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Abstract

We analyse properties of geometric intersection graphs to show strict containment
between some natural classes of geometric intersection graphs. In particular, we
show the following properties:

• A graph G is outerplanar if and only if the 1-subdivision of G is outer-segment.

• For each integer k > 1, the class of intersection graphs of segments with
k different lengths is a strict subclass of the class of intersection graphs of
segments with k + 1 different lengths.

• For each integer k > 1, the class of intersection graphs of disks with k different
sizes is a strict subclass of the class of intersection graphs of disks with k + 1
different sizes.

• The class of outer-segment graphs is a strict subclass of the class of outer-string
graphs.

1 Introduction

For a set U and a nonempty family F of subsets of U we define the intersection graph
of F , denoted by Int(F), as the graph with vertex set V (Int(F)) := F , and edge
set E (Int(F)) := {AB | A,B ∈ F , A 6= B, A ∩B 6= ∅}. See Figure 1 for an example. A
graph G is an intersection graph on U if there exists a family F of subsets of U such that G
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Figure 1: On the left there is a set of segments with one endpoint on a common circle.
The intersection graph for these segments is shown on the right. This is an outer-segment
graph.

is isomorphic to Int(F), and we call such a family an intersection model or an intersection
representation of G. When considering geometric intersection graphs we take F to be a
family of geometric objects, usually with U = Rn.

For the rest of the paper we will restrict our attention to graphs defined by geometric
planar objects, that is, U = R2. We consider the following types of (geometric intersection)
graphs:

string: A graph is a string graph if it is an intersection graph of curves in the plane.

outer-string: A graph is an outer-string graph if it has an intersection model consisting
of curves lying in a disk such that each curve has one endpoint on the boundary of
the disk.

circle: A graph is a circle graph if it is an intersection graph of chords in a circle.

segment: A graph is a segment graph if it is an intersection graph of straight-line segments
in the plane.

ray: A graph is a ray intersection graph if it is an intersection graph of rays, or equivalently
halflines, in the plane.

outer-segment: A graph is an outer-segment graph if it has an intersection model
consisting of straight-line segments lying in a disk such that each segment has one
endpoint on the boundary of the disk.

k-length-segment: A graph is a k-length-segment graph if it is an intersection graph of
straight-line segments of at most k different lengths in the plane. A 1-length-segment
graph is also called a unit-segment graph.

disk: A graph is a disk graph if is an intersection graph of disks in the plane.
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k-size-disk: A graph is a k-size-disk graph if it is an intersection graph of disks of at
most k different sizes in the plane. A 1-size-disk graph is often called a unit-disk
graph.

Some relations between different classes of geometric intersection graphs are obvious.
For example, ray intersection graphs are outer-segment graphs, which in turn are segment
graphs and outer-string graphs. Similarly, unit-disk graphs are obviously disk graphs. The
main focus of this paper is to provide properties showing that some of these containments
between classes of geometric intersection graphs are proper. Although in some cases one
can show strict containment using other properties, like for example χ-boundedness, our
approaches are simpler, provide additional information, and in several cases provide a
more detailed characterisation. A precise discussion of the alternative approaches is given
in the relevant section.

Here is a summary of our main results.

• The 1-subdivision of a graph G is outer-segment if and only if it is outer-string and
if and only if G is outerplanar. This implies that the class of outer-string graphs is
strictly contained in the class of string graphs. This is discussed in Section 2.

• For each integer k > 1, the class of k-length-segment graphs is strictly contained in
the class of (k + 1)-length-segment graphs. This is discussed in Section 3.

• For each integer k > 1, the class of k-size-disk graphs is strictly contained in the
class of (k + 1)-size-disk graphs. This is discussed in Section 4.

• The class of outer-string graphs is not contained in the class of segment graphs. As
a consequence, the class of outer-segment graphs is strictly contained in the class of
outer-string graphs. This is discussed in Section 5.

