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Abstract

In [J. Graph Theory 13 (1989) 749-762], McCuaig and Shepherd gave an upper
bound of the domination number for connected graphs with minimum degree at
least two. In this paper, we propose a simple strategy which, together with the
McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number
via the number of leaves. We also apply the same strategy to other domination-like
invariants, and find a relationship between such invariants and the number of leaves.
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1 Introduction

1.1 Domination concept and our strategy

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph.
For u € V(G), we let dg(u), Ng(u) and Ng[u] denote the degree, the open neigh-
borhood and the closed neighborhood of w, respectively; thus dg(u) = |Ng(u)| and
Ng¢lu] = Ng(u) U {u}. We let 6(G) and A(G) denote the minimum degree and the
mazximum degree of G, respectively. A vertex u € V(G) is a leaf of G if the degree of u
in G is exactly one. We let L(G) denote the set of leaves of G. An edge of G is called

*Supported by JSPS KAKENHI Grant Number 26800086.

THE ELECTRONIC JOURNAL OF COMBINATORICS (), # 1



a pendant edge if the edge is incident with a leaf of G. For two subsets X,Y of V(G),
we say that X dominates Y if Y C |,cx Nalu]. A subset of V(G) which dominates
V(G) is called a dominating set of G. The minimum cardinality of a dominating set of
G is called the domination number of G, and is denoted by v(G).

The domination number is one of the important invariants in Graph Theory, and it
can be widely applied to real problems, for example, school bus routing problem, social
network theory and the location of radio stations (see [10, 11]). To meet various addi-
tional requirements for above problems, many domination-like concepts were defined and
studied.

We first introduce an orthodox flow of research of domination-like concepts by citing
the original result on domination. The following is a well-known result given by Ore.

Theorem A (Ore [17]) Let G be a connected graph of ordern (> 2). Thenvy(G) < 7.

The upper bound of v(G) in Theorem A is best possible. Furthermore, the connected
graphs G attaining the equality in Theorem A were characterized by Fink, Jacobson,
Kinch and Roberts [7] and Payan and Xuong [18] as follows (here the corona of a graph
H is the graph obtained from H by adding a pendant edge to each vertex of H).

Theorem B (Fink et al. [7]; Payan and Xuong [18]) Let G be a connected graph
of order n. Then v(G) = % if and only if G is either Cy4 or the corona of a connected
graph.

In particular, any connected graphs G with v(G) = |V(2—G)| except for C4 have some
leaves. Thus one may suspect that the domination number of many connected graphs
G with §(G) > 2 is much less than the half of |V (G)|. For connected graphs with
minimum degree at least two, McCuaig and Shepherd [16] showed the following theorem
(here B is the set consisting of graphs depicted in Figure 1).
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Flgure 1: The graphs belongmg to B

Theorem C (McCuaig and Shepherd [16]) Let G be a connected graph of order n
with §(G) > 2. Then either G € B or v(G) < 2?"

THE ELECTRONIC JOURNAL OF COMBINATORICS (), # 2



Considering Theorem C, we know that the existence of leaves is a cause of an increase
of the domination number. On the other hand, it seems that Theorem C gives no insight
to general graphs G (which do not require the condition 6(G) > 2). Thus one problem
naturally arises: Find a relationship between the domination number and the number of
leaves. As a related result to the problem, for example, Favaron [6] gave the following
theorem.

Theorem D (Favaron [6]) Let I > 2 be an integer, and let T' be a tree of order n
having exactly 1 leaves. Then v(T') < "TH

However, there exist infinitely many connected (non-tree) graphs G with n vertices,
l leaves and v(G) > "T‘H (see Theorem 2.1 in Section 2). Thus, when we study a
relationship between domination and leaves in general graphs, it is insufficient to only
consider trees.

In order to get a desired relation, we propose a simple vertex-addition strategy as
follows: For a given connected graph G,

(S1) we construct a new graph H with §(H) > 2 which is obtained from G by adding
a special graph to each leaf of G,

(S2) give a small dominating set S of H which is assured by Theorem C, and
(S3) reduce S to a dominating set of G.

In Section 2, we show the following theorem by the above vertex-addition strategy.

Theorem 1.1 Letl > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly l leaves. Then either I = 0 and G € B or

v(G) <{ >

2
n —1 (”T"'lglgn—l).

Note that Theorem 1.1 is a common generalization of Theorems A and C. In Section 2,
we also give a generalization of Theorem B by using the proof technique of Theorem C.

We return to general domination-like concepts. For many domination-like invariants
u, the same upper bounds were found:

(D1) A sharp upper bound of pu(G) for every connected graph G (of large order).

(D2) A sharp upper bound of u(G) for every connected graph G with §(G) > 2 (with
finite exceptions).

In many cases, the following results are also given.

(D1") A characterization of connected graphs G attaining the equality of the bound in
(D1).
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(D2") A characterization of connected graphs G with §(G) > 2 attaining the equality
of the bound in (D2).

Our main aim in this paper is to give the following new steps for an invariant g by using
the vertex-addition strategy.

(D3) A sharp upper bound of p(G) for every connected graph G with I leaves (i.e., a
common generalization of (D1) and (D2)).

(D3’) A generalization of (D1’) and (D2’) (if (D1’) and (D2’) are known).

