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Abstract

In [J. Graph Theory 13 (1989) 749-762], McCuaig and Shepherd gave an upper
bound of the domination number for connected graphs with minimum degree at
least two. In this paper, we propose a simple strategy which, together with the
McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number
via the number of leaves. We also apply the same strategy to other domination-like
invariants, and find a relationship between such invariants and the number of leaves.
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1 Introduction

1.1 Domination concept and our strategy

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph.
For u € V(G), we let dg(u), Ng(u) and Ng[u] denote the degree, the open neighborhood
and the closed neighborhood of u, respectively; thus dg(u) = |Ng(u)| and Ng[u] = Ng(u)U
{u}. We let §(G) and A(G) denote the minimum degree and the mazimum degree of G,
respectively. A vertex u € V(G) is a leaf of G if the degree of u in G is exactly one. We
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let L(G) denote the set of leaves of G. An edge of G is called a pendant edge if the edge
is incident with a leaf of G. For two subsets X, Y of V(G), we say that X dominates Y if
Y € U,ex Nelu]. A subset of V(G) which dominates V(G) is called a dominating set of
G. The minimum cardinality of a dominating set of G is called the domination number
of G, and is denoted by v(G).

The domination number is one of the important invariants in Graph Theory, and it
can be widely applied to real problems, for example, school bus routing problem, social
network theory and the location of radio stations (see [10, 11]). To meet various addi-
tional requirements for above problems, many domination-like concepts were defined and
studied.

We first introduce an orthodox flow of research of domination-like concepts by citing
the original result on domination. The following is a well-known result given by Ore.

Theorem A (Ore[17]) Let G be a connected graph of order n (> 2). Then v(G) < 5.

The upper bound of v(G) in Theorem A is best possible. Furthermore, the connected
graphs G attaining the equality in Theorem A were characterized by Fink, Jacobson,
Kinch and Roberts [7] and Payan and Xuong [18] as follows (here the corona of a graph
H is the graph obtained from H by adding a pendant edge to each vertex of H).

Theorem B (Fink et al. [7]; Payan and Xuong [18]) Let G be a connected graph
of order n. Then (G) = % if and only if G is either Cy or the corona of a connected
graph.

In particular, any connected graphs G with v(G) = @ except for C; have some
leaves. Thus one may suspect that the domination number of many connected graphs G
with 6(G) > 2 is much less than the half of |V (G)|. For connected graphs with minimum
degree at least two, McCuaig and Shepherd [16] showed the following theorem (here B is

the set consisting of graphs depicted in Figure 1).
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Flgure 1: The graphs belonglng to B

Theorem C (McCuaig and Shepherd [16]) Let G be a connected graph of order n
with §(G) > 2. Then either G € B or 7(G) < 2.
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Considering Theorem C, we know that the existence of leaves is a cause of an increase
of the domination number. On the other hand, it seems that Theorem C gives no insight
to general graphs G (which do not require the condition 6(G) > 2). Thus one problem
naturally arises: Find a relationship between the domination number and the number of
leaves. As a related result to the problem, for example, Favaron [6] gave the following
theorem.

Theorem D (Favaron [6]) Let | > 2 be an integer, and let T be a tree of order n
<

2
having exactly | leaves. Then v(T) < .
However, there exist infinitely many connected (non-tree) graphs G with n vertices,
leaves and 7(G) > ™ (see Theorem 2.1 in Section 2). Thus, when we study a relationship
between domination and leaves in general graphs, it is insufficient to only consider trees.
In order to get a desired relation, we propose a simple vertex-addition strategy as

follows: For a given connected graph G,

(S1) we construct a new graph H with 6(H) > 2 which is obtained from G by adding a
special graph to each leaf of G,

(S2) give a small dominating set S of H which is assured by Theorem C, and
(S3) reduce S to a dominating set of G.

In Section 2, we show the following theorem by the above vertex-addition strategy.

Theorem 1.1 Let | > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly | leaves. Then either | =0 and G € B or

2n+l (0< n
G < 5 ~= 2
1(G) {n—l ( <l<n—1).

/A

Note that Theorem 1.1 is a common generalization of Theorems A and C. In Section 2,
we also give a generalization of Theorem B by using the proof technique of Theorem C.

We return to general domination-like concepts. For many domination-like invariants
1, the same upper bounds were found:

(D1) A sharp upper bound of u(G) for every connected graph G (of large order).

(D2) A sharp upper bound of x(G) for every connected graph G with §(G) > 2 (with
finite exceptions).

In many cases, the following results are also given.

(D1') A characterization of connected graphs G attaining the equality of the bound in
(D1).

(D2') A characterization of connected graphs G with 6(G) > 2 attaining the equality of
the bound in (D2).
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Our main aim in this paper is to give the following new steps for an invariant p by using
the vertex-addition strategy.

(D3) A sharp upper bound of u(G) for every connected graph G with [ leaves (i.e., a
common generalization of (D1) and (D2)).

(D3") A generalization of (D1’) and (D2') (if (D1’) and (D2') are known).

In general, the results such as (D2) and (D2') tend to be independently shown from
(D1) and (D1’). Thus our strategy might give an alternative proof of the results such as
(D1) and (D1').

