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Abstract

In [J. Graph Theory 13 (1989) 749–762], McCuaig and Shepherd gave an upper
bound of the domination number for connected graphs with minimum degree at
least two. In this paper, we propose a simple strategy which, together with the
McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number
via the number of leaves. We also apply the same strategy to other domination-like
invariants, and find a relationship between such invariants and the number of leaves.
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1 Introduction

1.1 Domination concept and our strategy

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph.
For u ∈ V (G), we let dG(u), NG(u) and NG[u] denote the degree, the open neigh-

borhood and the closed neighborhood of u, respectively; thus dG(u) = |NG(u)| and
NG[u] = NG(u) ∪ {u}. We let δ(G) and ∆(G) denote the minimum degree and the
maximum degree of G, respectively. A vertex u ∈ V (G) is a leaf of G if the degree of u
in G is exactly one. We let L(G) denote the set of leaves of G. An edge of G is called
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a pendant edge if the edge is incident with a leaf of G. For two subsets X,Y of V (G),
we say that X dominates Y if Y ⊆

⋃

u∈X NG[u]. A subset of V (G) which dominates
V (G) is called a dominating set of G. The minimum cardinality of a dominating set of
G is called the domination number of G, and is denoted by γ(G).

The domination number is one of the important invariants in Graph Theory, and it
can be widely applied to real problems, for example, school bus routing problem, social
network theory and the location of radio stations (see [10, 11]). To meet various addi-
tional requirements for above problems, many domination-like concepts were defined and
studied.

We first introduce an orthodox flow of research of domination-like concepts by citing
the original result on domination. The following is a well-known result given by Ore.

Theorem A (Ore [17]) LetG be a connected graph of order n (> 2). Then γ(G) 6
n

2
.

The upper bound of γ(G) in Theorem A is best possible. Furthermore, the connected
graphs G attaining the equality in Theorem A were characterized by Fink, Jacobson,
Kinch and Roberts [7] and Payan and Xuong [18] as follows (here the corona of a graph
H is the graph obtained from H by adding a pendant edge to each vertex of H).

Theorem B (Fink et al. [7]; Payan and Xuong [18]) Let G be a connected graph

of order n. Then γ(G) = n

2
if and only if G is either C4 or the corona of a connected

graph.

In particular, any connected graphs G with γ(G) = |V (G)|

2
except for C4 have some

leaves. Thus one may suspect that the domination number of many connected graphs
G with δ(G) > 2 is much less than the half of |V (G)|. For connected graphs with
minimum degree at least two, McCuaig and Shepherd [16] showed the following theorem
(here B is the set consisting of graphs depicted in Figure 1).

B1 B2 B3 B4

B7B5 B6

Figure 1: The graphs belonging to B

Theorem C (McCuaig and Shepherd [16]) Let G be a connected graph of order n

with δ(G) > 2. Then either G ∈ B or γ(G) 6
2n
5
.
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Considering Theorem C, we know that the existence of leaves is a cause of an increase
of the domination number. On the other hand, it seems that Theorem C gives no insight
to general graphs G (which do not require the condition δ(G) > 2). Thus one problem
naturally arises: Find a relationship between the domination number and the number of
leaves. As a related result to the problem, for example, Favaron [6] gave the following
theorem.

Theorem D (Favaron [6]) Let l > 2 be an integer, and let T be a tree of order n

having exactly l leaves. Then γ(T ) 6
n+l

3
.

However, there exist infinitely many connected (non-tree) graphs G with n vertices,
l leaves and γ(G) > n+l

3
(see Theorem 2.1 in Section 2). Thus, when we study a

relationship between domination and leaves in general graphs, it is insufficient to only
consider trees.

In order to get a desired relation, we propose a simple vertex-addition strategy as
follows: For a given connected graph G,

(S1) we construct a new graph H with δ(H) > 2 which is obtained from G by adding
a special graph to each leaf of G,

(S2) give a small dominating set S of H which is assured by Theorem C, and

(S3) reduce S to a dominating set of G.

In Section 2, we show the following theorem by the above vertex-addition strategy.

Theorem 1.1 Let l > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly l leaves. Then either l = 0 and G ∈ B or

γ(G) 6

{

2n+l

5
(0 6 l 6 n

2
)

n − l (n+1
2

6 l 6 n − 1).

Note that Theorem 1.1 is a common generalization of Theorems A and C. In Section 2,
we also give a generalization of Theorem B by using the proof technique of Theorem C.

We return to general domination-like concepts. For many domination-like invariants
µ, the same upper bounds were found:

(D1) A sharp upper bound of µ(G) for every connected graph G (of large order).

(D2) A sharp upper bound of µ(G) for every connected graph G with δ(G) > 2 (with
finite exceptions).

In many cases, the following results are also given.

(D1′) A characterization of connected graphs G attaining the equality of the bound in
(D1).
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(D2′) A characterization of connected graphs G with δ(G) > 2 attaining the equality
of the bound in (D2).

Our main aim in this paper is to give the following new steps for an invariant µ by using
the vertex-addition strategy.