In general, the results such as (D2) and (D2’) tend to be independently shown from
(D1) and (D1”). Thus our strategy might give an alternative proof of the results such as
(D1) and (D17).

As we mentioned above, domination-like invariants were widely defined. Thus it is
difficult to deal with all of them. In this paper, as typical domination-like invariants,
we deal with two especially famous invariants, namely, total domination and Roman
domination in Sections 3 and 4, respectively. Our main results for such invariants are
Theorems 3.2 and 4.2.

1.2 Definitions

Our notation and terminology are standard, and mostly taken from [5]. Exceptions are
as follows.

For n > 3, we let P,, and C,, denote the path and the cycle of order n, respectively.
A vertex u of a connected graph H is a central vertez if for any v € V (H), the distance
from w to v is at most the radius of H. Note that a path of odd order has exactly one
central vertex, and a path of even order has exactly two central vertices.

A graph G is l-leaf minimally connected if

(L1) G is connected and |V (G)| > 2,
(L2) G has exactly I leaves, and
(L3) for each e € E(G), either e is a bridge of G or G — e has at least [ 4+ 1 leaves.

Note that a graph G is 0-leaf minimally connected if and only if G is a connected graph
with §(G) > 2 and 6(G — e) = 1 for any non-bridge edge e € E(G). The following
fact clearly holds.

Fact 1.1 Let I > 0 be an integer, and let G be a connected graph of order n (> 2)
having exactly l leaves. Then G has a spanning l-leaf minimally connected subgraph.

The following lemma will be used in the proof of our main results.
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Lemma 1.2 Let G be an l-leaf minimally connected graph, and let H be a graph ob-
tained from G by adding for each v € L(G), a new graph C,, and some edges between
Ng[v] and V (C,). Let e € E(G) be an edge incident with no leaves of G. Then e is a
bridge of H or |L(H)| < |L(H — €)|.

Proof. We may assume that e is not a bridge of H. By the construction of H, e is not
a bridge of G. Since G is l-leaf minimally connected, it follows that G — e has at least
[+ 1 leaves. In particular, e is incident with a vertex & with dg(x) = 2. Write e = za’
and Ng(x) = {«’,y}. Suppose that dg(x) > 3. Since dg(x) = 2 and e is incident
with no leaves of G, this implies that y is a leaf of G, and hence e is a bridge of G, which
is a contradiction. Thus dg(x) = 2, and so @ is a leaf of H — e. Consequently we have
|L(H)| < |L(H —e€e)|. O

Let C be a connected graph, and let v € V(C'). The (C,v)-corona of a graph G
is the graph obtained from G by adding a copy C,, of C to each vertex u € V(G) and
identifying w and the vertex of C,, corresponding with v (see Figure 2). Note that if C

vgv

G H
Figure 2: The (C,v)-corona H of G

is a path of order 2, the (C, v)-corona of a graph G is exactly the corona of G (defined
in the paragraph preceding Theorem B in Subsection 1.1).

Let A = {Ai1,...,A,} be a set of vertex-disjoint graphs with some attachment
vertices. (For example, we will use a set of some copies of U? in the first paragraph of
Section 2.) A graph G is minimally connected with respect to A if

(M1) G is obtained from (J;;.,,, A: by adding m — 1 edges e1,...,em_1,

(M2) each edge e; joins an attachment vertex of A; and an attachment vertex of A;
for some 2,4’ (¢ # '), and

(M3) G is connected.

Note that if A is a set of copies of a graph A with exactly one attachment vertex v, then
a minimally connected graph with respect to A is the (A, v)-corona of a tree.

2 Domination

Let U°, U?' and U? be the graphs depicted in Figure 3. We define the attachment vertices
of U? as the vertices of U? enclosed with a circle.
Let I > 0 be an integer. A set A of vertex-disjoint graphs is (v, l)-optimal if
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Figure 3: The graphs U°, U' and U?

(O1) each graph in A is a copy of one of U?, U and U?,
(02) {A€A: A~U} =1, and
(03) if A contains a copy of U° or U?, then |A| > 2

Let F! be the set of minimal-connected graphs with respect to a (v, 1)-optimal set. Then
we can easily check that every graph in F is I-leaf minimally connected. Let R be the
set of graphs depicted in Figure 4.

@QD@-
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Flgure 4: The graphs belonging to fR

In the proof of Theorem C, McCuaig and Shepherd [16] showed the following theorem.

Theorem E (McCuaig and Shepherd [16]) Let G be a 0-leaf minimally connected
graph of order n. Then v(G) > 2* if and only if G € {B',B*, B’} UF° U R. In
particular, either G € {B*, B, B®} or v(G) < 2.