As we mentioned above, domination-like invariants were widely defined. Thus it is
difficult to deal with all of them. In this paper, as typical domination-like invariants,
we deal with two especially famous invariants, namely, total domination and Roman
domination in Sections 3 and 4, respectively. Our main results for such invariants are
Theorems 3.2 and 4.2.

1.2 Definitions

Our notation and terminology are standard, and mostly taken from [5]. Exceptions are
as follows.

For n > 3, we let P, and (), denote the path and the cycle of order n, respectively.
A vertex u of a connected graph H is a central vertez if for any v € V(H), the distance
from u to v is at most the radius of H. Note that a path of odd order has exactly one
central vertex, and a path of even order has exactly two central vertices.

A graph G is l-leaf minimally connected if

(L1) G is connected and |V (G)| > 2,
(L2) G has exactly [ leaves, and
(L3) for each e € E(G), either e is a bridge of G or G — e has at least [ + 1 leaves.

Note that a graph G is 0-leaf minimally connected if and only if G is a connected graph
with 6(G) > 2 and §(G — e) = 1 for any non-bridge edge e € F(G). The following fact
clearly holds.

Fact 1.1 Let! > 0 be an integer, and let G be a connected graph of order n (> 2) having
exactly | leaves. Then G has a spanning l-leaf minimally connected subgraph.

The following lemma will be used in the proof of our main results.

Lemma 1.2 Let GG be an l-leaf minimally connected graph, and let H be a graph obtained
from G by adding for each v € L(G), a new graph C, and some edges between Ng|[v] and
V(C,). Let e € E(G) be an edge incident with no leaves of G. Then e is a bridge of H or
|L(H)| < [L(H —e)|.
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Proof. 'We may assume that e is not a bridge of H. By the construction of H, e is not
a bridge of G. Since G is [-leaf minimally connected, it follows that G — e has at least
[ + 1 leaves. In particular, e is incident with a vertex z with dg(z) = 2. Write e = xa’
and Ng(x) = {2',y}. Suppose that dy(z) > 3. Since dg(z) = 2 and e is incident with
no leaves of GG, this implies that y is a leaf of (G, and hence e is a bridge of GG, which
is a contradiction. Thus dy(z) = 2, and so z is a leaf of H — e. Consequently we have

\L(H)| < |L(H —¢)|. O

Let C' be a connected graph, and let v € V(C). The (C,v)-corona of a graph G is
the graph obtained from G by adding a copy C, of C to each vertex u € V(G) and
identifying u and the vertex of C, corresponding with v (see Figure 2). Note that if C'is

vgv

G H
Figure 2: The (C,v)-corona H of G

a path of order 2, the (C,v)-corona of a graph G is exactly the corona of G (defined in
the paragraph preceding Theorem B in Subsection 1.1).

Let A = {Ay,..., A} be aset of vertex-disjoint graphs with some attachment vertices.
(For example, we will use a set of some copies of U’ in the first paragraph of Section 2.)
A graph G is minimally connected with respect to A if

(M1) G is obtained from (J,;,,, A by adding m — 1 edges ey, ..., en 1,

(M2) each edge e; joins an attachment vertex of A; and an attachment vertex of A, for
some i,1" (1 #1'), and

(M3) G is connected.

Note that if A is a set of copies of a graph A with exactly one attachment vertex v, then
a minimally connected graph with respect to A is the (A, v)-corona of a tree.

2 Domination

Let U°, U and U? be the graphs depicted in Figure 3. We define the attachment vertices
of U* as the vertices of U’ enclosed with a circle.
Let [ > 0 be an integer. A set A of vertex-disjoint graphs is (v, [)-optimal if

(O1) each graph in A is a copy of one of U°, U and U?,
(02) {AeA: A~U"}| =1 and
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Figure 3: The graphs U°, U! and U?

(03) if A contains a copy of U° or U!, then |[A] > 2

Let 3 be the set of minimal-connected graphs with respect to a (7, [)-optimal set. Then
we can easily check that every graph in ' is [-leaf minimally connected. Let R be the set
of graphs depicted in Figure 4.

@QD@-

o

Flgure 4: The graphs belonging to iR

In the proof of Theorem C, McCuaig and Shepherd [16] showed the following theorem.

Theorem E (McCuaig and Shepherd [16]) Let G be a 0-leaf minimally connected
graph of order n. Then v(G) > 2 if and only if G € {B', B>, B3} UJ°UR. In particular,
either G € {B', B, B3} or v(G) < 2.

Now we give a natural generalization of Theorem E (by using Theorem E).

Theorem 2.1 Let ! > 0 be an integer, and let G be an [-leaf minimally connected graph
of order n (> 3). Then ~(G) > 22 if and only if either | = 0 and G € {B*, B*, B3} UR
or G € F'. In particular, either l =0 and G € {B', B?, B*} or 7(G) < 2.