There is much work on geometric intersection graphs and it is beyond the aims of
this paper to provide a careful overview. We just emphasize some foundational articles,
some big steps in the research, and some papers with a similar style. See the book by
McKee and McMorris [20] for a general reference to intersection graphs. Several key results
on string graphs have been obtained by Kratochv́ıl and Matoušek [10, 11, 13, 17]; see
the notes by Matoušek [15] for an overview. Showing that the recognition problem is in
NP was only achieved relatively recently [24]. For segment graphs, cornerstone results
include [5, 14, 18]. In particular, Kratochv́ıl and Matoušek [14] make a systematic study
of the relation between different classes of geometric intersection graphs; the type of style
we follow in this paper. Some key results for unit disk graphs include [1, 7]. Janson and
Kratochv́ıl [8] analyse the probability that a random graph is some type of a geometric
intersection graph. In their recent work, Chaplick et al. [6] also study the strict inclusion
between different types of geometric intersection graphs with similar definitions.

Notation. For each natural number n we use [n] to denote the set {1, 2, 3, . . . , n}.
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2 String vs outer-string

In this section we discuss properties that show that the class of outer-string graphs is a
strict subclass of string graphs. Before providing our new approach, we discuss alternative
approaches.

2.1 Alternative approaches.

Kratochv́ıl et al. [12] show that there are string graphs that are not outer-string. In
particular, they show that there is a graph on 9 vertices that is not outer-string, while
any graph on 11 vertices is a string graph. They also provide a neat characterisation of
outer-string graphs: a graph G is an outer-string graph if and only if adding an arbitrarily
connected clique to G results in a string graph. This implies that, if we take a minimal
non-string graph, with respect to vertex deletion, and remove any vertex, we get a string
graph that is not an outer-string graph.

Janson and Uzzell [9] show that the class of outer-string graphs is just a small fraction
of all the string graphs. Their approach is based on graph limits.

Another approach is based on χ-boundedness. Let χ(G) and ω(G) denote the chromatic
and the clique numbers of G, respectively. A class of graphs is χ-bounded if there is some
function f : N→ N such that, for each graph G in the class, it holds that χ(G) 6 f(ω(G)).
It is known that outer-string graphs are χ-bounded [22], while string graphs are not
χ-bounded [21]. Therefore, both classes cannot be the same. This type of argument was
provided by Bartosz Walczak in the context of segment graphs; we will encounter it again
in Section 3.

2.2 Our approach.

If in a graph we replace an edge e with a path of length 2 we say we 1-subdivided the edge
e. The 1-subdivision of a graph G is the graph obtained from G by 1-subdividing each
edge of G once. A graph is outerplanar if it has a crossing-free embedding in the plane
such that all vertices are on the same face. We have the following characterisation.

Lemma 1. Let G be a graph and let H be its 1-subdivision. The following statements are
equivalent:

(1) H is a circle graph.

(2) H is outer-segment.

(3) H is outer-string.

(4) G is outerplanar.

Jean Cardinal noted that (3) ⇐⇒ (4) using the same type of approach that is used
to show that a graph is planar if and only if its 1-subdivision is a string graph [25, 28].
Proof. (1) =⇒ (2) and (2) =⇒ (3) are trivial.
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(3) =⇒ (4): Consider an intersection model of H showing that H is outer-string. For
each vertex u of H, let γ(u) be the curve corresponding to u in the model. We may assume
that there are no self-intersecting curves in the model, as otherwise we can find another
model with this property. We use wuv for the vertex used to 1-subdivide uv ∈ E(G).

Consider first the curves γ(wuv) corresponding to the vertices wuv used to 1-subdivide
G. We call the curve corresponding to the vertex wuv ∈ V (H) the uv-curve. For each
uv ∈ E(G), the curve γ(wuv) intersects only γ(u) and γ(v), and no other curves of the
model. Follow each such uv-curve from the boundary of the disk containing all curves,
and remove all parts except for a part between two intersections with γ(u) and γ(v),
containing no other intersections. Call this new curve γ̃(uv). We are now left with a
collection of pairwise non-intersecting outer-strings corresponding to vertices of G, and
simple curves γ̃(uv) corresponding to edges of G between two different vertex-curves.
Each γ̃(uv) intersects γ(u) and γ(v) exactly once, and intersects no other curve. See
Figure 2 a).

