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Abstract

The 3-arc graph of a digraph D is defined to have vertices the arcs of D such
that two arcs uv, xy are adjacent if and only if uv and xy are distinct arcs of D with
v 6= x, y 6= u and u, x adjacent. We prove Hadwiger’s conjecture for 3-arc graphs.
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1 Introduction

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from
a subgraph of G by contracting edges. An H-minor is a minor isomorphic to H. The
Hadwiger number h(G) of G is the maximum integer k such that G contains a Kk-minor,
where Kk is the complete graph with k vertices.

In 1943, Hadwiger [10] posed the following conjecture, which is thought to be one of
the most important problems in graph theory:

Hadwiger’s Conjecture. For every graph G, h(G) > χ(G).

Hadwiger’s conjecture has been proved for graphs G with χ(G) 6 6 [19], and is open
for graphs with χ(G) > 7. This conjecture also holds for particular classes of graphs,
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including powers of cycles [14], proper circular arc graphs [2], line graphs [18], quasi-line
graphs [6] and complements of Kneser graphs [24]. See [21] or more recently [20] for a
survey.

In this paper we prove Hadwiger’s conjecture for a large family of graphs. Such
graphs are defined by means of a graph operator, called the 3-arc graph construction (see
Definition 1), which bears some similarities with the line graph operator and path graph
operator [4, 16]. This construction was first introduced by Li, Praeger and Zhou [15] in the
study of a family of arc-transitive graphs whose automorphism group contains a subgroup
acting imprimitively on the vertex set. (A graph is arc-transitive if its automorphism group
is transitive on the set of oriented edges.) It was used in classifying or characterizing
certain families of arc-transitive graphs [9, 11, 15, 17, 25, 26, 27]. Recently, various graph-
theoretic properties of 3-arc graphs have been investigated [1, 12, 13, 23].

The original 3-arc graph construction [15] was defined for a finite, undirected and
loopless graph G = (V (G), E(G)). In G, an arc is an ordered pair of adjacent vertices.
Denote by A(G) the set of arcs of G. For adjacent vertices u, v of G, we use uv to denote
the arc from u to v, and {u, v} the edge between u and v. We emphasise that each edge of
G gives rise to two arcs in A(G). A 3-arc of G is a 4-tuple of vertices (v, u, x, y), possibly
with v = y, such that both (v, u, x) and (u, x, y) are paths of G. The 3-arc graph of G is
defined as follows:

Definition 1. [15, 26] Let G be an undirected graph. The 3-arc graph of G, denoted by
X(G), has vertex set A(G) such that two vertices corresponding to arcs uv and xy are
adjacent if and only if (v, u, x, y) is a 3-arc of G.

The 3-arc graph construction can be generalised for a digraph D = (V (D), A(D)) as
follows [12], where A(D) is a multiset of ordered pairs (namely, arcs) of distinct vertices
of V (D). Here a digraph allows parallel arcs but not loops.

Definition 2. Let D = (V (D), A(D)) be a digraph. The 3-arc graph of D, denoted by
X(D), has vertex set A(D) such that two vertices corresponding to arcs uv and xy are
adjacent if and only if v 6= x, y 6= u and u, x are adjacent.

Let D be the digraph obtained from an undirected graph G by replacing each edge
{x, y} by two opposite arcs xy and yx. Then, X(D) = X(G).

Knor, Xu and Zhou [12] introduced the notion of 3-arc colouring of a digraph, which
can be defined as a proper vertex-colouring of X(D). The minimum number of colours in
a 3-arc colouring of D is called the 3-arc chromatic index of D, and is denoted by χ′3(D).
Then χ(X(D)) = χ′3(D).

The main result of this paper is the following:

Theorem 3. Let D be a digraph without loops. Then h(X(D)) > χ(X(D)).

Note that in the case of the 3-arc graph of an undirected graph, we have obtained a
much simpler proof of Theorem 3.
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2 Preliminaries

We need the following notation. Let D = (V (D), A(D)) be a digraph. We denote by
AD{x, y} the set of arcs between vertices x and y, and by AD(x) the set of arcs out-
going from x. Then vertices x and y are adjacent if and only if AD{x, y} 6= ∅. When
|AD{x, y}| = 1, we misuse the notation AD{x, y} to indicate the arc between x and
y. An in-neighbour (respectively, out-neighbour) of a vertex x of D is a vertex y such
that yx ∈ A(D) (respectively, xy ∈ A(D)). The set of all in-neighbours (respectively,
out-neighbours) of x is denoted by N−D (x) (respectively, N+

D (x)). The in-degree d−D(x) (re-
spectively, out-degree d+D(x)) is defined to be the number of in-neighbours (respectively,
out-neighbours) of x. A vertex x is called a sink if d+D(x) = 0. A digraph is simple if
|AD{x, y}| 6 1 for all distinct vertices x and y of D. A tournament is a simple digraph
whose underlying undirected graph is complete.

For an undirected graph G, the degree of a vertex v in G is denoted by dG(v), and the
minimum and maximum degrees of G are denoted by δ(G) and ∆(G), respectively. We
omit the subscript when there is no ambiguity. For notation not given here we refer to
[3].

A Kt-minor in G can be thought of as t connected subgraphs in G that are pairwise
disjoint such that there is at least one edge of G between each pair of subgraphs. Each
such subgraph is called a branch set.

Lemma 4. Let D be a tournament on n > 5 vertices. Then h(X(D)) > n.

Proof. Since D is a tournament, A{x, y} is interpreted as a single arc. Denote V (D) =
{x, v0, v1, . . . , vn−2}. We now construct a collection of n branch sets. For 0 6 i 6 n − 2,
let Bi := {A{x, vi}, A{vi+1, vi+2}}. Let U := {A{vi, vi+2} | 0 6 i 6 n − 2}, where all
subscripts are taken modulo n− 1. Clearly, these branch sets are pairwise disjoint.

Now we show that each branch set is connected. Note that each Bi induces K2 in
X(D). Since A{vi, vi+2} is adjacent to A{vi+1, vi+3} in X(D), U induces a subgraph that
contains an (n− 1)-cycle passing through each element of U .

Next we show that these branch sets are pairwise adjacent. For each pair of distinct
Bi, Bj, if j 6= i + 1 and j 6= i + 2, then Bi and Bj are adjacent since A{vi+1, vi+2} is
adjacent to A{x, vj}. If j = i + 1, then i 6= j + 1 and i 6= j + 2 because n − 1 > 4,
so A{x, vi} is adjacent to A{vj+1, vj+2}. If j = i + 2, then A{vj+1, vj+2} is adjacent to
A{vi+1, vi+2} since {vj+1, vj+2} ∩ {vi+1, vi+2} = ∅. Thus, Bi is adjacent to Bj as well.
Since A{x, vi} ∈ Bi is adjacent to A{vi+1, vi+3} ∈ U , each Bi is adjacent to U .

Let v be a vertex of a digraph D. Let A ⊆ A(v). An arc xy is said to be A-feasible
if vx ∈ A, y 6= v and (v, x, y) is a directed path. A set Af ⊆ A(D) is A-feasible if each
arc in Af is A-feasible and no two arcs in Af share a tail. An arc xy of D is said to be
A-compatible if y 6= v, A{v, x} 6= ∅ and vx /∈ A. A set Ac ⊆ A(D) is A-compatible if each
arc in Ac is A-compatible. Note that each feasible arc xy is adjacent in X(D) to each arc
in A except vx, and each compatible arc xy is adjacent to each arc in A. For example, let
A = {vv0, vv1, vv2} (see Fig. 1). Then each of v0v

′
0, v1v

′
1 and v2v

′
2 is A-feasible, and each

of v3v
′
3 and ww′ is A-compatible.
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Figure 1: An illustration for A-feasibility and A-compatibility. Let A = {vv0, vv1, vv2},
then each of v0v

′
0, v1v

′
1 and v2v

′
2 is A-feasible, and each of v3v

′
3 and ww′ is A-compatible.