Proof. 1f I =0, then by Theorem E, the desired result holds. Thus we may assume that
[ >1. If G €, then we can easily check that y(G) = 22 Thus it suffices to show
that if v(G) > 22, then G € F'. For v € L(G), let u, be the unique neighbor of v. Let
H be the graph obtained from G by adding for each v € L(G), a new path Q, = x,y,2,
and edges vzx,,vz, (see Figure 5). Then 6(H) > 2 and H has a bridge vu, where v
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Figure 5: Construction of H

is a leaf of G. In particular, H ¢ {B', B?, B3} UR. Furthermore, by Lemma 1.2 and
the construction of H, we see that H is 0-leaf minimally connected. This together with
Theorem E leads to v(H) < m Let S be a dominating set of H with |S| = v(H),
and let Sp = (5 = (U, ({0t UV(Qw)))) U{u, : v € L(G)}. Then by the construction
of H, Sy is a dominating set of G. For v € L(G), since {v} UV (Q,) cannot be dominated
by one vertex of H, we have |SN ({v,u,} UV (Q,))| = 2. This implies that |Sy| < |[S|—1.
Since |V (H)| = n + 3l, we have

Y(G) < 1S

S| —

2|V(H)|
5

~ 2(n+3l) _
5

_ 2n—|—l. 2.1)

5
Since 7(G) > 2%t the equality of (2.1) holds. In particular, v(H) = m Since
H ¢ {B', B%, B3} UR, it follows from Theorem E that H € F°. By the construction of
H, there exist [ disjoint cycles of H having 4 vertices such that GG is obtained from H by
deleting 3 consecutive vertices of each of those cycles. It follows that G € .
This completes the proof of Theorem 2.1. O

NN

N

—1

Proof of Theorem 1.1. Let G be a connected graph of order n (> 3) having exactly [
leaves. Since every leaf of G is adjacent to a vertex in V(G) — L(G), V(G) — L(G) is a
dominating set of G. In particular,

Y(G) <n—1 (2.2)

By Fact 1.1, G has a spanning [-leaf minimally connected subgraph H. Since deleting
an edge cannot decrease the domination number, we have v(G) < v(H). This together
with Theorem 2.1 implies that either | = 0 and H € {B', B?, B*} or 7(G) < y(H) < 2%t
Since B is the set of graphs B containing one of B!, B? and B? as a spanning subgraph
and satisfying v(B) > M, this together with (2.2) implies that either l =0 and H € B

2n+41

or 7(G) < min{#¢™=, n — [}. Consequently Theorem 1.1 holds. O
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Remark 1 In the proof of Theorem 1.1, we further assume that v(G) > 5. Then it follows
from Theorem 2.1 that | = 5 and H € F%, and so H is the corona of a tree. By tedious
arguments, this implies that G is either Cy or the corona of a connected graph. Thus we

also get Theorem B as a corollary of Theorem 2.1.

Now we argue a sharpness of Theorem 1.1. Fix an integer [ > 0. Let n be an integer
with n > max{2[,3} and n + 3] = 0 (mod 5), and let A be a (v,l)-optimal set with
|A| = %?’l Then every minimal-connected graph G with respect to A has n vertices and
[ leaves, and satisfies v(G) = 2. Thus Theorem 1.1 for the case where 0 < I < % is
best possible.

Let n be an integer with max{l + 1,3} < n < 2l — 1. Let L; be a star having exactly
2l — n + 1 leaves, and for each 2 < @ < n — [, let L; be a star of order 2. For each
i (1 <i<n—1), we define the attachment vertex of L; as one of the central vertices of
L;. Then every minimal-connected graph G with respect to {L; : 1 < i < n —1[} hasn
vertices and [ leaves, and satisfies 7(G) = n — [. Thus Theorem 1.1 for the case where
”TH <1 < n—1is best possible.

3 Total domination

In this section, we find a relationship between total domination and the number of leaves.

3.1 Definition and known results

Let G be a graph without isolated vertices. For two subsets X, Y of V(G), we say that X
totally dominates Y it Y C |J,cy Na(u). A subset of V(G) which totally dominates V(G)
is called a total dominating set of G. The minimum cardinality of a total dominating set
of G is called the total domination number of G, and is denoted by v;(G). The concept of
total domination was introduced in [3], and has been actively studied (see a book [13]).

A study of upper bounds of the total domination number derives from the following
theorem proved by Cockayne, Dawes and Hedetniemi [3].

Theorem F (Cockayne et al. [3]) Let G be a connected graph of order n (> 3). Then
7(G) < %n

Brigham, Carrington and Vitray [1] characterized the graphs attaining the equality of
Theorem F.

Theorem G (Brigham et al. [1]) Let G be a connected graph of order n. Then v,(G) =
%" if and only if G is either C3 or Cg or the (Ps,v)-corona of a connected graph where v
is an endvertex of Pj.

For graphs with minimum degree at least two, Henning [12] gave a sharp upper bound
of the total domination number as follows (here B, is the set consisting of graphs depicted
in Figure 6).
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By B By
By By By

Figure 6: The graphs belonging to B,

Theorem H (Henning [12]) Let G be a connected graph of order n with §(G) > 2.
Then cither G € B, or v,(G) < 2.

Indeed, he showed a stronger theorem than Theorem H. In order to state his result,

we give a further definition.
Let U and U} be the graphs depicted in Figure 7. We define the attachment vertex
of U} as the vertex of U} enclosed with a circle.