Fatten each curve corresponding to u ∈ V (G) slightly without creating any intersections
between vertex-curves, and call such a region Ru. For each vertex u of G and each edge
uv ∈ E(G), let suv be the point where the curve γ̃(uv) first touches the region Ru.

We are going to define now an embedding of G. Place each vertex u of G at the
disk-endpoint of the corresponding curve γ(u). Within the region Ru one can find degG(u)
interior-disjoint paths connecting the vertex u and the points suv , where uv ∈ E(G). See
Figure 2 c). The paths between different regions Ru do not intersect. Each edge uv of G
is drawn as the concatenation of the path within Ru from u to suv , the curve γ̃(uv), and
the path within Rv from svu to v. We have obtained a crossing-free drawing of G with all
the vertices on the boundary of the disk and all the edges in the interior of the disk. Thus
the drawing shows that G is outerplanar.

(4) =⇒ (1): Consider an outerplanar graph G with n vertices, fix an outerplanar
embedding of G, and let v0, v1, . . . , vn−1 be the vertices of G along the facial walk of
the outer face of the embedding, skipping repetitions of vertices. Placing the vertices
v0, . . . , vn−1 along a circle C, such that, for each vertex vi, the vertices vi−1 and vi+1 are
its predecessor and its successor along C (where indices are modulo n), and drawing the
edges of G as straight-line segments, we get a planar drawing of G. In particular, we can
place the vertices v0, . . . , vn−1 at the corners of a regular n-gon inscribed in a circle C.
Consider one such outerplanar embedding of G with straight-line segments. Note that vi
and vi+1 are not necessarily neighbours in G.

Replace each vertex vi with a chord in C, with one endpoint 1/3 of the way along C
towards vi−1, and the other 1/3 of the way along C towards vi+1. See Figure 3. For each
vertex vi we also do the following. For each neighbour vj, j 6= i of vi in G, replace the
straight-line drawing of the edge vivj with a chord in C lying in the same position. In
order to avoid these chords having a common endpoint, spread out their endpoints in the
arc of C centered on vi up to 1/3 of the way along C towards vi−1 and up to 1/3 of the
way along C towards vi+1. See Figure 3.

We claim that after performing this process for all the vertices v0, . . . , vn−1, we have
a model showing that H is a circle graph. The chords corresponding to the vertices
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Figure 2: The implication (3) =⇒ (4) in Lemma 1.
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vi chord for vi

chord for vi

Figure 3: The implication (4) =⇒ (1) in Lemma 1.
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v0, . . . , vn−1 are pairwise disjoint. A chord corresponding to the edge vivj intersects the
chords for vi and vj, and does not intersect any other chord. �

Remark 2. The construction used in the implication (4) =⇒ (1) can be adapted to work
in strongly polynomial time using Pythagorean triples, although the vertices do not form
anymore the vertices of a regular n-gon. A Pythagorean triple (a, b, c) is a triple of positive
integers such that a 6 b 6 c and a2 + b2 = c2. Pythagorean triples correspond to points
on the unit circle with rational coordinates because, for a Pythagorean triple (a, b, c) the
point (a/c, b/c) lies on the unit circle. It also holds that for each natural number n there
exists a hypotenuse c, and at least n different Pythagorean triples (ai, bi, c) [27].

One method of generating n triples with numbers in O (n2) is by the parameteriza-
tion (v2 − u2, 2uv, u2 + v2), where u and v > u are relatively prime and of opposite
parity [26], which generates a set of distinct triples.