Let Af be an A-feasible set, and Ac be an A-compatible set. An (A,Af , Ac)-net of size
p is a Kp-minor in X(D) using only arcs in A∪Af ∪Ac such that p := |A| and each branch
set has exactly one arc in A. An (A,Af , Ac)-net is called a net at v if v is the common
tail of all arcs in A. It may happen that one of Af and Ac is empty. The following lemma
provides some sufficient conditions for the existence of an (A,Af , Ac)-net.

Lemma 5. Let v be a vertex of a digraph D. Let A ⊆ A(v) and p := |A|. Let Af be an
A-feasible set. Let Ac be an A-compatible set. Then, in the following cases, D contains
an (A,Af , Ac)-net.

(1) p = 1;

(2) |Ac| > 1 and p = 2;

(3) |Af | = 3 and p = 3;

(4) |Af | > 1 and |Ac| > 1 and p = 3;

(5) |Ac| > 2 and p = 3;

(6) |Af |+ |Ac| > p− 1 and p > 4.

Proof. Denote A = {vv0, vv1, . . . , vvp−1}, and without loss of generality, assume that
A(vj)−{vjv} 6= ∅ for 0 6 j 6 |Af |−1. Denote the elements ofAf by v0v

′
0, v1v

′
1, . . . , v|Af |−1v

′
|Af |−1.

Note that (v, vj, v
′
j) is a directed path for 0 6 j 6 |Af | − 1. Consider the following possi-

bilities:

(1) p = 1: Then {vv0} is a trivial (A, ∅, ∅)-net of size 1.
(2) |Ac| > 1 and p = 2: Let ww′ be an A-compatible arc and Ac := {ww′}. Since ww′

is adjacent to each arc of A, {vv0}, {vv1, ww′} form an (A, ∅, Ac)-net of size 2. See Fig 1.
(3) |Af | = 3 and p = 3: Then {vv0, v1v′1}, {vv1, v2v′2} and {vv2, v0v′0} form an

(A,Af , ∅)-net of size 3. See Fig 1.
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(4) |Af | > 1 and |Ac| > 1 and p = 3: Let ww′ be an A-compatible arc and Ac := {ww′}.
Note that ww′ is adjacent to each vvi, and v0v

′
0 is adjacent to vv2 in X(D). So {vv0, ww′},

{vv1, v0v′0} and {vv2} form an (A,Af , Ac)-net of size 3.
(5) |Ac| > 2 and p = 3: Similar to case (4), {vv0, ww′}, {vv1, yy′} and {vv2} form an

(A,Af , Ac)-net of size 3, where Ac contains two A-compatible arcs yy′ and ww′.
(6) |Af | + |Ac| > p − 1 and p > 4: Let βj := vjv

′
j for 0 6 j 6 |Af | − 1. Since

|Ac| > p − 1 − |Af |, we can choose p − 1 − |Af | arcs from Ac and name them as β|Af |,
β|Af |+1, . . ., βp−2. Define Bj := {vvj, βj+1} for 0 6 j 6 p − 3, Bp−2 := {vvp−2, β0}, and
Bp−1 := {vvp−1}. For 0 6 i < j 6 p − 2, observe that in X(D), vvj ∈ Bj is adjacent
to αi if i 6= j − 1; and vvi ∈ Bi is adjacent to αj if i = j − 1, where αj ∈ Bj − {vvj}
and αi ∈ Bi − {vvi}. Thus, Bj and Bi are adjacent. In addition, since vvp−1 ∈ Bp−1 is
adjacent in X(D) to every βj, Bp−1 is adjacent to Bj with j 6 p− 2. Thus, B0, . . . , Bp−1
form an (A,Af , Ac)-net of size p.

Note that if D contains an (A,Af , Ac)-net of size p, then X(D) contains a Kp-minor
and h(X(D)) > p.

A graph G with chromatic number k is called k-critical if χ(H) < χ(G) for every
proper subgraph H of G. The following result is well known:

Lemma 6. Let G be a k-critical graph. Then

(a) G has minimum degree at least k − 1, when k > 2 [7];

(b) no vertex-cut of G induces a clique when k > 3 and G is noncomplete [8].

LetD be a simple digraph. For each arc uv ∈ A(D), define SD(uv) := d+(u)+d+(v)−1.

Lemma 7. For a simple digraph D,∑
uv∈A(D)

SD(uv) =
∑

v∈V (D)

d+(v)(d(v)− 1),

where d(v) = d+(v) + d−(v).

Proof.∑
uv∈A(D)

SD(uv) =
∑

uv∈A(D)

(d+(u) + d+(v)− 1)

=
∑

uv∈A(D)

d+(u) +
∑

uv∈A(D)

d+(v)−
∑

uv∈A(D)

1

=
∑

u∈V (D)

d+(u)d+(u) +
∑

v∈V (D)

d+(v)d−(v)−
∑

u∈V (D)

d+(u)

=
∑

w∈V (D)

d+(w)(d+(w) + d−(w)− 1)

=
∑

w∈V (D)

d+(w)(d(w)− 1).
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3 Proof of Theorem 3

In this proof, we assume that, for every pair of distinct vertices u and v of D, there is at
most one arc from u to v and at most one arc from v to u. That is, AD{u, v} ⊆ {uv, vu}.
That is because all the arcs from u to v can be assigned the same colour and deleting an
arc does not increase h(X(D)).

Let D be a digraph. An arc uv of D is called redundant if AD(u) ⊆ AD{u, v} or
AD(v) ⊆ AD{u, v}. Note that if uv is redundant then so is vu if it exists. Let D′ be the
digraph obtained from D by deleting all redundant arcs. Let G be the (simple) underlying
undirected graph of D′. We have the following claim:

Claim 1. χ(X(D)) 6 χ(G).

Proof. Since G is the underlying undirected graph of D′, V (G) = V (D′) = V (D).
Let c : V (G) → {1, 2, . . . , χ(G)} be a χ(G)-colouring of G. For each arc uv ∈ A(D),
define f(uv) := c(u). We now show that f is a 3-arc colouring of D. For every pair
of arcs uv, xy ∈ A(D) adjacent in X(D), we have that AD{u, x} 6= ∅ (that is, u, x are
adjacent), and both uv and xy are not in AD{u, x}. Thus, some arc between u and x
is not redundant, and u and x are adjacent in G. So, f(uv) = c(u) 6= c(x) = f(xy). It
follows that f is a 3-arc colouring of D and χ(X(D)) 6 χ(G).

Hadwiger’s conjecture is true for k-chromatic graphs with k 6 6. So assume that
χ(X(D)) > 7. Let k := χ(G) and let H be a k-critical subgraph of G. By Lemma 6(a),
δ(H) > k − 1.