Now we give a natural generalization of Theorem E (by using Theorem E).
Theorem 2.1 Let I > 0 be an integer, and let G be an l-leaf minimally connected
graph of order n (> 3). Then v(G) > 2“T+l if and only if either I = 0 and G €

{B',B%,B3} UR or G € F'. In particular, either | = 0 and G € {B*, B2, B3} or
v(G) < .
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Proof. If I = 0, then by Theorem E, the desired result holds. Thus we may assume
that I > 1. If G € F, then we can easily check that v(G) = 2"T+l Thus it suffices to

show that if v(G) > 2”T+l, then G € F. For v € L(G), let u, be the unique neighbor
of v. Let H be the graph obtained from G by adding for each v € L(G), a new path
Qu = X,Yyu2, and edges VT, V2, (see Figure 5). Then §(H) > 2 and H has a bridge

v
—_—
G

Figure 5: Construction of H

Yo

vu, where v is a leaf of G. In particular, H ¢ {B?', B?, B3} U R. Furthermore, by
Lemma 1.2 and the construction of H, we see that H is 0-leaf minimally connected. This
together with Theorem E leads to v(H) < VUL Tet S be a dominating set of H with
|S| = ~v(H), and let So = (S — (U,erey({v}UV(Qy)))) U{u, : v € L(G)}. Then
by the construction of H, Sy is a dominating set of G. For v € L(QG), since {v}UV(Q,)
cannot be dominated by one vertex of H, we have |S N ({v,u,} UV (Q,))| = 2. This
implies that |So| < |S| — I. Since |V (H)| = n + 3l, we have

Y(G) < |Sol

S| =1

2V ()|
5

2(n + 31)
5%

2n +1
= . 2.1
- 2.1)

/

N

N

l

Since v(G) > 2"5+l, the equality of (2.1) holds. In particular, v(H) = w Since
H ¢ {B', B2, B*} UR, it follows from Theorem E that H € F°. By the construction
of H, there exist [ disjoint cycles of H having 4 vertices such that G is obtained from
H by deleting 3 consecutive vertices of each of those cycles. It follows that G € F.
This completes the proof of Theorem 2.1. O]

Proof of Theorem 1.1. Let G be a connected graph of order n (> 3) having exactly [
leaves. Since every leaf of G is adjacent to a vertex in V(G) — L(G), V(G) — L(G) is

a dominating set of G. In particular,

Y(G) <n—1. (2.2)
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By Fact 1.1, G has a spanning l-leaf minimally connected subgraph H. Since deleting
an edge cannot decrease the domination number, we have v(G) < «(H). This together
with Theorem 2.1 implies that either Il = 0 and H € {B*, B2, B>} or v(G) < v(H) <
2”T+l. Since B is the set of graphs B containing one of B!, B? and B3 as a spanning
subgraph and satisfying v(B) > w, this together with (2.2) implies that either

!l =0and H € Borv(G) < min{?%, n —1}. Consequently Theorem 1.1 holds. [

Remark 1 In the proof of Theorem 1.1, we further assume that v(G) > %. Then it
follows from Theorem 2.1 thatl = % and H € F2, and so H is the corona of a tree. By
tedious arguments, this implies that G is either C4 or the corona of a connected graph.

Thus we also get Theorem B as a corollary of Theorem 2.1.

Now we argue a sharpness of Theorem 1.1. Fix an integer I > 0. Let n be an integer
with n > max{2l,3} and n 4+ 31l = 0 (mod 5), and let A be a (v, 1)-optimal set with
|A| = %& Then every minimal-connected graph G with respect to A has n vertices
and [ leaves, and satisfies y(G) = 2"T+l Thus Theorem 1.1 for the case where 0 < I < %
is best possible.

Let m be an integer with max{l + 1,3} < n < 2l — 1. Let L; be a star having
exactly 2l —n+1 leaves, and for each 2 < @ < n—1, let L; be a star of order 2. For each
i (1 < i <nm—1), we define the attachment vertex of L; as one of the central vertices of
L;. Then every minimal-connected graph G with respect to {L; : 1 < ¢ <mn —1} hasn
vertices and I leaves, and satisfies y(G) = n — l. Thus Theorem 1.1 for the case where
"TH <l < n — 1 is best possible.

3 Total domination

In this section, we find a relationship between total domination and the number of leaves.

3.1 Definition and known results

Let G be a graph without isolated vertices. For two subsets X,Y of V(G), we say
that X totally dominates Y if Y C (J,cx Na(u). A subset of V(G) which totally
dominates V(G) is called a total dominating set of G. The minimum cardinality of a
total dominating set of G is called the total domination number of G, and is denoted
by 4¢(G). The concept of total domination was introduced in [3], and has been actively
studied (see a book [13]).

A study of upper bounds of the total domination number derives from the following
theorem proved by Cockayne, Dawes and Hedetniemi [3].

Theorem F (Cockayne et al. [3]) Let G be a connected graph of order n (= 3).
Then v(G) < 2.

Brigham, Carrington and Vitray [1] characterized the graphs attaining the equality of
Theorem F.
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Theorem G (Brigham et al. [1]) Let G be a connected graph of order m. Then
Y (G) = 2?” if and only if G is either C3 or Cg or the (Ps,v)-corona of a connected
graph where v is an endvertex of Ps.

For graphs with minimum degree at least two, Henning [12] gave a sharp upper bound
of the total domination number as follows (here By is the set consisting of graphs depicted

in Figure 6).
B; B; B}
B B} BS

Figure 6: The graphs belonging to B,

Theorem H (Henning [12]) Let G be a connected graph of order n with 6(G) > 2.
Then either G € By or v(G) < .

Indeed, he showed a stronger theorem than Theorem H. In order to state his result,
we give a further definition.