Both finding the desired hypotenuse and the triples for a given n can be done in
polynomial time. Therefore in polynomial time we can find n distinct points on the
unit circle with rational coordinates, and furthermore the coordinates are polynomially
bounded. Those points are not the corners of a regular n-gon, but the construction can be
done in strongly polynomial time.

It has been known [30] that outerplanar graphs are circle graphs. Lemma 1 implies that
also the 1-subdivision of an outerplanar graph is a circle graph. Note that the subdivision
of an outerplanar graph is not outerplanar in general.

Using the characterisation in Lemma 1, and noting that ray graphs are outer-segment
graphs, we have the following.

Corollary 3. The 1-subdivision of K4 is a string graph that is not outer-string. It is also
a segment intersection graph that is not a ray intersection graph.

Proof. K4 is planar, therefore its 1-subdivision is a string graph; see [25, 28]. K4 is
not outerplanar, hence its 1-subdivision is not outer-string by Lemma 1. Since it is not
outer-string, it is not a ray intersection graph. A segment representation is trivial to
construct. �

3 Segment graphs

In this section we show that the class of k-length-segment graphs is a proper subclass of
(k + 1)-length-segment graphs. In particular, this implies that the class of unit-segment
graphs is a proper subclass of the class of segment graphs.

In an informal discussion Bartosz Walczak suggested that χ-boundedness, introduced
in Section 2.1, implies some separation between subclasses of segment graphs. In particular,
since unit-segment graphs are χ-bounded [29], and segment graphs are not χ-bounded [21],
these two classes are different. The known rough upper estimates for f(ω(G)) that are
known in the context of χ-boundedness are not strong enough to separate k from k + 1
different lengths. In general, it is not clear how much such approach can be pushed to
distinguish k-length-segment graphs for different values of k.
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Figure 4: Construction in Lemma 4 for n = 3.

Our approach is based on gadgets [14, 23] that can force a nested sequence of disjoint
triangles (triples of segments intersecting pairwise).

For the notation in the following lemma, Figure 4 may be useful.

Lemma 4 ([23]). Suppose we have Jordan curves `, (`i)i∈[n],
(
sji
)
i∈[n−1], j∈[3], and (ci)i∈[4n]

in the plane so that

(1) ` crosses `i, for every i ∈ [n], and s2i , for every i ∈ [n− 1],

(2) ci crosses ci+1 (c1 for i = 4n) exactly once, for every i ∈ [4n],

(3) `i crosses c2i and c4n−2i+2, for every i ∈ [n],

(4) both s1i and s3i cross s2i , for every i ∈ [n− 1],

(5) s1i crosses c2i+1 and s3i crosses c4n−2i+1, for every i ∈ [n− 1],

(6) the only other crossings among these curves are between pairs of `i.

Then the curves `i cross ` either in the order `1, . . . , `n or in the reverse of that order.

We call the collection of curves from Lemma 4 an ordering gadget. We further define a
graph H, to which we will be referring in this section, as follows. First take the intersection
graph of ordering gadget from Lemma 4 with n = 3. We add to the graph two new vertices,
a and b, such that (i) a is adjacent to b, `, `1, s

1
1, `2, and s32, and (ii) b is adjacent to

a, `, `1, s
3
1, `2, and s12. This finishes the description of the graph H. As shown in Figure 5,

the graph H is a segment intersection graph. For simplicity, we denote the segments (or
vertices) `1 and s21 by c and z respectively, and notice that the segments a, b, and c define
a triangle (K3) in the graph. In any intersection model of H with segments, there is a
unique (geometric) triangle contained in the union of a, b, c.
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a

b

z

c

Figure 5: Intersection model with segments for the graph H.

Lemma 5. In any intersection model of H with segments, the segment z is contained in
the triangle defined by a, b, c.