Let F be an orientation of H such that each arc uv of F inherits the orientation of
an arc in AD{u, v} and the number of out-degree 1 vertices in F is minimized. An arc
xy ∈ A(D) is called potential if xy /∈ A(F ). In particular, every redundant arc is potential.
F has the following property:

Property A. If d+F (v) = 1 and AF (v) = {vw}, then there exists one potential arc vz
outgoing from v in D such that vz 6= vw. If further zv ∈ A(F ), then d+F (z) = 2.

Proof. Since vw is not redundant, AD(v) 6⊆ AD{v, w}. Let vz ∈ AD(v) − AD{v, w}.
Then vz 6= vw. Since vw is the unique outgoing arc from v in F , vz is potential. Suppose
that zv ∈ A(F ). If d+F (z) 6= 2, let F ′ be obtained from F by replacing zv by vz. Then
d+F ′(z) 6= 1, d+F ′(v) = 2 and the out-degree of every other vertex remains unchanged.
Hence F ′ is an orientation of H with fewer out-degree 1 vertices than F , which is a
contradiction.

In addition, for each arc xy of F , by the definition of D′, AD(y) 6⊆ AD{x, y}. That is,
there is an arc other than yx outgoing from y (hence, d+D(y) > 1) and there is a directed
path in D of length 2 starting from the arc xy, even if d+F (y) = 0. Note that F is a simple
digraph and dF (v) = d+F (v) + d−F (v) = dH(v) > k − 1 by Lemma 6(a).

By Claim 1, it suffices to prove that h(X(D)) > k = χ(G) > χ(X(D)).

Let v ∈ V (F ) be a vertex with maximum out-degree ∆+
F (v). If ∆+

F (v) > k, let
A ⊆ AF (v) with |A| = k, and let Af be a maximal A-feasible set. Then |Af | = k > 6
since there exists a directed path of length 2 starting from every arc of A. By Lemma
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5(6) with p = k, there exists an (A,Af , ∅)-net of size k. Thus, h(X(D)) > k, and the
result holds.

Now assume that ∆+(F ) 6 k − 1. By Lemma 7 and since F has minimum degree at
least k − 1,∑

uv∈A(F )

SF (uv) =
∑

v∈V (F )

d+F (v)(dF (v)− 1) > (k − 2)
∑

v∈V (F )

d+F (v) = (k − 2)e(F ), (1)

where e(F ) is the number of arcs of F .
If
∑

uv∈A(F ) SF (uv) = (k − 2)e(F ), then dH(x) = dF (x) = k − 1 for every x ∈ V (F ).

Since χ(H) = k, by Brooks’ Theorem [5], H ∼= Kk and F is a tournament. By Lemma 4,
h(X(D)) > h(X(F )) > k, the result follows.

Now assume that
∑

uv∈A(F ) SF (uv) > (k − 2)e(F ). We call a vertex v of F special

if d+F (v) = k − 2 and d−F (v) = 1 and d+F (v′) = 0 for each vv′ ∈ AF (v). Let W be the
set of all special vertices of F , and let W+ := {xy ∈ A(F ) | x ∈ W}. Let F ′ be the
digraph obtained from F by deleting the arcs in W+. Then, for each vertex v of F ′ with
d+F ′(v) = dF ′(v)− 1 = k− 2, the head of (at least) one arc vv′ ∈ A(F ′) is not a sink in F ;
that is, d+F (v′) > 1. Since this outgoing arc at v′ in F is not redundant, |d+D(v′)| > 2.

Denote by Q the set of sinks of F . Then each arc of W+ has its tail in W and head
in Q. Note that W is independent in F , and W ∩Q = ∅. By Lemma 7,

(k − 2)e(F )

<
∑

uv∈A(F )

SF (uv)

=
∑

v∈V (F )

d+F (v)(dF (v)− 1)

=
∑

v∈V (F )−(W∪Q)

d+F (v)(dF (v)− 1) +
∑
v∈Q

d+F (v)(dF (v)− 1) +
∑
v∈W

d+F (v)(dF (v)− 1)

=
( ∑

v∈V (F ′)−(W∪Q)

d+F ′(v)(dF ′(v)− 1)
)

+ 0 + (k − 2)
(
|W+|+

∑
v∈W

d+F ′(v)
)
.

Since vertices in W ∪Q have outdegree 0 in F ′,

(k − 2)e(F ) <
( ∑

v∈V (F ′)

d+F ′(v)(dF ′(v)− 1)
)

+ |W+|(k − 2)

=
( ∑

uv∈A(F ′)

SF ′(uv)
)

+ |W+|(k − 2).

Thus
∑

uv∈A(F ′) SF ′(uv) > (k − 2)(e(F ) − |W+|) = (k − 2)e(F ′). Let uv be an arc of

F ′ with maximum SF ′(uv). Thus, SF (uv) > SF ′(uv) > k − 1. If v ∈ W , then d+F ′(v) = 0
and d+F ′(u) > k, which contradicts the assumption that ∆+(F ) 6 k − 1. Hence v /∈ W .

Denote AF (u) = {uv, uu1, uu2, . . . , uui} and AF (v) = {vv1, vv2, . . . , vvj}, where i+j =
SF (uv) > k − 1. Set T := {u1, u2, . . . , ui} ∩ {v1, v2, . . . , vj}. Denote N1 := NF (u) − {v}
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ϕ(u, x4) ϕ(v, y4) ϕ(v, y5)

Figure 2: An illustration for AF (u), AF (v), ϕ(u, xl) and ϕ(v, yl) for a case with i + j =
SF (uv) > 6, where w1 = u1 = x1 = v1 = y1, w2 = u2 = x2 = v2 = y2, a = u3 = x3 = y3
and u4 = x4.

and N2 := NF (v)−{u}. Say N1 = {x1, x2, . . . , xr}, and N2 = {y1, y2, . . . , ys}. Since F has
minimum degree at least k−1, both r and s are at least k−2. See Fig. 2 for an illustration
for a case with k = 7, in which AF (u) = {uv, uu1 = uw1, uu2 = uw2, uu3 = ua, uu4},
AF (v) = {vv1 = vw1, vv2 = vw2}, T = {w1, w2}, N1 = {x1 = w1, x2 = w2, x3 = a, x4 =
u4, x5} and N2 = {y1 = w1, y2 = w2, y3 = a, y4, y5}.

Since the arc AF{u, xl} is not redundant, AD(xl) 6⊆ AD{u, xl}. Thus, for each xl ∈ N1,
to arc AF{u, xl} ∈ A(F ) we can associate an arc, denoted ϕ(u, xl), which is chosen from
AD(xl) − AD{u, xl}. Similarly, for each yl ∈ N2, associate an arc, denoted ϕ(v, yl), in
AD(yl)−AD{v, yl} to arc AF{v, yl} ∈ A(F ). An illustration for the definition of ϕ(u, xl)
and ϕ(v, yl) is given in Fig. 2.

Choose these arcs ϕ(u, xl) and ϕ(v, yl) such that if Σ := ∪rl=1ϕ(u, xl) and Π :=
∪sl=1ϕ(v, yl) then t := |Σ∩Π| is minimized. We now prove that, for each ww′ ∈ Σ∩Π, ww′

is the unique arc outgoing from w in D, AF{u,w} = uw, AF{v, w} = vw and w′ /∈ {u, v}.
Since ww′ = ϕ(u,w) = ϕ(v, w), we have w′ /∈ {u, v}. Suppose that |AD(w)| > 2, and
ww′′ is an arc outgoing from w other than ww′ in D. Then at least one of u and v, say
u, is not equal to w′′. Now set ϕ(u,w) := ww′′ and keep ϕ(v, w) = ww′. Then |Σ ∩ Π| is
decreased. Thus, ww′ is the unique arc outgoing from w in D. Since AD(w) = {ww′}, we
have that AF{u,w} = uw and AF{v, w} = vw.