Let U and U} be the graphs depicted in Figure 7. We define the attachment vertex
of U} as the vertex of U} enclosed with a circle.

5

Figure 7: The graphs Uy and U}

Let I > 0 be an integer. A set A of vertex-disjoint graphs is (¢, 1)-optimal if
(O1’) each graph in A is a copy of one of U? and U},
(02) {A€eA: A~UQ} =1, and
(03) |A| > 2.
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R; Ry R}
Figure 8: The graphs belonging to R

Let H’i be the set of minimal-connected graphs with respect to a (7¢, )-optimal set. Then
we can easily check that every graph in H’i is I-leaf minimally connected. Let R; be the
set of graphs depicted in Figure 8.

Henning [12] showed the following theorem, which gives Theorem H as a corollary.

Theorem I (Henning [12]) Let G be a 0-leaf minimally connected graph of order .
Then v(G) > 47” if and only if G € {B}, B2, B}, B}} UJF? UR,. In particular, either
G € {B}, B2, B}, B!} or %(G) < 2.

3.2 Main result for total domination

The main result in this section is the following.

Theorem 3.1 Let I > 0 be an integer, and let G be an l-leaf minimally connected
graph of order n (> 3). Then ~v(G) > ‘”‘TJ“% if and only if either I = 0 and
G € {B},B?,B},B!} UR, or G € F.. In particular, either | = 0 and G €
{B}, B}, B}, B{} or v(G) < 2.

Proof. If Il = 0, then by Theorem I, the desired result holds. Thus we may assume

that I > 1. If G € F%, then we can easily check that v(G) = 4"—;r2l. Thus it suffices
to show that if v(G) > 4”121, then G € FL. For v € L(G), let u, be the unique
neighbor of v. Let H be the graph obtained from G by adding for each v € L(G), a

new path Q, = X, Yy, 2, W, and edges VX, , U, W, (see Figure 9). Then §(H) > 2 and H

Yo .
Zy
v v
Wy
—_—
G H

Figure 9: Construction of H

has a cutvertex u, where v is a leaf of G. In particular, H ¢ {B}, B?, B}, B}} U R;.
Furthermore, by Lemma 1.2 and the construction of H, we see that H is 0-leaf minimally
connected. This together with Theorem I leads to ~¢(H) < w.

Let S be a total dominating set of H with |S| = ~¢(H). Then the following claim
holds.
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Claim 3.1 Let v € L(G), and suppose that |S N ({v,u,} U V(Q,))| < 3. Then
1SN ({v,u, } UV(Qy))| =3, SN{v,w,} =0 and SN (Ng(u,) — {v, w,}) # 0.

Proof.  Since S N ({v,u,} UV (Q,)) totally dominates {v} U V(Q,) in H, we have
SN ({v,u, } UV(Q,))| = 3. Since v:(Cg) = 4 and {v, u, } U V(Q,) induces Cg in
H, it SN ({v,u,} UV(Q,)) totally dominates {v, u,} U V(Q,), then |S N ({v} U
V(Q»))| = 4, which is a contradiction. Thus S N ({v,u,} U V(Q,)) cannot totally
dominate {u,} in H. This leads to the desired conclusion. |

By Claim 3.1, |S N ({v,u,} UV (Q,))| = 3 for every v € L(G). For v € L(G),
if |SN ({v,u,} UV(Qy,))| = 3, let T, = {u,}; if |SN ({v,u,} UV(Qy))| = 4,
let T, = {v,us}. Let So = (S — (Uper(ey({vs uo} U V(Qw)))) U (Uper () To)- For
v € L(G), it follows from Claim 3.1 and the definition of T;, that if v &€ Sy, then v € S.
Thus we have

SNV(G) C S,. (3.1)

We show that Sy is a total dominating set of G. Since S is a total dominating set
of H and {u, : v € L(G)} C Sy, it follows that Sy totally dominates V(G) — {u, :
v € L(G)} in G. Thus it suffices to show that Sg totally dominates {u,} for each
v € L(G). T |SN ({v,u,} UV(Qy,))| = 4, then v € Sp, and hence Sy totally
dominates {u,} in G; if Ng(u,) NS NV (G) # 0, then it follows from (3.1) that S
totally dominates {u,} in G. Thus we may assume that |S N ({v,u,} UV (Q,))| =3
and Ng(u,) N SN V(G) = 0. Since S N (Ng(u,) — {v,w,}) # 0 by Claim 3.1,
this implies that there exists v € L(G) with v/ # v such that w, = wu, (i.e., u, is
adjacent to two leaves v and v’ of G) and S N {v/, wy} # 0. Then by Claim 3.1,
SN ({v,uy } UV (Q.))| = 4, and hence v’ € Sy. Consequently Sy totally dominates
{u,} in G.