Proof. The set
⋃

i∈[12] ci contains a unique closed Jordan curve γ that separates the plane

in two faces. Since `, z, and s22 do not cross any of the curves ci, they must all lie in the
same face F defined by γ. Considering the face inside F defined by the unique closed
Jordan curve contained in the union of {`1, `2} ∪

⋃4
i=2 ci ∪

⋃12
i=10 ci, one can argue that

the conditions and the conclusion in Lemma 4 imply that the segment ` must cross the
segments c = `1, z, `2 in that order or in the reverse order. Similarly ` must cross the
segments `2, s

2
2, `3 in that order or in the reverse order. We conclude that ` crosses the

other segments in the order c, z, `2, s
2
2, `3 (or in the reverse order) in the ordering gadget.

(In fact this is used in the proof [23] of Lemma 4.)
Let F ′ be the face contained in F defined by the unique closed Jordan curve contained

in
⋃3

i=1 {si1, si2} ∪
⋃5

i=3 ci ∪
⋃11

i=9 ci. See Figure 6. All three pairwise crossings between a,
b, and ` must occur in F ′ because the segments crossed by a, b, and ` alternate on the
boundary of F ′. In particular, the triangle defined by a, b, and c contains a portion of F ′.
This portion has z = s21 on the boundary because ` crosses c and z consecutively, after (or
before) crossing a or b. Therefore, the triangle defined by a, b, and c must contain z. �

On the one hand, H is a segment graph, as shown in Figure 5. On the other hand,
Lemma 5 implies H cannot be a unit-segment intersection graph because we cannot have
a unit-length segment inside the geometric triangle defined by three unit-length segments.
We will generalize this below to obtain a finer classification.

Lemma 6. The graph H has an intersection model with segments such that: all segments
but z have unit length, the segment z is contained in the triangle defined by a, b, c, and
the distance from any point on z to any point on a ∪ b ∪ c is at least C times the length
of z, where C is an arbitrary constant we can choose.
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Figure 6: Face F ′ used in the proof of Lemma 5.

Proof. See Figure 7. �

Theorem 7. For any natural number k, the class of k-length-segment graphs is a strict
subclass of (k + 1)-length-segment graphs.

Proof. For each k, we define a graph Gk such that Gk can be realized as an intersection
graph of segments of k + 1 different lengths, and cannot be realized as an intersection
graph of segments of k different lengths.

We define Gk as follows. We fix an intersection model F for H as described in Lemma 6,
with the constant C large enough. Since all the segments in F , but z, have unit length
and the graph H has small diameter, all the segments of F are contained in a disk of
radius 20.

We make disjoint copies F1, . . . , Fk of the family F . For each i ∈ [k], we denote by
ai, bi, ci, zi the copies of a, b, c, z in Fi, respectively. Then, we define families of segments
F ′1, . . . , F ′k inductively. We take F ′1 = F1, a

′
1 = a1, b

′
1 = b1, c

′
1 = c1 and z′1 = z1. For

each i ∈ [k − 1], we define F ′i+1 by scaling and applying a rigid motion to Fi+1 such that
the segment ai+1 becomes the segment z′i of F ′i . We denote by a′i+1, b

′
i+1, c

′
i+1, z

′
i+1 the

transformed version of ai+1, bi+1, ci+1, zi+1 in F ′i+1. Note that some segments of F ′i+1

intersect some segments of F ′i . However, since all the segments of Fi+1 are contained in a
disk of radius 20 times the length of a′i+1 = z′i, we can take the constant C in Lemma 6
large enough so that no segment of F ′i+1 can intersect a′i, b

′
i, or c′i. Finally, we take Gk to

be the intersection graph of
⋃

i∈[k]F ′i . (Whether we keep both ai+1 and zi or only one of

them is not very relevant. For the discussion, it is more convenient that we identify them.)
At the level of abstract graphs, the construction of Gk can be seen as taking k disjoint

copies H1, . . . , Hk of H, and identifying the copy zi of z in Hi with the copy ai+1 of a in
Hi+1 (where i = 1, . . . , k − 1). We also need some additional edges between the vertices
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Figure 7: Intersection model of H where all segments but z have unit length. The
segment z can be made arbitrarily small by bringing s11 and s31 closer.
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of Hi − {ai, bi, ci} and Hi+1 to make an intersection model with segments possible, but
they are not relevant in the discussion. It is only important that there is no edge between
{ai, bi, ci} and Hi+1 for each i ∈ [k − 1].