Denote Σ∩Π = {w1w
′
1, w2w

′
2, . . . , wtw

′
t}. Then wl ∈ T for each l ∈ [1, t] and t 6 |T | 6

min{i, j}. Consider the following cases:

Case 1. SF (uv) > k.

In this case, we will construct an (A,Af , Ac)-net A and a (B,Bf , Bc)-net B, for some
A ⊆ AF (u)− {uv} and B ⊆ AF (v), such that (A ∪ Af ∪ Ac) ∩ (B ∪ Bf ∪ Bc) = ∅. Since
each branch set in A contains an outgoing arc at u other than uv, and each branch set in
B contains an outgoing arc at v other than vu, each branch set in A is adjacent in X(D)
to each branch set in B. Since each branch set in A is contained in A∪Af ∪Ac, and each
branch set in B is contained in B ∪Bf ∪Bc, no branch set in A intersects a branch set in
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B. Hence A ∪ B defines a complete minor in X(D) on |A| + |B| vertices. In most cases
we construct A and B such that |A| + |B| > k, giving a Kk-minor in X(D), as desired.
Finally, we always choose Ac ⊆ Σ and Bc ⊆ Π in such a way that Ac ∩Bc = ∅.

Note that i + j > k. By the assumption that ∆+(F ) 6 k − 1, we have 1 6 i 6 k − 2
and 2 6 j 6 k − 1.

Case 1.1. j = k − 1: Then i > 1. Let B := AF (v), and Bf be a maximal B-feasible
set in D. For yl ∈ N2, since AD{yl, v} is not redundant, A+

D(yl) − AD{yl, v} 6= ∅. Thus,
|Bf | = |B| = k− 1 > 4. By Lemma 5(6) with p = |Bf | = k− 1 and |Bc| = 0, there exists
in D a (B,Bf , ∅)-net B of size k − 1. Then B ∪ {{uu1}} forms the k branch sets of a
Kk-minor in X(D), since each branch set of B contains an outgoing arc at v other than
vu and is thus adjacent to uu1 in X(D) (since vu /∈ B).

Case 1.2. j 6 k − 2: Then 0 6 t 6 k − 2. Recall that t = |Σ ∩ Π| 6 |T |.
Case 1.2.1. t = k − 2 > 3: Suppose first that Σ − Π 6= ∅. Let xlx

′
l ∈ Σ − Π.

Since |AF (u) − {uv}| = i > t > 3, there are distinct arcs uua, uub in AF (u) − {uv} with
xl /∈ {ua, ub}. Let A := {uua, uub}. Note that xlx

′
l is A-compatible. Then A := {{uua},

{uub, xlx′l}} is an (A, ∅, {xlx′l})-net of size 2. Let B be a set of k− 2 arcs in AF (v). Then
Bf := {ϕ(v, y) : vy ∈ B} is a B-feasible set of k − 2 arcs in Π. By Lemma 5(6) with
p = |Af | = k − 2 and |Ac| = 0, there is a (B,Bf , ∅)-net B of size k − 2. Each branch set
in A contains an outgoing arc at u other than uv, and each branch set in B contains an
outgoing arc at v other than vu. Thus each branch set in A is adjacent in X(D) to each
branch set in B. Since xlx

′
l /∈ Π and Bf ⊆ Π, we have (A∪{xlx′l})∩ (B ∪Bf ) = ∅. Thus,

no branch set in A intersects a branch set in B. Hence A ∪ B is a Kk-minor in X(D).
By symmetry and since uv is not used in this case, if Π − Σ 6= ∅, then we obtain a

Kk-minor in X(D).
Now assume that Σ = Π. Then |Σ| = |Π| = t = k − 2. Set w0 := v and w′0 := w1.

For 0 6 l 6 t, let Bl := {uwl, wl+1w
′
l+1}, where subscripts are taken modulo t+ 1; and let

Bt+1 := {vw2}. For 0 6 l < l′ 6 t, either uwl is adjacent to wl′+1w
′
l′+1 or uwl′ is adjacent

to wl+1w
′
l+1. Thus Bl is adjacent to Bl′ . Note that vw2 ∈ Bt+1 is adjacent to w1w

′
1 ∈ B0

and uwl ∈ Bl with 1 6 l 6 t. Thus Bt+1 is adjacent to every Bl with 0 6 l 6 t. Therefore,
B0, B1, . . . , Bt+1 form the t+ 2 = k branch sets of a Kk-minor in X(D).

Case 1.2.2. dk
2
e 6 t 6 k − 3: For k − t 6 l 6 t, set αl := wlw

′
l. Choose k − 2 − t

arcs αt+1, αt+2, . . . , αk−2 from Σ − Π (which exist since |Σ − Π| = r − t > k − 2 − t).
Denote A := {uw1, uw2, . . . , uwt}. Then, αl is A-feasible when k − t 6 l 6 t, and
αl is A-compatible when t + 1 6 l 6 k − 2. Let Af := {αk−t, αk−t+1, . . . , αt} and
Ac := {αt+1, αt+2, . . . , αk−2}. Note that Af is A-feasible and Ac is A-compatible. By
Lemma 5(6), there exists an (A,Af , Ac)-net A of size t in X(D).

Next, for 1 6 l 6 k − t − 1, set βl := wlw
′
l. Choose k − 2 − t arcs βk−t, βk−t+1,

. . . , β2k−2t−3 from Π − Σ (which exist since |Π − Σ| = s − t > k − 2 − t). Note that
|Σ ∩ Π| = t > k − t and 2k − 2t− 3 > k − t. Let B := {vw1, vw2, . . . , vwk−t}. Then βl is
B-feasible when 1 6 l 6 k − t− 1, and βl is B-compatible when k − t 6 l 6 2k − 2t− 3.
Let Bf := {β1, β2, . . . , βk−t−1}, and Bc := {βk−t, βk−t+1, . . . , β2k−2t−3}. Note that Bf is
B-feasible and Bc is B-compatible. If t = k − 3, then by Lemma 5(4), there exists a
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(B,Bf , Bc)-net B of size k − t in X(D). Otherwise t 6 k − 4 and by Lemma 5(6) with
p = k − t > 4 and |Af | = k − t− 1 and |Ac| = k − t− 2, there exists a (B,Bf , Bc)-net B
of size k − t in X(D).

Case 1.2.3. t 6 dk
2
e − 1: Let j′ := k − i. Since i+ j = SF (uv) > k, we have j′ 6 j.

If t = 0, then Σ ∩ Π = ∅. Let A := {uu1, uu2, . . . , uui}. Note that each arc in Σ
is either A-feasible or A-compatible, and no two arcs in Σ share a tail. Let Af (Ac,
respectively) be the set of A-feasible (A-compatible, respectively) arcs in Σ. Then Af is
A-feasible and Ac is A-compatible. Note that |Af |+ |Ac| = |Σ| > i, and Ac 6= ∅ if i 6 2 (Σ
contains an A-compatible arc since |Σ| = r > k−2 > 3). If i > 3, then by Lemma 5(3) or
Lemma 5(6) with p = |Af | = i, there is an (A,Af , ∅)-net A of size i. If i 6 2, then Ac 6= ∅
(since |Σ| = r > k − 2 > 3 > i). By Lemma 5(1) or (2) with p = |Af | = i and |Ac| > 1,
there is an (A, ∅, Ac)-net A of size i. Similarly, let B ⊆ AF (v) with |B| = j′. Let Bf (Bc,
respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π. Note that
|Bf |+ |Bc| = |Π| = s > k − 2 > j > j′. As in the construction of A, by Lemma 5, there
exists a (B,Bf , Bc)-net B of size j′. A∪B forms a k branch sets of a Kk-minor in X(D).