Claim 3.2 We have | S| < |S| — 2L.
Proof. Let u € {u, : v € L(G)}, and set X,, = Ng(u) N L(G). We first show that

1So N Xu| +1< Y 1SN ({v}UV(QW)| + IS N {u}] — 2| X.. (3.2)

veEXy

Fix a vertex vg € X,,. Then

|So N {vo}| + 1 = |To,|
< |S N ({UOauvo} U V(Qvo))| —2
= 15N ({vo} U V(Qu))| + |SN {u}| —2. (3.3)

Furthermore, by the definition of T,

|So N {v}| < SN ({v}uUuV(Qy))| — 2 for every v € X,, — {vo}. (3.4)
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It follows from (3.3) and (3.4) that (3.2) holds.
Since u € {u, : v € L(G)} is arbitrary, we have

‘Sgﬂ{v,uv v € L(G)}‘
— > (1SN Xu| +1)

u€E{u,:veEL(G)}

> <Z 1SN0 ({v} U V(Qu))+ SN {u} _2|Xu|>

u€E{u,weEL(G)} \veEXy

= > ISN{v}uV(@Qu))| +ISN{u, : v € L(G)} — 21

veEL(G)

= 3 15N ({v,u,} UV(Q,))| — 2L

vEL(G)

N

This together with the fact that So N (V(G) — {v,u, : v € L(G)}) = SN (V(G) —
{v,u, : v € L(G)}) leads to the desired conclusion. |

Since |V (H)| = n + 41, it follows from Claim 3.2 that

1(G) < |Sol
< |S| — 21
4|V (H
_avanl
7
4 41
_Ant4)
7
4 21
= L (3.5)
7
Since v:(G) > 4";'% the equality of (3.5) holds. In particular, v(H) = VgH”

Since H & {31 B2, B}, B!} U R, it follows from Theorem I that H € F?. By the
construction of H, there exist I disjoint cycles of H having 6 vertices such that G is
obtained from H by deleting 4 consecutive vertices of each of those cycles. It follows that
G € 3-'%. This completes the proof of Theorem 3.1. 0

As a corollary of Theorem 3.1, we get the following theorem.

Theorem 3.2 Letl > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly l leaves. Then either I = 0 and G € By or

4An—+21 (O <n
7 < 3
Y (G) < s n —1 ("+1<l< —2)
2 (Il=n—-1).
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Proof. 1fl =n — 1, then G is a star, and hence v;(G) = 2, as desired. Thus we may
assume that I < n — 2. Then |V (G) — L(G)| > 2 and each vertex in V(G) is adjacent
to a vertex in V(G) — L(G). In particular, V(G) — L(G) is a total dominating set of
G, and so

7(G) <n —1. (3.6)

By Fact 1.1, G has a spanning l-leaf minimally connected subgraph H. Since deleting
an edge cannot decrease the total domination number, we have v(G) < ~:(H). This
together with Theorem 3.1 implies that either I = 0 and H € {B}, B, B}, B}} or
Y (G) < v (H) < 4"—;L2l. Since By is the set of graphs B containing one of B}, B2, B3
and By as a spanning subgraph and satisfying v;(B) > m, this together with (3.6)
implies that either I = 0 and H € B; or 7(G) < min{‘lnT""m, n — 1}. Consequently
Theorem 3.2 holds. ]

Remark 2 In the proof of Theorem 3.2, we further assume that v;(G) > 2?" Then it

follows from Theorem 3.1 thatl = % and H € 37?, and so H is the (Ps,v)-corona of a
tree where v is an endvertex of P3. By tedious arguments, this implies that G is either
C3 or Cg or the (Ps,v)-corona of a connected graph. Thus we also get Theorem G as a
corollary of Theorem 3.1.

Now we argue a sharpness of Theorem 3.2. Fix an integer [ > 0. Let n be an integer
with n > max{3l,4} and n + 4l = 0 (mod 7), and let A be a (7, 1)-optimal set
with |A| = "T‘u. Then every minimal-connected graph G with respect to A has n

—4"7+ 2L Thus Theorem 3.2 for the case where

vertices and I leaves, and satisfies v(G) =
0 <1< % is best possible.

Assume that I > 2, and let n be an integer with 2l < m < 3l — 1. For each
it (1 <1< n—2l),let L; be a path of order 3, and for each 2 (n — 2l + 1 < ¢ < 1),
let L; be a path of order 2. For each ¢ (1 < ¢ < I), we define the attachment vertex of
L; as one of the endvertices of L;. Then every minimal-connected graph G with respect
to {L; : 1 < ¢ < 1} has n vertices and I leaves, and satisfies 74(G) = n — l. Thus
Theorem 3.2 for the case where "TH <l % is best possible.

Let m be an integer with I +2 < n < 21 — 1. Let L) be a star having exactly
2l — n 4 1 leaves, and for each 2 < 2 < n — [, let L} be a star of order 2. For each
1 (1 <4 < n—1), we define the attachment vertex of L] as one of the central vertices of
L!. Then every minimal-connected graph G with respect to {L : 1 <4 < n —1} hasn
vertices and [ leaves, and satisfies 4;(G) = m — . Thus Theorem 3.2 for the case where
"TH <l < n— 2is best possible. Moreover, since the total domination number of a star
is 2, Theorem 3.2 for the case where I = n — 1 is best possible.

4 Roman domination

In this section, we find a relationship between Roman domination and the number of
leaves.
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4.1 Definition and known results

Let G be a graph. A function f : V(G) — {0,1,2} is a Roman dominating function
of G if each vertex y € V(G) with f(y) = 0 is adjacent to a vertex x € V(G) with
f(x) = 2. For a function f : V(G) — {0,1,2}, the weight w(f) of f is defined by
w(f) = X ev(g) f(v). The minimum weight of a Roman dominating function of G
is called the Roman domination number of G, and is denoted by ygr(G). The Roman
domination number was introduced by Stewart [19], and was studied by Cockayne, Dreyer
Jr., Hedetniemi and Hedetniemi, [4] in earnest. Recently, various properties on the Roman
domination number has been explored in, for example, [8, 9, 14, 15].