5

Figure 7: The graphs U and U}

Let [ > 0 be an integer. A set A of vertex-disjoint graphs is (¢, [)-optimal if
(O1’) each graph in A is a copy of one of U and U},
(02) [{AeA: A= U} =1, and
(03) |A| = 2.

Let F be the set of minimal-connected graphs with respect to a (v;,)-optimal set. Then
we can easily check that every graph in J! is [-leaf minimally connected. Let R; be the

set of graphs depicted in Figure 8.
Henning [12] showed the following theorem, which gives Theorem H as a corollary.

Theorem I (Henning [12]) Let G be a 0-leaf minimally connected graph of order n.

Then (G) > * if and only if G € {B}, B}, B}, B}} U J} UR,. In particular, either
G € (B B2 B BYY oru(G) <
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Ry Ry Ry
Figure 8: The graphs belonging to R,

3.2 Main result for total domination

The main result in this section is the following.

Theorem 3.1 Let! > 0 be an integer, and let G' be an [-leaf minimally connected graph of
ordern (> 3). Theny,(G) > 42 if and only if either | = 0 and G € {B}, B}, B}, B/}UR,
or G € F}. In particular, either | = 0 and G € {B}, B}, B}, B} or %(G) < 242

Proof. If | =0, then by Theorem I, the desired result holds. Thus we may assume that
[ > 1. If G € 9}, then we can easily check that v,(G) = 422, Thus it suffices to show
that if 7,(G) > *2#2 then G € F}. For v € L(G), let u, be the unique neighbor of v. Let
H be the graph obtained from G by adding for each v € L(G), a new path Q, = x,y,z,w,

and edges vz, u,w, (see Figure 9). Then §(H) > 2 and H has a cutvertex u, where v is

Yo Ty
z
v v v
wU
—_—
G H

Figure 9: Construction of H

a leaf of G. In particular, H ¢ {B}, B?, B}, B}} U R,. Furthermore, by Lemma 1.2 and
the construction of H, we see that H is 0-leaf minimally connected. This together with
Theorem I leads to v, (H) < w.

Let S be a total dominating set of H with |S| = ~(H). Then the following claim

holds.

Claim 3.1 Let v € L(G), and suppose that |S N ({v,u,} UV (Q,))| < 3. Then |SN
({v,uo} UVI(Qu))] =3, SN {v,w,} =0 and SN (N (uw) — {v, wy}) # 0.

Proof.  Since S N ({v,u,} UV(Q,)) totally dominates {v} UV (Q,) in H, we have |S N
({v,u, } UV(Q,))] = 3. Since %(Cs) = 4 and {v,u,} U V(Q,) induces Cs in H, if
SN ({v,u,} UV(Q,)) totally dominates {v,u,} U V(Q,), then [SN ({v} UV(Q,))| = 4,
which is a contradiction. Thus SN ({v,u,} UV(Q,)) cannot totally dominate {u,} in H.
This leads to the desired conclusion. |

By Claim 3.1, |[S N ({v,u,} UV(Q,))| = 3 for every v € L(G). For v € L(G), if

THE ELECTRONIC JOURNAL OF COMBINATORICS (), # 10



1SN ({v,u, }UV(Qy))] =3, let T, = {u, }; if [SN({v,u, }UV(Q,))| =4, let T, = {v,u,}.
Let So = (S — (Uyere({v, wo} UV(Q0))) U (U,er(q) To)- For v € L(G), it follows from
Claim 3.1 and the definition of T, that if v € Sy, then v ¢ S. Thus we have

SNV(G) C Sy (3.1)

We show that Sy is a total dominating set of GG. Since S is a total dominating set of
H and {u, : v € L(G)} C Sy, it follows that Sy totally dominates V(G) —{u, : v € L(G)}
in G. Thus it suffices to show that Sy totally dominates {u,} for each v € L(G). If
1SN ({v,u,} UV(Qy))| = 4, then v € Sy, and hence Sy totally dominates {u,} in G;
if Ng(u,) NSNV(G) # 0, then it follows from (3.1) that Sy totally dominates {u,} in
G. Thus we may assume that |[S N ({v,u,} UV (Q,))] = 3 and Ng(u,) NSNV(G) = 0.
Since S N (Ng(uy) — {v,w,}) # 0 by Claim 3.1, this implies that there exists v' € L(G)
with v # v such that u, = u, (i.e., u, is adjacent to two leaves v and v' of G) and
SN{v,wy} #0. Then by Claim 3.1, |S N ({v',uy} UV(Q.))| = 4, and hence v' € S.
Consequently Sy totally dominates {u,} in G.