Suppose that t > 1 and j = k − 2. If t = 1, then let A be a subset of AF (u) − {uv}
with uw1 ∈ A and |A| = 2. Note that |Σ − Π| = r − t > k − 3 > 3. Then at least
one arc in Σ − Π is A-compatible. If t > 2, then let A := {uw1, uw2}. Then |Σ − Π| =
r − t > k − 2 − dk

2
e + 1 = bk

2
c − 1 > 2 because k > 6. Again, at least one arc in Σ − Π

is A-compatible. In both cases, by Lemma 5(2), there exists an (A, ∅, Ac)-net A of size
2, where Ac is the set of A-compatible arcs in Σ − Π. Let B := AF (v). Note that each
arc in Π is either B-feasible or B-compatible, and no two arcs in Π share a tail. Let Bf

(Bc, respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π. Since
|Π| = s > k − 2 = j > 4, by Lemma 5(6), there is a (B,Bf , Bc)-net B of size j. Then
A ∪ B forms the k branch sets of a Kk-minor in X(D).

Suppose now that t > 1 and j 6 k− 3. Note that i > t. Consider two possibilities: (i)
i = t, and (ii) i > t+ 1. If i = t, then t = i > k − j > 3. Let A := {uu1, uu2, . . . , uut} =
{uw1, uw2, . . . , uwt}. Note that |Σ−Π| = r− t > k− 2− t > (2t+ 1)− 2− t = t− 1 > 2.
Since Σ−Π 6= ∅, at least one arc in Σ−Π is A-compatible. Let Af (Ac, respectively) be
the set of A-feasible (A-compatible, respectively) arcs in Σ − Π. By Lemma 5(2), (4) or
(6), there exists an (A,Af , Ac)-net A of size i. Let B := {vv1, vv2, . . . , vvj′}. Let Bf (Bc,
respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π. Note that
j′ = k− t > k− dk

2
e+ 1 = bk

2
c+ 1 > 3 and |Π| = s > k− 2 > j > j′. By Lemma 5, there

is a (B,Bf , Bc)-net B of size j′.
If i > t + 1, then j′ = k − i 6 k − t − 1. Let B := {vv1, vv2, . . . , vvj′} be a subset of

AF (v) with vw1 ∈ B. By the assumption that j 6 k − 3, there is at least one incoming
arc other than uv at v. Thus, at least one arc in Π − Σ is B-compatible. Let Bf (Bc,
respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π − Σ. Note
that |Π − Σ| = s − t > k − t − 2 > j′ − 1. By Lemma 5(2), (4) or (6), there is a
(B,Bf , Bc)-net B of size j′. Let A := {uu1, uu2, . . . , uui}. Let Af (Ac, respectively) be
the set of A-feasible (A-compatible, respectively) arcs in Σ. Since |Σ| = r > k − 2 > i,
by Lemma 5(2), (3) or (6), there exists an (A,Af , Ac)-net A of size i.

In each case above, A ∪ B forms a Kk-minor in X(D).
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Case 2. S(uv) = k − 1: Then i+ j = k − 1.

In this case, we construct an (A,Af , Ac)-net A and a (B,Bf , Bc)-net B as in Case 1,
except that |A|+ |B| = k− 1. We then define one further branch set B0 that, with A and
B, forms the desired Kk-minor in X(D).

Case 2.1. j = 1: Then i = k−2. Let A := AF (u)−{uv}. Let Af (Ac, respectively) be
the set of A-feasible (A-compatible) arcs in Σ−Π. Since t 6 min{i, j} = 1 and r > k−2,
we have |Σ−Π| > r − t > k − 3. Since |Af |+ |Ac| = |Σ−Π| > k − 3 and i = k − 2 > 5,
by Lemma 5(6), there exists an (A,Af , Ac)-net A of size i. By Property A, there exists a
potential arc vz 6= vv1 outgoing from v in D, such that d+F (z) = 2 if zv ∈ A(F ). Clearly,
z 6= u since d+F (u) = i + 1 > 3. Let B := {vv1, vz}, and τ be an arc in Π − Σ such that
τ 6= ϕ(v, v1) and τ 6= ϕ(v, z). τ exists because |Π − Σ| = s − t > k − 2 − t > k − 3 > 3.
Then B := {{vv1}, {vz, τ}} is a (B, ∅, {τ})-net of size 2. Thus, A ∪ B forms a Kk-minor
in X(D).

Case 2.2. 2 6 j 6 k − 3: Then 2 6 i 6 k − 3. Let U := N1 ∩ N2 be the
common neighbourhood of u and v in F . Say U = {a1, a2, . . . , a|U |}. Then T ⊆ U and
t 6 |T | 6 |U |. Recall that t = |Σ ∩ Π|.

Case 2.2.1. t > 2: Let A := AF (u) − {uv}. Since 2 6 t 6 min{i, j}, we have
i = k−1− j 6 k−1− t. Since there is at least one incoming arc at u (because i 6 k−3),
at least one arc in Σ−Π is A-compatible. Let Af (Ac, respectively) be the set of A-feasible
(A-compatible) arcs in Σ−Π. Note that |Af |+|Ac| = |Σ−Π| = r−t > k−2−t > i−1. By
Lemma 5(2), (4), (5) or (6), there exists an (A,Af , Ac)-net A of size i. Let B := AF (v).
Let Bf (Bc, respectively) be the set of B-feasible (B-compatible) arcs in Π−Σ. Similarly,
a (B,Bf , Bc)-net B of size j exists (since 2 6 i, j 6 k − 3 and uv is not in A).

Let B0 := {w1w
′
1, w2w

′
2, uv}. Then B0 induces a connected subgraph in X(D) by

noting that uv is adjacent to both w1w
′
1 and w2w

′
2. Each branch set of A and B contains

an arc outgoing from u or v, which is adjacent to w1w
′
1 or w2w

′
2. Thus B0 is adjacent to

each branch set of A ∪ B. Hence A ∪ B ∪ {B0} forms a Kk-minor in X(D).

u v

a
U

u v

a ā
U

ā

¯̄a

(a) (b)

Figure 3: An illustration for the construction of B0 in Case 2.2.2.

Case 2.2.2. t 6 1 and U ∩ N−F (v) 6= ∅: That is, there is an arc av in F for some
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vertex a ∈ U . If there exists an arc aā in D with ā /∈ {u, v}, then let B0 := {uv, aā} (see
Fig. 3(a)).

Suppose that there is no such an arc aā. That is, AD(a) ⊆ {au, av}. Clearly, av ∈
AD(a). Since AF{v, a} is not redundant in F , we have AD(a) − AF{v, a} 6= ∅. Thus
au ∈ AD(a) and AD(a) = {au, av}. Let ā be an in-neighbour other than u, v of a in
F . Then AF{a, ā} = āa. Let ¯̄a 6= a be an out-neighbour of ā in F . Note that ¯̄a exists
since āa is not redundant. Then, by the minimality of |Σ ∩ Π|, we have ā¯̄a /∈ Σ ∩ Π.
Let B0 := {uv, au, av, ā¯̄a} (see Fig. 3(b)). Then max{|B0 ∩ Σ|, |B0 ∩ Π|} 6 2 and
|B0 ∩ Σ|+ |B0 ∩ Π| 6 3.