Chambers, Kinnersley, Prince and West [2] gave a sharp upper bound of the Roman
domination number for connected graphs with a characterization of the graphs attaining
the equality.

Theorem J (Chambers et al. [2]) Let G be a connected graph of order n (= 3).
Then yr(G) < 4?".

Theorem K (Chambers et al. [2]) Let G be a connected graph of order m. Then
vr(G) = 72 if and only if G is either Cy or the (Ps,v)-corona of a connected graph
where v is the unique central vertex of Ps.

They also proved the following theorem (here Bpg is the set consisting of graphs de-
picted in Figure 10).

TR

Bg
Figure 10: The graphs belonging to Bgr

Theorem L (Chambers et al. [2]) Let G be a connected graph of order n with 6 (G) >
2. Then either G € Bg or Yyr(G) < ?—1

Let Up, U and U} be the graphs depicted in Figure 11. We define the attachment
vertex of U i as the vertex of Up “ enclosed with a circle.

T

Figure 11: The graphs Up, Ug and U3

Let I > 0 be an integer. A set A of vertex-disjoint graphs is (vg,1)-optimal if
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(01”) each graph in A is a copy of one of Ug, Ug, and UZ, and
(027) 2{A€A: AU} +|{ACA: A= UL} =1L

Let 3-"R be the set of minimal-connected graphs with respect to a (g, l)-optimal set.
Then we can easily check that every graph in EFlR is I-leaf minimally connected.
Chambers et al. [2] proved the following theorem, which gives Theorem L as a corollary.

Theorem M (Chambers et al. [2]) Let G be a 0-leaf minimally connected graph of
order n. Then yr(G) > 5% if and on]y 1fG € {Bj,B%,B%} U FY%. In particular,

either G € { By, By, B3} or 7r(G) <

4.2 Main result for Roman domination

The main result in this section is the following.

Theorem 4.1 Let I > 0 be an integer, and let G be an l-leaf minimally connected
graph of order n (> 3). Then vr(G) > 8"—+21 if and only if either Il = 0 and G €
{Bg, B%,B%} or G € F,. In particular, eltherl = 0 and G € {By,B%,B3} or
'YR(G) < 8n+2l‘

Proof. 1fl = 0, then by Theorem M, the desired result holds. Thus we may assume that
l > 1. If G € F4,, then by tedious arguments, we can check that yr(G) = 8"+2l . Thus
it suffices to show that if yr(G) > 8";{21, then G € F,. For v € L(G), let 'u,,, be the
unique neighbor of v. Let H be the graph obtained from G by adding for each v € L(G),
a new path Q, = x,Y,z, and edges VT, U, 2, (see Figure 12). Then §(H) > 2 and

Ly
Yo
Zv

G H
Figure 12: Construction of H

H has a cutvertex u, where v is a leaf of G. In particular, H ¢ {Bg,, B%, B3}
Furthermore, by Lemma 1.2 and the construction of H, we see that H is O—Ieaf mlmmally
connected. This together with Theorem M leads to 'yR(H ) < M

Let f : V(H) — {0,1,2} be a Roman dominating functlon of H with w(f) =
~r(H). Then the following claim holds.

Claim 4.1 Let v € L(G), and suppose that ) ,c, ..30v(Q. )f(a) 3. Then we

have Y- ctpuyovigy) (@) = 3, f(u,) = 0, f(v) # 2, f(z) # 2 and also
(Nu(uv) — {v,z,}) N {b e V(H) : f(b) =2} #0.
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Proof.  Since each vertex a € {v} U V(Q,) with f(a) = 0 is adjacent to a vertex
b€ {v,u,} UV(Q,) with f(b) = 2, we see that >, ...yuv(q.) f(@) = 3. Let H’
be the subgraph of H induced by {v, u,} UV (Q,), and let f’ be the restriction of f to
V(H’). Since yr(C5) = 4 and H’ ~ Cj, if either f(u,) # 0or f(v) = 2 or f(z,) =
2, then f’ is a Roman dominating function of H’, and hence ZaeV(H’) f(a) > 4, which
is a contradiction. Thus f(u,) = 0, f(v) # 2 and f(z,) # 2. This leads to the desired
conclusion. [

By Claim 4.1, >~ cry wuyuvie) f(@) = 3 for every v € L(G). Now we define the
function g : {v,u, : v € L(G)} — {0,1,2} as follows: For u € {u, : v € L(G)},
if there exists a vertex v € Ng(u) N L(G) such that 3 .. sov(q,) f(a) = 4, let
g(u) = 2; otherwise, let g(u) = 0. For v € L(G), if g(u,) = 2, let g(v) = 0; if
g(u,) = 0, let g(v) = 1. Let fo be the function with fo : V(G) — {0,1,2} and

o [9@ (@€ {vuve L@
fola) = {f(a) (Otherwise).