Claim 3.2 We have |Sy| < |S| — 2l.
Proof. Let u € {u, : v € L(G)}, and set X,, = Ng(u) N L(G). We first show that
[SoN Xyl +1< Y 1SN ({0} UV(Qu)) +[S N {u}] = 21X,]. (3.2)
veEXy
Fix a vertex vg € X,. Then
S0 N {wvo} + 1 = [Ty
< [5N ({vo, tug } UV(Quo))| — 2

=150 ({vo} UV(Qu))| + 1S N {u}] —2. (3.3)
Furthermore, by the definition of T,
|Son{v} <|SN({v}uV(Q,))| — 2 for every v € X, — {vo}. (3.4)

It follows from (3.3) and (3.4) that (3.2) holds.
Since u € {u, : v € L(G)} is arbitrary, we have

|Soﬂ{v,uv N L(G)}‘
= Y (sinX)+1)

ue{uyweL(G)}

> (Z 1SN (v UV(Qu)+ 15N {ui] - 2|Xu|>

u€{uy,veEL(G)} \veXy

= S ISN{RIUV@Q)I+ 1SN fu, s v € LIG)}| — 2

veL(G)

= Y 150 ({o,u} UV(QL))] - 2.

vEL(G)

N
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This together with the fact that Sy N (V(G) — {v,u, : v € L(G)}) = SN (V(G) — {v,u, :
v € L(G)}) leads to the desired conclusion. [

Since |V (H)| = n+ 41, it follows from Claim 3.2 that

7(G) < [Sol
<|S| -2l
AV (H)|
7
_ A(n+4l)

7
4n + 21
— i 3.5
- (35)

— 2]

N

— 21

Since 7,(G) = 2 the equality of (3.5) holds. In particular, v,(H) = 4|V§H)‘. Since
H ¢ {B}, B, B}, B}} UR,, it follows from Theorem I that H € F7. By the construction
of H, there exist [ disjoint cycles of H having 6 vertices such that G is obtained from H
by deleting 4 consecutive vertices of each of those cycles. It follows that G € F!. This

completes the proof of Theorem 3.1. 0

As a corollary of Theorem 3.1, we get the following theorem.

Theorem 3.2 Let [ > 0 be an integer, and let G be a connected graph of order n (= 3)
having exactly | leaves. Then either | =0 and G € B, or

Proof. If 1l =n —1, then G is a star, and hence v(G) = 2, as desired. Thus we may
assume that [ < n — 2. Then |V(G) — L(G)| > 2 and each vertex in V(G) is adjacent to
a vertex in V(G) — L(G). In particular, V(G) — L(G) is a total dominating set of G, and
S0

7(G) <n—1. (3.6)

By Fact 1.1, G has a spanning [-leaf minimally connected subgraph H. Since deleting
an edge cannot decrease the total domination number, we have (G) < v(H). This
together with Theorem 3.1 implies that either [ = 0 and H € {B}, B?, B}, B}} or v,(G) <
Y (H) < #2L Since By is the set of graphs B containing one of B}, Bf, B} and B} as
a spanning subgraph and satisfying v;(B) > w, this together with (3.6) implies that
either | = 0 and H € B, or 3,(G) < min{**2 n — [}. Consequently Theorem 3.2 holds.
O
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Remark 2 In the proof of Theorem 3.2, we further assume that v(G) > %” Then it

follows from Theorem 3.1 that | = 3 and H € S"t%, and so H is the (Ps,v)-corona of a
tree where v is an endvertex of P3. By tedious arguments, this implies that G is either
C3 or Cg or the (P3,v)-corona of a connected graph. Thus we also get Theorem G as a
corollary of Theorem 3.1.

Now we argue a sharpness of Theorem 3.2. Fix an integer [ > 0. Let n be an integer
with n > max{3l,4} and n + 4l = 0 (mod 7), and let A be a (v, [)-optimal set with
|A| = %‘”. Then every minimal-connected graph G with respect to A has n vertices and
[ leaves, and satisfies v,(G) = 4”—;2[. Thus Theorem 3.2 for the case where 0 <[ < 3 is
best possible.

Assume that [ > 2, and let n be an integer with 2 < n < 3l — 1. For each i (1 < i <
n — 21), let L; be a path of order 3, and for each i (n — 2l +1 < ¢ <), let L; be a path
of order 2. For each i (1 < i < 1), we define the attachment vertex of L; as one of the
endvertices of L;. Then every minimal-connected graph G with respect to {L; : 1 < i < [}
has n vertices and [ leaves, and satisfies 7;(G) = n — [. Thus Theorem 3.2 for the case
where "T“ <L % is best possible.

Let n be an integer with [ +2 < n < 2l — 1. Let L} be a star having exactly 2l —n+ 1
leaves, and for each 2 < i < n — 1, let L be a star of order 2. For each i (1 <i<n—1),
we define the attachment vertex of L as one of the central vertices of L. Then every
minimal-connected graph G with respect to {L} : 1 < i < n — [} has n vertices and [
leaves, and satisfies v,(G) = n — I. Thus Theorem 3.2 for the case where = <1< n—2
is best possible. Moreover, since the total domination number of a star is 2, Theorem 3.2

for the case where [ = n — 1 is best possible.

4 Roman domination

In this section, we find a relationship between Roman domination and the number of
leaves.

4.1 Definition and known results

Let G be a graph. A function f : V(G) — {0,1,2} is a Roman dominating function
of G if each vertex y € V(G) with f(y) = 0 is adjacent to a vertex z € V(G) with
f(z) = 2. For a function f : V(G) — {0,1,2}, the weight w(f) of f is defined by
w(f) = ey f(v). The minimum weight of a Roman dominating function of G
is called the Roman domination number of G, and is denoted by vg(G). The Roman
domination number was introduced by Stewart [19], and was studied by Cockayne, Dreyer
Jr., Hedetniemi and Hedetniemi, [4] in earnest. Recently, various properties on the Roman
domination number has been explored in, for example, [8, 9, 14, 15].