Let A := AF (u) − {uv} and B := AF (v). We show that there is a net A at u of size
i, and a net B at v of size j, such that A ∪ B ∪ {B0} forms a Kk-minor in X(D).

First suppose that 3 6 i, j 6 k − 4. If |B0 ∩ Σ| 6 1, let Af (Ac, respectively) be the
set of A-feasible (A-compatible) arcs in Σ − Π − B0. If |B0 ∩ Σ| = 2, then |B0| = 4 and
ā¯̄a ∈ Σ ∩ B0. Thus, ā is a neighbour of u in F . Note that āa /∈ Σ and āa is A-feasible
or A-compatible. Let Af (Ac, respectively) be the set of A-feasible (A-compatible) arcs
in (Σ − Π − B0) ∪ {āa}. In both cases, |Af | + |Ac| > r − t − 1 > k − 2 − 2 > i. By
Lemma 5(3), (4), (5) or (6), there exists an (A,Af , Ac)-net A of size i. Let Bf (Bc,
respectively) be the set of B-feasible (B-compatible) arcs in Π− (B0 ∪ {āa}). Note that
all arcs of B0 ∪ {āa} except uv are outgoing from at most two vertices (that is, a and ā).
We have |Bf |+ |Bc| = |Π− (B0 ∪ {āa})| > s− 2 > k − 4 > j. Similarly, by Lemma 5, a
(B,Bf , Bc)-net B of size j exists.

Next suppose that i = k − 3 and j = 2. If |B0 ∩ Σ| 6 1, let Af (Ac, respectively)
be the set of A-feasible (A-compatible) arcs in Σ − B0. If |B0 ∩ Σ| = 2, let Af (Ac,
respectively) be the set of A-feasible (A-compatible) arcs in (Σ− B0) ∪ {āa}, where a, ā
are as above. In both cases, we have |Af | + |Ac| > r − 1 > k − 3 = i. By Lemma
5 (6), there exists an (A,Af , Ac)-net A of size i. Let Bf (Bc, respectively) be the set
of B-feasible (B-compatible) arcs in Π − Σ − (B0 ∪ {āa}). Since v has in F at least
k − 3 > 4 in-neighbours, one of which is not in {u, a, ā}. Thus Bc 6= ∅. By Lemma 5(2),
a (B,Bf , Bc)-net B of size 2 exists.

Suppose that i = 2 and j = k − 3. Let Bf (Bc, respectively) be the set of B-feasible
(B-compatible) arcs in Π − B0. Then |Bf | + |Bc| = |Π − B0| > s − 2 > k − 4 = j − 1.
By Lemma 5(6), there exists a (B,Bf , Bc)-net B of size j. If |B0 ∩ Σ| 6 1, let Af (Ac,
respectively) be the set of A-feasible (A-compatible) arcs in Σ−Π−B0. If |B0∩Σ| = 2, let
Af (Ac, respectively) be the set of A-feasible (A-compatible) arcs in (Σ−Π−B0)∪{āa},
where a, ā are as above. In both cases, |Af | + |Ac| > r − t − 1 > k − 2 − 2 > 3. Recall
that A = {uu1, uu2}. Note that |(Af ∪ Ac) − {ϕ(u, u1)}| > 2. Let τ1, τ2 be two arcs in
(Af ∪ Ac) − {ϕ(u, u1)}. Then, at least one arc, τ2 say, of τ1, τ2 is not equal to ϕ(u, u2).
Note that τ2 is adjacent to both uu1 and uu2, and τ1 is adjacent to uu1 in X(D). Let
A := {{uu1, τ1}, {uu2, τ2}}. Then, A is a (A,Af , Ac)-net of size 2.

In each case, B0 induces a connected subgraph in X(D). And uv ∈ B0 is adjacent
to each branch set of A, and an arc outgoing from a other than av is adjacent to each
branch set of B. Hence A ∪ B ∪ {B0} forms a Kk-minor in X(D).

Case 2.2.3. t 6 1 and U ∩N−F (v) = ∅ and |U | > 2: That is, each arc in F between a
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vertex of U and v is outgoing at v. Let A := AF (u)−{uv} and B := AF (v). We consider
two situations.

First suppose that U is not independent in F . That is, there is an arc τ in F joining
two vertices in U . Say, τ = a1a2. Since AF{u, a2} is not redundant, in D there is an arc
γ 6= a2u outgoing from a2. (It may happen that γ ∈ {a2a1, a2v}.) Let B0 := {uv, τ, γ}.
Since uv is adjacent to both τ and γ, B0 induces a connected subgraph in X(D). Note
that max{|B0 ∩ Σ|, |B0 ∩ Π|} 6 2.

If i > j, then j < k−1
2

6 k − 4 and i > 4. Let Af (Ac, respectively) be the set of
A-feasible (A-compatible) arcs in Σ−B0; and, let Bf (Bc, respectively) be the set of B-
feasible (B-compatible) arcs in Π−Σ−B0. Then |Af |+|Ac| > r−2 > k−2−2 > i−1. By
Lemma 5(6), there exists an (A,Af , Ac)-net A of size i. Also, |Bf |+ |Bc| = |Π−Σ−B0| >
s − t − 2 > k − 5 > j − 1. Note that there is at least one (in fact many) incoming arc
vlv at v with ϕ(vl, v) /∈ Σ ∪B0. Thus ϕ(vl, v) ∈ Bc and |Bc| > 1. By Lemma 5(2), (4) or
(6), a (B,Bf , Bc)-net B of size j exists. If i 6 j, then i 6 k−1

2
6 k − 4. Now let Af (Ac,

respectively) be the set of A-feasible (A-compatible) arcs in Σ−Π−B0; and let Bf (Bc,
respectively) be the set of B-feasible (B-compatible) arcs in Π−B0. Similarly, we obtain
an (A,Af , Ac)-net A of size i and a (B,Bf , Bc)-net B of size j.

Since each arc outgoing from u or v is adjacent to τ or γ, each branch set of A∪ B is
adjacent to B0. Thus, A ∪ B ∪ {B0} forms a Kk-minor in X(D).

Next suppose that U is independent in F . For each al ∈ U , if in D there is an arc ala
′
l

other than alu or alv, let Ql := {ala′l}. Otherwise suppose that al has no out-neighbours
other than u, v in D. Since AF{āl, u} is not redundant, alv ∈ A(D); similarly, AF{āl, v}
is not redundant, alu ∈ A(D). Therefore, we have AD(al) = {alu, alv}. Let āl be an
in-neighbour other than u, v of al in F . Then AF{āl, al} = ālal. Let ¯̄al 6= al be an out-
neighbour of āl in F (such ¯̄al exists as ālal is not redundant). Let Ql := {alu, alv, āl ¯̄al}.
Let al, am be distinct vertices in U such that w1 ∈ {al, am} when t = 1 and |Ql ∪ Qm| is
minimised. Let B0 := {uv}∪Ql ∪Qm. Note that in X(D) each of the subgraphs induced
on Ql and Qm is connected and adjacent to uv, B0 induces a connected subgraph.