It follows from Claim 4.1 and the definition of fy, we have
fo(a) = f(a) for all a € V(G) — L(G). (4.1)

Claim 4.2 The function fy is a Roman dominating function of G.

Proof. Let p € V(G) be a vertex with fo(p) = 0. It suffices to show that p is adjacent
to a vertex of G assigned 2 by fo. If p € L(G), then we have fo(u,) = g(u,) = 2; if
p € V(G) — {v,u, : v € L(G)}, then it follows from (4.1) that there exists a vertex
q € Ng(p) with fo(q) = f(g) = 2. Thus we may assume that p € {u, : v € L(G)}.

For every v € Ng(p) N L(G), since fo(p) = 0, we have 3 . yuv(q.) F(@) = 3,
and hence f(p) = 0, f(v) # 2 and f(z,) # 2 by Claim 4.1. By the fact that f is a
Roman dominating function of H and (4.1), there exists a vertex ¢ € Ng(p) — {v, 2, :

v € L(G)} (C Ng(p)) with fo(q) = f(q) = 2. u

Claim 4.3 We have w(fo) < w(f) — 2I.
Proof. Let u € {u, : v € L(G)}, and set X,, = Ng(u) N L(G). We first show that

Z Jo(v) + fo(u) < Z < Z f(a)) + f(u) — 2| X,|. (4.2)
)

VEX,, veEX, \ae{v}IUuV(Q+

For the moment, we assume that fo(u) = 0 (i.e., g(v) = 0). Then by the definition
of g(u) and Claim 4.1, f(u) = 0and 3~ cryuv(q.) f(a) = 3 for every v € X,,. Hence

> vex (Dactorovig.) f(@)) + f(u) — 2|X,| = | Xu|. On the other hand, fo(v) =1
for every v € X,,. Hence ) x  fo(v) + fo(u) = | X,|. Consequently we get (4.2).
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Thus we may assume that fo(u) = 2 (ie., g(u) = 2). Then there exists a
vertex v9 € X, such that EGG{UO}UV(Q%) f(a) + f(u) > 4. For a vertex v €
Xu — {vo} If X pcuupoviqn) (@) = 3, then by Claim 4.1, f(u) = 0, and hence

Dacimiovigy) F(@) = 310 >0 o ovig.) F(@) = 4, then 3 vy, fla) = 2
because f(u) < 2. In either case, we have >, cr1 v (g,) f(a) > 2. Hence

Z( > f(a))+f(U)—2|Xu|
)

vEX, \ae{v}uV(Qw
= Y f@+rw+ Y ( T f(a)> —2|x,,
a€{vo}UV(Quv) vEXyu—{vo} \a€{v}UV(Qv)
>4+ 2(|Xu| — 1) — 2| X,
= 2. (4.3)

On the other hand, fo(v) = 0 for every v € X,,. Hence ) .y fo(v) + fo(u) = 2. It
follows from (4.3) that (4.2) holds.
Note that

) ( > folv) + fo(“)) = > fo(a),

uE{u,:veEL(G)} \veEXy a€{v,u,:veEL(G)}
5 (z( 5 f<a>))=z( 5 f<a>)
uE{uy:veEL(G)} \vEX, \ac{v}UV(Qy) veEL(G) \ac{v}uV(Qwv)

and

Z |Xu| =1l

uE{u,:veEL(G)}

Since u € {u, : v € L(G)} is arbitrary, it follows from (4.2) that

S h@e Y ( 5 f<a>)+ S a2
)

ac{v,u,:veEL(G)} vEL(G) \a€{v}UV(Q., veEL(G)
-y (¥ @)
vEL(G) \a€{v,us,}UV(Qv)

This together with the fact that fo(a) = f(a) foreverya € V(G)—{v,u : v € L(G)}
leads to the desired conclusion. n
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Since |V (H)| = n + 31, it follows from Claims 4.2 and 4.3 that

Yr(G) < w(fo)
w(f) — 2
S|V (H)|
11
8(n + 31)

11
8n + 21

11

NN

N

2l
2l

(4.4)

Since Yr(G) > 8"141'%, the equality of (4.4) holds. In particular, yr(H) = w. By
the construction of H, there exist I disjoint cycles of H having 5 vertices such that G
is obtained from H by deleting 3 consecutive vertices of each of those cycles. It follows

that G € EFIR. This completes the proof of Theorem 4.1. 0

As a corollary of Theorem 4.1, we get the following result.

Theorem 4.2 Letl > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly l leaves. Then either I = 0 and G € Bg or

Yr(G) < {n—1L1 (I
2n — 21 (2 <l<n—1)

We start with a lemma. A tree obtained from a star by subdividing some edges is
called a spider. Note that any stars and any paths are spiders. We show the following
lemma.

Lemma 4.3 Let I > 2 be an integer, and let G be a connected graph having exactly 1
leaves. Then there exists a subgraph H of G such that each component of H is a spider
and L(H) = L(G).