Chambers, Kinnersley, Prince and West [2] gave a sharp upper bound of the Roman
domination number for connected graphs with a characterization of the graphs attaining
the equality.
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Theorem J (Chambers et al. [2]) Let G be a connected graph of order n (> 3). Then
Yr(G) < 43"-

Theorem K (Chambers et al. [2]) Let G be a connected graph of order n. Then
vr(G) = 4?” if and only if G is either C5 or the (Ps,v)-corona of a connected graph where
v Iis the unique central vertex of Ps.

They also proved the following theorem (here Bp is the set consisting of graphs de-
picted in Figure 10).

TR

By
Figure 10: The graphs belonging to By

Theorem L (Chambers et al. [2]) Let G be a connected graph of order n with 6(G) >
2. Then either G € By or vr(G) < 52

Let U}, Uf, and Ug be the graphs depicted in Figure 11. We define the attachment
vertez of U}, as the vertex of U}, enclosed with a circle.

Ug Uk Uk

Figure 11: The graphs U}, U} and U3

Let [ > 0 be an integer. A set A of vertex-disjoint graphs is (g, [)-optimal if
(01”) each graph in A is a copy of one of Up, U and U3, and
(02") 2{A€e A AU +{A€A: AU} =1

Let F%, be the set of minimal-connected graphs with respect to a (g, [)-optimal set. Then
we can easily check that every graph in FY is [-leaf minimally connected.
Chambers et al. [2] proved the following theorem, which gives Theorem L as a corollary.

Theorem M (Chambers et al. [2]) Let G be a 0-leaf minimally connected graph of
order n. Then vr(G) > %2 if and only if G € {B}, B%, B} U FY%. In particular, either
G € {Bh, B3, Bh} or 1(0) < 2.
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4.2 Main result for Roman domination

The main result in this section is the following.

Theorem 4.1 Let [ > 0 be an integer, and let G be an [-leaf minimally connected graph

of order n (> 3). Then yg(G) > ¥=2 if and only if either | = 0 and G € {B}, B, By}

or G € F%,. In particular, either | = 0 and G € {B},, B}, B}} or yz(G) < 22

Proof. If | =0, then by Theorem M, the desired result holds. Thus we may assume that
[ > 1. If G € F, then by tedious arguments, we can check that yz(G) = 2242 Thus
it suffices to show that if vr(G) > %42 then G € FY. For v € L(G), let u, be the
unique neighbor of v. Let H be the graph obtained from G by adding for each v € L(G),

a new path Q, = x,y,2, and edges vz,, u,z, (see Figure 12). Then §(H) > 2 and H has

G H
Figure 12: Construction of H

a cutvertex u, where v is a leaf of G. In particular, H ¢ {BL, B%, B%}. Furthermore, by
Lemma 1.2 and the construction of H, we see that H is O-leaf minimally connected. This
together with Theorem M leads to yg(H) < m.

Let f:V(H) — {0,1,2} be a Roman dominating function of H with w(f) = yr(H).

Then the following claim holds.

Claim 4.1 Let v € L(G), and suppose that 3 (... yov(o, f(a) < 3. Then we have
Zae{v,uv}UV(Qv) fla) =3, flu,)=0, f(v)#2, f(z)# 2 and also (Ny(u,) = {v, 2,}) N
{be V(H): f(b) =2} #0.

Proof.  Since each vertex a € {v} UV(Q,) with f(a) = 0 is adjacent to a vertex b €
{v,u,} UV(Qy) with f(b) = 2, we see that >° ., (g, f(@) = 3. Let H' be the
subgraph of H induced by {v,u,} UV (Q,), and let f’ be the restriction of f to V(H').
Since Yg(Cs) = 4 and H' ~ Cj, if either f(u,) # 0 or f(v) =2 or f(z,) =2, then f'is a
Roman dominating function of H', and hence .y f(a) > 4, which is a contradiction.
Thus f(u,) =0, f(v) # 2 and f(z,) # 2. This leads to the desired conclusion. |

By Claim 4.1, 3 1, wyov(q. f (@) = 3forevery v € L(G). Now we define the function
g :{v,u, v e L(G)} — {0,1,2} as follows: For u € {u, : v € L(G)}, if there exists a
vertex v € Ng(u) N L(G) such that 3o, oy, f(@) = 4, let g(u) = 2; otherwise, let
g(u) = 0. For v € L(G), if g(u,) = 2, let g(v) = 0; if g(u,) = 0, let g(v) = 1. Let fy be
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the function with fy : V(G) — {0, 1,2} and

2 = g(a) (a€{v,u,:v e LG)})
fola) {f(a) (Otherwise).

It follows from Claim 4.1 and the definition of f, we have
fo(a) = f(a) for all a € V(G) — L(G). (4.1)
Claim 4.2 The function f is a Roman dominating function of G.