Note that for each p ∈ {l,m}, |Qp ∩ Σ| 6 2 and |Qp ∩ Π| 6 2. If |Qp ∩ Σ| = 2,
then Qp := {apu, apv, āp ¯̄ap} and āp ¯̄ap ∈ Σ and āp is adjacent to u (but not v because
U is independent) in F . Thus āpap is A-feasible (A-compatible) if āp ¯̄ap is A-feasible (A-
compatible). Let Σ′ be obtained from Σ by replacing āp ¯̄ap with āpap. Then |Qp ∩Σ′| 6 1
and |B0 ∩ Σ′| 6 2. In addition, each element in Σ′ is A-feasible or A-compatible, and no
two share a tail. Similarly, we can obtain Π′ such that each of its elements is A-feasible
or A-compatible, no two elements share a tail and |B0 ∩ Π′| 6 2.

Let Af (Ac, respectively) be the set of A-feasible (A-compatible) arcs in Σ′ −B0; and
let Bf (Bc, respectively) be the set of B-feasible (B-compatible) arcs in Π′ − B0. Then,
|Af |+ |Ac| > r−2 > k−2−2 > i−1. Also, |Bf |+ |Bc| = |Π′−B0| > s−2 > k−4 > j−1.
When i = 2, since |Af | + |Ac| > k − 4 > 3, we have Ac 6= ∅. Analogously, we have that
Bc 6= ∅ when j = 2. By Lemma 5(2)-(6), there exist an (A,Af , Ac)-net A of size i and a
(B,Bf , Bc)-net B of size j.

Since each arc outgoing from u or v is adjacent to an arc in Ql or Qm, each branch set
of A ∪ B is adjacent to B0. Thus, A ∪ B ∪ {B0} forms a Kk-minor in X(D).
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a1

U

P0

NF (u)− ({v} ∪ U)

zg−1 zg zg+1

z̄g ¯̄zg

N−
F (v)− ({u} ∪ U)

Figure 4: An illustration for Case 2.2.4.

Case 2.2.4. U ∩ N−F (v) = ∅ and |U | 6 1 (hence t 6 1): That is, u and v share
at most one neighbour a1 in F . If a1 exists, the arc between a1 and v in F is va1. Let
A := AF (u)− {uv} and B := AF (v).

Since δ(F ) > k − 1 and j 6 k − 3, v has at least k − 1 − j > 2 in-neighbours in
F . Say, N−F (v) = {u, yj+1, yj+2, . . . , yk−2}. Note that N−F (v) − {u} 6= ∅. Recall that
N+

F (v) = {v1, v2, . . . , vj}.
Let H̄ be obtained from H by deleting vertices in U ∪ {u, v}. By Lemma 6(b), H̄ is

connected. Let P0 := (z1, z2, . . . , zm) be a shortest path in H̄ between NF (u)− ({v} ∪U)
and N−F (v) − ({u} ∪ U), where m > 2 (because u and v share no common neighbour in
H̄), z1 ∈ NF (u)− ({v}∪U) and zm ∈ N−F (v)− ({u}∪U). See Fig. 4. Then each internal
vertex of P0 is not adjacent to u in F .

If |V (P0) ∩ NF (v)| = 1, then zm is the only neighbour of v in F which is on P0. Let
P := P0 and set zl := zm. If |V (P0) ∩NF (v)| > 2, let P = (z1, z2, . . . , zl) be the subpath
of P0 such that zl ∈ NF (v) and |V (P ) ∩NF (v)| = 2 .

We shall construct a branch set P ′ consisting of arcs alongside P . Let z0 = u and
zl+1 = v.

For 1 6 g 6 l, we associate to zg the set Qg of arcs as follows. If AD(zg) −
(AD{zg−1, zg} ∪ AD{zg, zg+1}) 6= ∅, then let Qg be a singleton set that contains ex-
actly one arc, say, zgz

′
g ∈ AD(zg) − (AD{zg−1, zg} ∪ AD{zg, zg+1}). Otherwise, AD(zg) −

(AD{zg−1, zg} ∪ AD{zg, zg+1}) = ∅. Since the arc AF{zg, zg+1} ∈ A(F ) is not redun-
dant, zgzg−1 ∈ AD(zg). Similarly, zgzg+1 ∈ AD(zg) since AF{zg−1, zg} ∈ A(F ) is not
redundant. Let z̄g be an in-neighbour of zg in F . Then z̄gzg ∈ A(F ). Let z̄g ¯̄zg with
¯̄zg 6= zg be an arc outgoing from z̄g in D (which exists because z̄gzg is not redundant).
Set Qg := {zgzg−1, zgzg+1, z̄g ¯̄zg} (see Fig. 4). Note that Qg induces a connected subgraph

the electronic journal of combinatorics 22 (2015), #P00 14



in X(D) since z̄g ¯̄zg is adjacent to both zgzg−1 and zgzg+1.
In the case where V (P ) ∩ NF (v) = {zp, zl} (p < l) and Qp = {zpv}, we slightly

modify Qp as {zpv, γ}, where γ ∈ AD(zp) − {zpv} (which exists because AF (zp, v) is not
redundant).

Let P ′ := ∪lg=1Qg. Then, for 1 6 g 6 l− 1, since Qg contains an arc outgoing from zg
other than zgzg+1 and Qg+1 contains an arc outgoing from zg+1 other than zg+1zg, each
Qg is adjacent to Qg+1 in X(D). Thus, P ′ induces a connected subgraph in X(D). We
call P ′ a parallel set of P .

Let Σ and Π be as above. We have the following claim:

Claim 2. (a) There is a set Σ′ such that |Σ′| > |Σ| − 1 and P ′ ∩ Σ′ = ∅, and each
element of which is A-feasible or A-compatible and no two elements share a tail;
(b) There is a set Π′ such that |Π′| > |Π| − 2 and P ′ ∩Π′ = ∅, and each element of which
is B-feasible or B-compatible and no two elements share a tail.

Proof. (a) Initially, set Σ′ := Σ − P ′. Clearly, all properties except |Σ′| > |Σ| − 1 in
(a) are satisfied. If |P ′ ∩ Σ| 6 1, then we are done. Suppose that |P ′ ∩ Σ| > 2. Since P0

is a shortest path in H̄ between NF (u)− ({v} ∪ U) and N−F (v)− ({u} ∪ U), each vertex
zg on P with g > 3 is not adjacent to a vertex of NF (u)− ({v} ∪ U). Thus, Qg ∩ Σ = ∅
for each g > 3. We now consider g = 2. Since z2 is not adjacent to u in H̄, we have
|Q2 ∩ Σ| 6 1 and if |Q2 ∩ Σ| = 1 then |Q2| = 3 and Q2 := {z2z1, z2z3, z̄2 ¯̄z2}, where z̄2 is
an in-neighbour of z2 in F . Since z2 is not adjacent to u, Q2 ∩ Σ = {z̄2 ¯̄z2}, which means
that z̄2 is adjacent to u in F and ϕ(u, z̄2) = z̄2 ¯̄z2. In this case, update Σ′ := Σ′ ∪ {z̄2z2}.
Note that z̄2z2 is A-feasible or A-compatible.

If |Q1∩Σ| 6 1, then Σ′ is the desired set. Suppose that |Q1∩Σ| = 2. Let Q1 := {z1u,
z1z2, z̄1 ¯̄z1}, where z̄1 is an in-neighbour of z1 in F . Then, Q1 ∩ Σ = {z1z2, z̄1 ¯̄z1}, which
means ϕ(u, z1) = z1z2 and ϕ(u, z̄1) = z̄1 ¯̄z1. Note that z̄1z1 is A-feasible or A-compatible.
By adding z̄1z1 into Σ′, we get that |Q1 ∩ Σ′| 6 1. Then |Σ′| > |Σ| − 1, as desired.