The graph Gk is a (k + 1)-length-segment graph by construction. Indeed, the lengths
of segments in Fi decrease with i, and, for each i ∈ [k], the family

⋃
j∈[i]Fj has segments

of exactly i+ 1 different lengths.
It remains to show that the graph Gk is not a k-length-segment graph. Consider an

intersection model of Gk with segments. For each i ∈ [k], let F̃i be the restriction of the
model to the graph Hi, let λi be the length of the longest segment in F̃i, and let Ti be
the geometric triangle defined by the segments that correspond to ai, bi, ci. For each
i ∈ [k], Lemma 5 implies that the segment for zi is contained in Ti. Since zi = ai+1, the
graph Hi+1 is connected, and there are no edges between Hi+1 and {ai, bi , ci}, all the
segments of F̃i+1 are contained in Ti. It follows that the longest segment in F̃i+1 has to be
shorter than the longest edge of the triangle Ti, which in turn is shorter than the longest
segment in F̃i. Thus we have λ1 > λ2 > · · · > λk. Moreover, Lemma 5 for F̃k implies that
F̃k has segments of at least 2 different lengths. This is, F̃k has a segment of length λk,
and another segment of length λ′k < λk. With this we have shown that the intersection
model has at least the k + 1 different lengths λ1 > · · · > λk > λ′k. �

4 Disk graphs

In this section we show that the class of k-size-disk graphs is a proper subclass of the
(k + 1)-size-disk graphs. In particular, this implies that the class of unit-disk graphs is a
proper subclass of the class of disk graphs. An alternative way to show the separation
between disks and unit disks is given by McDiarmid and Müller [19], where they provide
near-tight bounds on the number of disk and unit-disk graphs with n vertices. It follows
from their result that there are (many) disk graphs that are not unit-disk graphs.

The argument here is much simpler and uses the following folklore result.

Observation 8. The star K1, 6 is a disk graph, it has an intersection model with disks of
two sizes, but it is not a unit-disk graph. In any intersection model of K1, 6 with disks, at
least one of the non-central vertices must be represented by a disk of strictly smaller size
than the central disk.

Proof. Standard plane geometry shows that if 6 unit disks D1, . . . , D6 intersect a unit
disk D, then some pair Di, Dj must also intersect. Indeed, the angle of the straight-line
segments connecting the centre of D to the centres of D1, . . . , D6 must contain two
segments that form an angle of at most 60 degrees, and the two unit disks defining those
segments must intersect. This is related to the kissing number in the plane. �

Theorem 9. For every natural number k > 2, the class of (k − 1)-size-disk graphs is a
proper subclass of k-size-disk graphs.
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Figure 8: The left shows G2, the right shows G3.

Proof. For each k ∈ N we construct a disk graph Gk that requires the disks to be of at
least k different sizes (and can be realized by disks of exactly k different sizes). For k = 2
we simply take K1, 6 by Observation 8.

For k > 3, we take for Gk six copies of Gk−1, each with its own distinguished central
vertex, to which we add a single vertex vk connected to the six central vertices. It is easy
to see that Gk is a k-size disk graph. See Figure 8. The graph Gk is a rooted 6-ary tree
with k levels.

To see that drawing the disk representation of Gk in the plane requires k different
sizes of disks, consider any intersection model with disks. Let D̃1 be the disk representing
the central vertex vk of Gk. The vertices u1, . . . , u6 adjacent to vk in Gk are represented
by disks {D2, j}j∈[6] that must all intersect D̃1 and must not intersect among themselves.