Proof. Let p € V(G) be a vertex with fo(p) = 0. It suffices to show that p is adjacent
to a vertex of G assigned 2 by fo. If p € L(G), then we have fo(u,) = g(u,) = 2; if
p € V(G) —{v,u, : v € L(G)}, then it follows from (4.1) that there exists a vertex
q € Ng(p) with fo(¢) = f(q) = 2. Thus we may assume that p € {u, : v € L(G)}. For
every v € Ng(p) N L(G), since fo(p) = 0, we have >° (. 1y (q,) f(a) = 3, and hence
f(p) =0, f(v) # 2 and f(z,) # 2 by Claim 4.1. By the fact that f is a Roman dominating
function of H and (4.1), there exists a vertex ¢ € Ny (p) — {v,2, : v € L(G)} (C Ng(p))
with fo(q) = f(q) = 2. u

Claim 4.3 We have w(fy) < w(f) —2L.
Proof. Let u € {u, : v € L(G)}, and set X, = Ng(u) N L(G). We first show that

> folw) + folu) < Y ( > f(a)> + f(u) = 2| Xl (4.2)
(@)

vEXy vEX, \ae{v}uV

For the moment, we assume that fo(u) = 0 (i.e., g(u) = 0). Then by the definition
of g(u) and Claim 4.1, f(u) = 0 and > cyov (g, f(a) = 3 for every v € X,. Hence
> vexy (Xacquyovigw f(a) + f(u) = 2[X,| = [X,|. On the other hand, fo(v) =1 for every
v e X, Hence ) v fo(v)+ fo(u) =[Xy|. Consequently we get (4.2).

Thus we may assume that fo(u) = 2 (i.e., g(u) = 2). Then there exists a vertex
vo € X, such that ZGG{UO}UV(QUO)]’(@) + f(u) > 4. For a vertex v € X, — {vo}, if

> actvuyuv(@y) /(@) = 3, then by Claim 4.1, f(u) = 0, and hence 3_ 1 v (0, f(a) = 3;

if Y erouuvign) f(a) =4, then 3° oy v, f(@) = 2 because f(u) < 2. In either case,
we have > 1oy, f(a) 2 2. Hence

5 ( 5 f(a)> b ) — 2%
)

veXy \a€{v}uV(Qu
= Y f@+f+ Y ( 3 f<a)> —2IX,)|
a€{vo UV (Qug) veEXu—{vo} \a€{v}UV(Qy)
>4+ 2(1X, - 1) — 2|1 X,
=2 (4.3)
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On the other hand, fo(v) = 0 for every v € X,. Hence }_ _ fo(v)+ fo(u) = 2. It follows
from (4.3) that (4.2) holds.
Note that

> (Zfo ) + ol >>= > fla),

ue{uy,veL(G)} \veXy, a€{v,uy:veL(G)}

o ELEe) 2 L, )

u€{uy:weL(G)} \veXy \ac{v}UV veEL(G) \ae{v}uV

Z ’Xuy =1l

u€{uy:weL(G)}

and

Since u € {u, : v € L(G)} is arbitrary, it follows from (4.2) that

> fo(a)<2< > >+quv—2z

a€{vuy,weL(G)} vEL(G) \a€{v}UV(Qu) veL(G
=y ( > f(a)> —2l.
vEL(G) \a€{v,u, }UV(Qu)

This together with the fact that fy(a) = f(a) for every a € V(G) — {v,u : v € L(G)}
leads to the desired conclusion. |

Since |V (H)| = n + 3l, it follows from Claims 4.2 and 4.3 that

Tr(G) < w(fo)

w(f)—21

8|V (H)|
11

8(n + 3I)
11

_ 8n—|—2l.

11

N IN

N

-2l

— 21

(4.4)

Since Yp(G) > 2 the equality of (4.4) holds. In particular, yp(H) = w. By
the construction of H, there exist [ disjoint cycles of H having 5 vertices such that G is
obtained from H by deleting 3 consecutive vertices of each of those cycles. It follows that

G € Fl,. This completes the proof of Theorem 4.1. O

As a corollary of Theorem 4.1, we get the following result.
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Theorem 4.2 Let | > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly | leaves. Then either | =0 and G € Bg or

n—+21 2n

81? (Oélég)
Yr(G) < {n—4% (LI

2n—21 (3 <l<n—1).

We start with a lemma. A tree obtained from a star by subdividing some edges is
called a spider. Note that any stars and any paths are spiders. We show the following
lemma.

Lemma 4.3 Let | > 2 be an integer, and let G be a connected graph having exactly [
leaves. Then there exists a subgraph H of G such that each component of H is a spider
and L(H) = L(G).