(b) Initially, set Π′ := Π−P ′. Recall that P contains at most two neighbours, zg1 and
zg2 say, of v. Let γ be an arc in Π ∩ P ′ such that there is a Qg containing γ (there may
be more than one Qg containing γ) and g /∈ {g1, g2}. Since zg is not adjacent to v in H̄,
we have |Qg| = 3 and Qg = {zgzg−1, zgzg+1, z̄g ¯̄zg}, where z̄g is an in-neighbour of zg in F
and z̄g ¯̄zg 6= z̄gzg is an arc outgoing from z̄g in D. Further, z̄g is a neighbour of v in F and
ϕ(v, z̄g) = z̄g ¯̄zg. Note that z̄gzg /∈ Π is B-feasible or B-compatible. Now update Π′ by
adding z̄gzg. That is, Π′ := Π′ ∪ {z̄gzg}. By repeating this procedure for all such γ, we
obtain a Π′ with the same size as Π− (Qg1 ∪Qg2).

For each g ∈ {g1, g2}, if |Π ∩ Qg| = 2, we will add a B-feasible or B-compatible arc
into Π′. Then |Π′| > |Π|−2, as desired. Suppose that |Π′∩Qg| = 2 for some g ∈ {g1, g2}.
Then Qg = {zgzg−1, zgzg+1, z̄g ¯̄zg}, where z̄g is an in-neighbour of zg in F and z̄g ¯̄zg 6= z̄gzg is
an arc outgoing from z̄g in D. And, z̄g is a neighbour of v in F with ϕ(v, z̄g) = z̄g ¯̄zg. Note
that z̄gzg /∈ Π is B-feasible or B-compatible. Set Π′ := Π′ ∪ {z̄gzg}. Then |Π′| > |Π| − 2.
Consequently, we get the desired Π′.

Let B0 := {uv} ∪ P ′. Then B0 induces a connected subgraph in X(D) since uv is
adjacent to Q1.
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Next we show that there exists a net of size i at u and a net of size j at v such that
none of their branch sets intersects B0.

If j = 2 (hence i = k − 3), then at least one arc, say γ, in Π′ − Σ′ is B-compatible
(since there are more incoming arcs at v). Let Bc := {γ}. Since |Π′ − Σ′| > s− 2− 1 >
k − 5 > j = 2, by Lemma 5(2), there exists a (B, ∅,Bc)-net B of size j = 2. Similarly,
let Af (Ac, respectively) be the set of A-feasible (A-compatible, respectively) arcs in Σ′.
Note that |Σ′| > r − 1 > k − 3 = i > 4. By Lemma 5(6), there exists an (A,Af , Ac)-net
A of size i.

Suppose that 3 6 j 6 k − 3 (hence 2 6 i 6 k − 4). Let Bf (respectively, Bc) be the
set of B-feasible (B-compatible) arcs in Π′. Since |Π′| > s−2 > k−4 > j−1 and Bc 6= ∅
when j = 3, by Lemma 5(4) or (6), there exists a (B,Bf ,Bc)-net B of size j. Let Af (Ac,
respectively) be the set of A-feasible (A-compatible, respectively) arcs in Σ′−Π′. We now
show that there exists a net of size i at u. If i > 3, then |Σ′−Π′| > r−1−1 > k−4 > i > 3.
By Lemma 5(3) or (6), there exists an (A,Af , Ac)-net A of size i. Suppose that i = 2.
Note that |Σ′ − Π′| > k − 4 > 3 (because k > 7) and there are at least three incoming
arcs at u in F . Σ′ − Π′ contains at least two A-compatible arcs, say, γ1 and γ2. Let
A := {{uu1, γ1}, {uu2, γ2}}. Then A is a net of size 2 at u.

Since each element of A constructed above contains an arc xx′, which is outgoing
from a neighbour x 6= v of u and x′ 6= u, each element of A is adjacent to B0 because
uv ∈ B0 is adjacent to each xx′. Note that |V (P ) ∩ NF (v)| ∈ {1, 2}. In the case when
|V (P )∩NF (v)| = 1, P ′ contains an arc yy′, which is outgoing from an in-neighbour y 6= u
of v and y′ 6= v. Since such a yy′ is adjacent to every arc of AF (v), it is adjacent to every
element of B constructed above. In the case when |V (P ) ∩ NF (v)| = 2, P ′ contains two
arcs α and β, each of them is outgoing from a neighbour of v other than u and heading
to a vertex other than v. Then each arc of AF (v) is adjacent to either α or β. So every
element of B is adjacent to P ′ ⊆ B0. Therefore, {B0}∪A∪B forms a Kk-minor in X(D).

Case 2.3. j = k− 2: Then i = 1. Suppose first that d−F (v) = 1; that is, uv is the only
incoming arc at v and dF (v) = k−1. Since v is not special, one out-neighbour v′ of v in F
is not a sink. Now consider the arc vv′. If d+F (v′) > 2, then SF (vv′) = d+F (v)+d+F (v′)−1 >
k− 2 + 2− 1 = k− 1. This is a special case of Case 2.2 and thus can be treated similarly.
If d+F (v′) = 1, then by Property A, one potential arc v′v′′ ( 6= v′v as d+F (v) > 2) is outgoing
from v′ in D but not present in F (since d+F (v) = 1). Let F ′ be obtained from F by adding
v′v′′. Again we have SF ′(vv′) = d+F ′(v) + d+F ′(v′) − 1 > k − 2 + 2 − 1 = k − 1, and this
can also be treated similarly. Suppose next that d−F (v) > 2. Then t 6 1. This case can
be dealt with by a similar way as in Cases 2.2.3 or 2.2.4.

Case 2.4. j = k−1: Then i = 0, which implies d+F (u) = 1. By Property A, there exists
a potential arc uz 6= uv in D. Then A := {{uz}} is a ({uz}, ∅, ∅)-net. Let B := AF (v).
Let Bf (Bc, respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π.
By Lemma 5(6), a (B,Bf , Bc)-net B of size j exists. It is not hard to see that A ∪ B
forms a Kk-minor in X(D).

This completes the proof of Theorem 1.
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[1] C. Balbuena, P. Garćıa-Vázquez and L. P. Montejano, On the connectivity and re-
stricted edge-connectivity of 3-arc graphs, Discrete Appl. Math., 162 (2014), 90–99.

[2] N. Belkale and L. S. Chandran, Hadwiger’s conjecture for proper circular arc graphs,
European J. Combin. 30 (2009), 946–956.

[3] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, 2008.

[4] H. J. Broersma and C. Hoede, Path graphs, J. Graph Theory 13 (1989), 427–444.

[5] R. L. Brooks, On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37
(1941), 194–197.

[6] M. Chudnovsky and A. O. Fradkin, Hadwiger’s conjecture for quasi-line graphs, J.
Graph Theory 59 (2008), 17–33.

[7] G. A. Dirac, The structure of k-chromatic graphs, Fund. Math. 40 (1953), 42–55.

[8] G. A. Dirac A property of 4-chromatic graphs and some remarks on critical graphs,
J. London Math. Soc. 27 (1952), 85–92.

[9] A. Gardiner, C. E. Praeger and S. Zhou, Cross-ratio graphs, J. London Math. Soc.
(2) 64 (2001), 257–272.
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