Therefore, by Observation 8, at least one of them, let’s call it D̃2, is of a size strictly
smaller than D̃1. We repeat the same argument at an arbitrary “level” i; at least one
of the disks {Di, j}j∈[6] must be of a strictly smaller size than D̃i−1 in order to be able

to intersect it, as well as to avoid intersecting among themselves. We denote it by D̃i.
This means that in the intersection model we have disks D̃1, . . . , D̃k with decreasing size.
Thus, we have disks of k different sizes. �

5 Outer-string versus outer-segment

In this section we show that the class of outer-segment graphs is a proper subclass of
outer-string graphs.

Let us discuss first the obvious approach based on previous works. The common way to
show that there are string graphs that are not segment graphs is to show that there are some
string graphs such that, in any model, some pairs of curves have to intersect multiple times.
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Thus, such a graph cannot have a model using segments. This is related to the concept of
weak realizations and was developed in [13]; see [15] for a recent account. At first glance
it seems that the approach does not match well with the concept of outer-representations.

Our approach here to distinguish classes of graphs is based on counting arguments to
bound the number of different neighbourhoods of the vertices in each of the classes. Such
an approach is implicitly based on the concept of VC-dimension, although our eventual
presentation uses polynomials. It provides also a new (weaker) tool to separate segment
graphs from string graphs.

We will use the expression that a set of segments in the plane is in general position if
and only if no three endpoints of said segments are collinear.

Lemma 10. Fix a segment AB in the plane. Then there exist two polynomials pAB and
qAB of degree at most four such that, for each segment CD in general position with respect
to AB, segments AB and CD cross if and only if pAB(C, D) < 0 and qAB(C, D) < 0.

Proof. In this proof we denote the coordinates of A by (a1, a2), of B by (b1, b2), and
similarly for points C and D.

The triple (A,B,C) of points is in counterclockwise order if and only if the signed area
of the triangle ABC is negative, that is

1

2

∣∣∣∣∣∣

a1 a2 1
b1 b2 1
c1 c2 1

∣∣∣∣∣∣
< 0.

This condition can also be written as

(c2 − a2)(b1 − a1) > (b2 − a2)(c1 − a1).

Note that the order of the points in the triple is important: if (A,B,C) is in counterclock-
wise order, then (A,C,B) is not in counterclockwise order.

Two segments in general position AB and CD cross if and only if the points A, B, C,
and D satisfy the following:

(1) exactly one of the triples (A, C, D) and (B, C, D) is in counterclockwise order, and

(2) exactly one of the triples (A, B, C) and (A, B, D) is in counterclockwise order.

This gives us the following equivalence: Segments AB and CD in general position
cross if and only if

(1)
(

(d2− a2)(c1− a1)− (c2− a2)(d1− a1)
)(

(d2− b2)(c1− b1)− (c2− b2)(d1− b1)
)
< 0,

and

(2)
(

(c2− a2)(b1− a1)− (b2− a2)(c1− a1)
)(

(d2− a2)(b1− a1)− (b2− a2)(d1− a1)
)
< 0.
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We therefore have two polynomial inequalities of degree at most four in four variables
to decide whether two segments cross. �

Let S be a set of segments and T ⊆ S. A segment γ, which may or may not belong
to S, is an exact transversal of T in S if and only if γ intersects all the segments of T ,
and γ is disjoint from each segment of S \ T .

Lemma 11. Let S be a set of n segments in the plane. Consider the family

S = {T ⊆ S | there exists an exact transversal of T in S}
= {T ⊆ S | ∃ a segment γ : (∀t ∈ T : γ ∩ t 6= ∅ ∧ ∀t′ ∈ S \ T : γ ∩ t′ = ∅)}.

Then |S| ∈ O (n4).

Proof. Let p1, . . . , pm be polynomials on Rd, and let σ ∈ {−1, 0, 1}m be a vector. If
there exists an x ∈ Rd such that for all i the sign of pi in x is σi, then σ is called a sign
pattern of p1, . . . , pm.

