the union of two perfect matchings M and M’ such
that the vertex set of MUM’ is V/(M)UV (M') and the edge set of MUM' is E(M)UE(M").
So M is a Callan perfect matchings of P,,. Define I',, as a map from the set of negative
cycle descent permutations of [n] to the set of Callan perfect matchings of P, by letting
[, (7, ¢) = M. Note that I, is injective, and so it is a bijection.

By the definition of T',, it is easy to see that

com (I',, (7, ¢)) = cyc () and ver (I',, (7, ¢)) = fix (7).

If the vertices (1, 1) and its partner are in the same row, then down (I',, (7, ¢)) = neg (7, ¢);
otherwise, down (T, (7, ¢)) = neg (, ¢) + 1. O

Example 15. Let us consider a negative cycle descent permutation
(1t6-3747) (278 7)) (5)

of the set {1,2,...,8}. We draw the perfect matchings M, M? and M? corresponding
with the cycles C, Cy and C3 respectively as follows:

Cycles 4 Cy Cs
(176-3T4T) (2T8~7T) (5)
Perfect  matchings M! M? M3
0D 6D 6D @D ]| 2D (D 60| 6D

L e o
(1,0 (3,0 (6,0 (1,0 | (2,00 (7,00 (5,0 | (5,0

Finally, we obtain a Callan perfect matching M = MU M? U M3, which is given in
Ezxample 7.

Acknowledgements

The authors thank the referee for his valuable suggestions which lead to a substantial

improvement of the paper.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22 (2015), #P00 26



References

1]

2]

3]

[4]

[5]

[6]

E. Bagno, A. Butman, and D. Garber. Statistics on the multi-colored permutation
groups. Electron. J. Combin., 14: #R24, 2007.

F. Brenti. g-Eulerian polynomials arising from Coxeter groups. European J. Combin.,
15:417-441, 1994.

F. Brenti. A class of g-symmetric functions arising from plethysm. J. Combin. Theory
Ser. A, 91:137-170, 2000.

D. Callan. Klazar trees and perfect matchings. Furopean J. Combin., 31:1265-1282,
2010.

W.Y.C. Chen and P.L.. Guo. Oscillating rim hook tableaux and colored matchings,
Adv.in Appl. Math., 48:393-406, 2012.

W.Y.C. Chen, R.L. Tang, and A.F.Y. Zhao. Derangement polynomials and ex-
cedances of type B. Electron. J. Combin., 16(2): #R15, 20009.

D. Foata, M. Schiitzenberger. Théorie Géométrique des Polynomes Euleriens, Lecture
Notes in Mathematics, vol. 138, Springer-Verlag, Berlin-New York, 1970.

M. Klazar. Twelve countings with rooted plane trees. European J. Combin., 18:195—
210, 1997.

G. Ksavrelof, and J. Zeng. Two involutions for signed excedance numbers. Sém.
Lothar. Combin., 49 Art. B49e, 2003.

S. Linusson, J. Shareshian. Complexes of t-corolable graphs. Siam J. Discrete Math.,
16(3):371-389, 2003.

L. Lovasz, M. Plummer. Matching theory. Annals of Discrete Mathematics 29, North
Holland Publishing Co., Amsterdam, 1986.

Q. Ren. Ordered partitions and drawings of rooted plane trees. Discrete Math.,
338:1-9, 2015.

R. P. Stanley. Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, 1999.

N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences, published electroni-
cally at http://oeis.org, 2010.

AF.Y. Zhao. Excedance numbers for the permutations of type B. FElectron. J.
Combin., 20(2): #P28, 2013.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22 (2015), #P00 27