Proof. For u,v € L(G) with u # v, a path P of G joining u and v is a spider with
L(P) C L(G). Thus there exists a subgraph H of G such that each component of
H is a spider and L(H) C L(G). Choose H so that |L(H)| is as large as possible.
Suppose that L(H) # L(G), and let * € L(G) — L(H). Since dg(x) = 1, we
have x € V(G) — V(H). Let Q be a shortest path of G joining & and V (H). Write
V(H) N V(Q) = {y}, and let T be the component of H containing y. Note that
dr(y) > 2. Ifdr(y) = A(T), then TV = T UQ is a spider with L(T") = L(T)uU{z},
and hence H' = H U Q is a subgraph of G such that each component of H’ is a spider
and L(H') = L(H) U {z} C L(G), which contradicts the maximality of |L(H)|.
Thus dr(y) = 2 and A(T') > 3. Let z be the vertex of T with dr(z) = A(T), and
let w € L(T) be the vertex such that the path P, of T joining w and z contains y.
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Since dp(z) 2 3, Ty =T — (V(P,) — {z}) is a spider with L(T}) = L(T) — {w}.
Let P, be the path of P joining w and y. Then Tp = P, U Q is a path of G with
endvertices w and x. In particular, T» is a spider with L(Tz) C L(G). Thus H” =
(H — V(T)) UTy UTs is a subgraph of G such that each component of H” is a spider
and L(H") = L(H)U{x} C L(G), which contradicts the maximality of |L(H)|. O

Proof of Theorem 4.2. Let G be a connected graph of order n (> 3) having exactly [
leaves. It is known that yr(G1) < 27v(G1) for any graph G; (see [4]). This together
with (2.2) in the proof of Theorem 1.1 leads to

We show that yr(G) < n — % If I € {0, 1}, then we can easily check that yr(G) <
n — 1. Thus we may assume that [ > 2. Then by Lemma 4.3, G has a subgraph G’ such
that each component of G’ is a spider and L(G’) = L(G). For each component T of
G’, let 1 be a vertex of T With dr(xr) = A(T), and let X = {xr : T is a component
of G’} Note that | X| < & 5 and | U ex(Na(z) — X)| =2 > cx |[Na/(x)| = 1. Hence
the function f: V(G) — {0, 1,2} with

2 (a€X)
fla) =10 (a € Uzex(Ne(z) — X))
1 (Otherwise)

is a Roman dominating function of G with w(f) = n+ | X| —|U,cx (Na(z) — X)| <
n — % Consequently we have

Yr(G) < n — % (4.6)

By Fact 1.1, G has a spanning l-leaf minimally connected subgraph H. Since deleting

an edge cannot decrease the Roman domination number, we have vr(G) < vr(H).
This together with Theorem 4.1 implies that either I = 0 and G € {Bpg, B, B%}
or yr(G) < 8”+2l. Since Bg is the set of graphs B containing one of By Bf{ and
B2, as a spanning subgraph and satisfying v(B) > Slv(B)l , this together with (4.5) and
(4. 6) implies that either I = 0 and H € Bg or v(G) < min 8"+2l , L — L 2n — 21}.
Consequently Theorem 4.2 holds. O

Remark 3 In the proof of Theorem 4.2, we further assume that Yyr(G) > 4. Then it

follows from Theorem 4.1 that l = 2?" and H € 3’}?, and so H is the (Ps, v)-corona of
a tree where v is the unique central vertex of Pys. By tedious arguments, this implies that
G is either Cy or the (Ps, v)-corona of a connected graph. Thus we also get Theorem K
as a corollary of Theorem 4.1.
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Now we argue a sharpness of Theorem 4.2. Fix an integer I > 0. Let n be an integer
with n > max{%l, 5} and n + 3l = 0 (mod 11), and let A be a (vyg,1)-optimal set
with |A| = %f’l Then every minimal-connected graph G with respect to A has n
vertices and [ leaves, and satisfies yr(G) = 8"1—7;21
0<IL 2?" is best possible.

Assume that [ is even, and let m be an integer with 21 < n < %l — 1. For each
i (1 < i< n—2l),let L; be apath of order 5, and for each ¢ (n —2l+1 < i < %), let
L; be a path of order 4. For each ¢ (1 <7 < %), we define the attachment vertex of L;
as one of the central vertices of L;. Then every minimal-connected graph G with respect
to{L; :1 <4< %} has n vertices and 1 leaves, and satisfies yr(G) = n — % Thus

Theorem 4.2 for the case where 2"5i <l < g is best possible.

. Thus Theorem 4.2 for the case where

Again assume that I is even, and let m be an integer with %l <n <2l —1. For each
i (1<i<n—2) let L] be a path of order 4, and for each ¢ (n — 3 +1 < i < 1), let
L’ be a path of order 3. For each 7 (1 < < %), we define the attachment vertex of L
as one of the central vertices of L. Then every minimal-connected graph G Withl respect

to {L:1 <4< %} has m vertices and I leaves, and satisfies yr(G) = n — 5. Thus

Theorem 4.2 for the case where "TH <l 2?" is best possible.

Let m be an integer with I +1 < n < 317—1 Let LY be a star having exactly
3l — 2n + 2 leaves, and for each 2 <2 < n — [, let L;’ be a star of order 3. For each
t (1 < i < n—1), we define the attachment vertex of LY as one of the central vertices
of LY. Then every minimal-connected graph G with respect to {LY : 1 < ¢ < n — 1}
has n vertices and [ leaves, and satisfies yr(G) = 2n — 2I. Thus Theorem 4.2 for the

case where 2"3+1 <l <n —1is best possible.
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