Proof. For u,v € L(G) with u # v, a path P of G joining v and v is a spider with
L(P) C L(G). Thus there exists a subgraph H of G such that each component of H is a
spider and L(H) C L(G). Choose H so that |L(H)| is as large as possible. Suppose that
L(H) # L(G), and let © € L(G) — L(H). Since dg(z) = 1, we have x € V(G) — V(H).
Let @ be a shortest path of G joining « and V(H). Write V(H) N V(Q) = {y}, and let
T be the component of H containing y. Note that dr(y) > 2. If dp(y) = A(T), then
T"=TUQ is a spider with L(T") = L(T") U{z}, and hence H' = H U@ is a subgraph of
G such that each component of H' is a spider and L(H') = L(H) U {z} C L(G), which
contradicts the maximality of |L(H)|. Thus dr(y) = 2 and A(T") > 3. Let z be the vertex
of T with dr(z) = A(T), and let w € L(T') be the vertex such that the path P, of T
joining w and z contains y. Since dr(z) > 3, Ty =T — (V(P,) — {z}) is a spider with
L(Ty) = L(T) — {w}. Let P, be the path of P, joining w and y. Then T, = P, UQ is
a path of G with endvertices w and x. In particular, T3 is a spider with L(73) C L(G).
Thus H" = (H — V(T)) UT, UTy is a subgraph of G such that each component of H” is
a spider and L(H") = L(H) U {z} C L(G), which contradicts the maximality of |L(H)].
UJ

Proof of Theorem 4.2. Let G be a connected graph of order n (> 3) having exactly [
leaves. It is known that yr(G1) < 27(G) for any graph Gy (see [4]). This together with
(2.2) in the proof of Theorem 1.1 leads to

Yr(G) < 2n — 2I. (4.5)

We show that yz(G) < n—1%. If 1 € {0, 1}, then we can easily check that v(G) < n—1.
Thus we may assume that [ > 2. Then by Lemma 4.3, G has a subgraph G’ such that
each component of G’ is a spider and L(G’) = L(G). For each component T of G’, let
a7 be a vertex of T' with dr(zp) = A(T), and let X = {zr : T is a component of G'}.
Note that |X| < § and [U,cx(Na(z) — X)| = > ,cx [Ner(2)| = . Hence the function
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F:V(G) = {0,1,2} with

(a € X)

2
fla) =10 (2 €U,ex(Na(e) — X))
1 (Otherwise)

is a Roman dominating function of G with w(f) = n+|X|—[J,cx(Ne(z) = X)| <n—
Consequently we have

N[~

(4.6)

DN | =~

Yr(G) < n —

By Fact 1.1, G has a spanning [-leaf minimally connected subgraph H. Since deleting
an edge cannot decrease the Roman domination number, we have vz(G) < yg(H). This
together with Theorem 4.1 implies that either [ = 0 and G € {Bj, B%, B3} or vr(G) <
8"1—’;21. Since By is the set of graphs B Containing one of Bk, B% and B} as a spanning

subgraph and satisfying v(B) > S‘V , this together with (4 5) and (4.6) implies that
either | =0 and H € Br or 7(G) < mln{ nt2l 'y — L. 2n—21}. Consequently Theorem 4.2
holds. U

Remark 3 In the proof of Theorem 4.2, we further assume that vgr(G) > %". Then it

follows from Theorem 4.1 that | = 2 and H € ’f;?n, and so H is the (Ps,v)-corona of a
tree where v is the unique central Vertex of Ps. By tedious arguments, this implies that
G is either Cj or the (Ps,v)-corona of a connected graph. Thus we also get Theorem K
as a corollary of Theorem 4.1.

Now we argue a sharpness of Theorem 4.2. Fix an integer [ > 0. Let n be an integer
with n > max{Z,5} and n + 3] = 0 (mod 11), and let A be a (g, !)-optimal set with
|A| = ”*f’l Then every minimal-connected graph G with respect to A has n vertices and
[ leaves, and satisfies yz(G) = #22L Thus Theorem 4.2 for the case where 0 < [ < 22 i
best possible.

Assume that [ is even, and let n be an integer with 2l < n < %l — 1. For each
i (1 <i<n-—2l),]let L; be a path of order 5, and for each ¢ (n — 2/ +1 < i < é),
let L; be a path of order 4. For each i (1 < i < é), we define the attachment vertex
of L; as one of the central vertices of L;. Then every minimal-connected graph G with
respect to {L; : 1 <4 < L} has n vertices and [ leaves, and satisfies y(G) = n — §. Thus
Theorem 4.2 for the case where 2”“ < I < 5 is best possible.

Again assume that [ is even, and let n be an integer with 3l n < 2l — 1. For each
i (1 <i<n—3) let L, be a path of order 4, andforeachz (n—%l—l—l <i < %),
let L be a path of order 3. For each i (1 < i < é), we define the attachment vertex
of L} as one of the central vertices of L. Then every minimal-connected graph G with
respect to {L] : 1 <4 < L} has n vertices and [ leaves, and satisfies y(G) = n — £. Thus

Theorem 4.2 for the case where "+1 <L 2?” is best possible.
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Let n be an integer with [+ 1 < n < % Let LY be a star having exactly 3l — 2n + 2
leaves, and for each 2 <i < n —1, let L7 be a star of order 3. For each i (1 <i<n—1),
we define the attachment vertex of L as one of the central vertices of L. Then every
minimal-connected graph G with respect to {L? : 1 < i < n—[} has n vertices and [ leaves,
and satisfies ygr(G) = 2n — 21. Thus Theorem 4.2 for the case where 2";1 <l<n—-1is
best possible.
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