Following Matoušek [16, Chapter 6] and references therein, the maximum number of
sign patterns for a collection p1, p2, . . . , pm of d-variate polynomials of degree at most D
is bounded by (

50Dm

d

)d

.

Let γ1, . . . , γk be exact transversals of sets T1, . . . , Tk in S, respectively, such that
{Ti | i ∈ [k]} = S. We now modify S ∪ {γ1, . . . , γk} to general position by enlarging each
segment by a small amount without introducing any new intersections. Now we have
segments in general position; we use S ′ to denote the new, modified set.

Consider a fixed segment AB ∈ S ′. By Lemma 10 there exist polynomials pAB and qAB

of degree at most four such that a segment CD crosses AB if and only if pAB(C, D) < 0
and qAB(C, D) < 0.

We therefore consider the set P =
⋃

AB∈S′{pAB, qAB} of 2n polynomials in four variables
of degree at most four. The set P defines a number of sign patterns, which is an upper
bound for |S|.

In our case this gives us the result |S| 6 (100n)4 ∈ Θ (n4). �

Theorem 12. There are outer-string graphs that are not segment graphs.

Proof. For a natural number k we construct a graph Gk in the following way. Take
V (Gk) := [k] ∪ P[k], where P[k] is the power set of [k]. We denote vertices in [k] by
1, 2, 3, . . ., and vertices in P [k] by A, B, C, . . . Take

E(Gk) := {AB | A, B ∈ P [k]} ∪ {iA | i ∈ [k], A ∈ P [k], i ∈ A}.

Thus Gk is a graph on 2k + k vertices. It is easy to see that Gk is an outerstring graph (see
Figure 9). We intend to prove that Gk is not a segment intersection graph for a sufficiently
large number k.
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[k]︷ ︸︸ ︷

}
P[k]

Figure 9: Sketch of the graph Gk from the proof of Theorem 12.

Consider an intersection model with segments of the graph Hk := Gk [[k]] induced
by the vertices in [k], and let Sk be the set of segments representing [k] in the drawing. By
Lemma 11 there exist O (k4) different subsets of Sk that are exactly transversed by any
new, additional segment. Therefore any segment graph that contains Hk is going to have

O (k4) different neighbourhoods on the vertices [k]. Contrary to this, the graph Gk has

Θ
(
2k
)

different neighbourhoods on the vertices [k]. Since for any constant C there exists
a k0 such that for any k > k0 it holds that Ck4 < 2k, we obtain that Gk0 is an outer-string
graph but not a segment graph. �

Since there are outer-string graphs that are not segment graphs, they cannot be outer-
segment graphs either. Note that the graph H discussed in Lemmas 5 and 6 is a segment
graph that is not an outer-string graph. This means that there is no containment
between the class of segment graphs and the class of outer-string graphs.

6 Conclusions

We have discussed strict containment between different classes of geometric intersection
graphs. In a preliminary version of this work [2] we asked the following two questions:

• “Let us mention one of the problems that we found more interesting in this context:
is the class of outer-segment graphs a strict superclass of ray graphs?”

• “Consider the class A of intersection graphs of downward rays, that is, halflines that
are contained in the halfplane {(x, y) ∈ R2 | y < c} for some constant c. Let B be
the class of intersection graphs of grounded segments, that is, segments contained in
the halfplane {(x, y) ∈ R2 | y > 0} with one endpoint on the x-axis. It is easy to see
that A is a subset of B. Is the containment proper?”
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These questions have been settled in the follow up work by Cardinal et al. [3]. An
anonymous reviewer of this paper has raised an interesting, additional question: what
can be said about segment graphs that can be realized with specific segment lengths? Or
disks? The question for segments of fixed slopes has been considered by Cerný et al. [4].
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[16] J. Matoušek. Lectures on Discrete Geometry. Graduate Texts in Math-
ematics 212. Springer-Verlag New York, 2002. http://dx.doi.org/10.1007/

978-1-4613-0039-7
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