(D3) A sharp upper bound of µ(G) for every connected graph G with l leaves (i.e., a
common generalization of (D1) and (D2)).

(D3′) A generalization of (D1′) and (D2′) (if (D1′) and (D2′) are known).

In general, the results such as (D2) and (D2′) tend to be independently shown from
(D1) and (D1′). Thus our strategy might give an alternative proof of the results such as
(D1) and (D1′).

As we mentioned above, domination-like invariants were widely defined. Thus it is
difficult to deal with all of them. In this paper, as typical domination-like invariants,
we deal with two especially famous invariants, namely, total domination and Roman
domination in Sections 3 and 4, respectively. Our main results for such invariants are
Theorems 3.2 and 4.2.

1.2 Definitions

Our notation and terminology are standard, and mostly taken from [5]. Exceptions are
as follows.

For n > 3, we let Pn and Cn denote the path and the cycle of order n, respectively.
A vertex u of a connected graph H is a central vertex if for any v ∈ V (H), the distance
from u to v is at most the radius of H . Note that a path of odd order has exactly one
central vertex, and a path of even order has exactly two central vertices.

A graph G is l-leaf minimally connected if

(L1) G is connected and |V (G)| > 2,

(L2) G has exactly l leaves, and

(L3) for each e ∈ E(G), either e is a bridge of G or G − e has at least l + 1 leaves.

Note that a graph G is 0-leaf minimally connected if and only if G is a connected graph
with δ(G) > 2 and δ(G − e) = 1 for any non-bridge edge e ∈ E(G). The following
fact clearly holds.

Fact 1.1 Let l > 0 be an integer, and let G be a connected graph of order n (> 2)
having exactly l leaves. Then G has a spanning l-leaf minimally connected subgraph.

The following lemma will be used in the proof of our main results.
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Lemma 1.2 Let G be an l-leaf minimally connected graph, and let H be a graph ob-

tained from G by adding for each v ∈ L(G), a new graph Cv and some edges between

NG[v] and V (Cv). Let e ∈ E(G) be an edge incident with no leaves of G. Then e is a

bridge of H or |L(H)| < |L(H − e)|.

Proof. We may assume that e is not a bridge of H . By the construction of H , e is not
a bridge of G. Since G is l-leaf minimally connected, it follows that G − e has at least
l+1 leaves. In particular, e is incident with a vertex x with dG(x) = 2. Write e = xx′

and NG(x) = {x′, y}. Suppose that dH(x) > 3. Since dG(x) = 2 and e is incident
with no leaves of G, this implies that y is a leaf of G, and hence e is a bridge of G, which
is a contradiction. Thus dH(x) = 2, and so x is a leaf of H − e. Consequently we have
|L(H)| < |L(H − e)|. �

Let C be a connected graph, and let v ∈ V (C). The (C, v)-corona of a graph G

is the graph obtained from G by adding a copy Cu of C to each vertex u ∈ V (G) and
identifying u and the vertex of Cu corresponding with v (see Figure 2). Note that if C

G H

uu

Cu

Figure 2: The (C, v)-corona H of G

is a path of order 2, the (C, v)-corona of a graph G is exactly the corona of G (defined
in the paragraph preceding Theorem B in Subsection 1.1).

Let A = {A1, . . . , Am} be a set of vertex-disjoint graphs with some attachment

vertices. (For example, we will use a set of some copies of U i in the first paragraph of
Section 2.) A graph G is minimally connected with respect to A if

(M1) G is obtained from
⋃

16i6m Ai by adding m − 1 edges e1, . . . , em−1,

(M2) each edge ej joins an attachment vertex of Ai and an attachment vertex of Ai′

for some i, i′ (i 6= i′), and

(M3) G is connected.

Note that if A is a set of copies of a graph A with exactly one attachment vertex v, then
a minimally connected graph with respect to A is the (A, v)-corona of a tree.

2 Domination

Let U0, U1 and U2 be the graphs depicted in Figure 3. We define the attachment vertices

of U i as the vertices of U i enclosed with a circle.
Let l > 0 be an integer. A set A of vertex-disjoint graphs is (γ, l)-optimal if
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U1U0 U2

Figure 3: The graphs U0, U1 and U2

(O1) each graph in A is a copy of one of U0, U1 and U2,

(O2) |{A ∈ A : A ≃ U0}| = l, and

(O3) if A contains a copy of U0 or U1, then |A| > 2.

Let Fl be the set of minimal-connected graphs with respect to a (γ, l)-optimal set. Then
we can easily check that every graph in Fl is l-leaf minimally connected. Let R be the
set of graphs depicted in Figure 4.

R1

R4

R2 R3

R5 R6

Figure 4: The graphs belonging to R

In the proof of Theorem C, McCuaig and Shepherd [16] showed the following theorem.

Theorem E (McCuaig and Shepherd [16]) Let G be a 0-leaf minimally connected

graph of order n. Then γ(G) >
2n
5

if and only if G ∈ {B1, B2, B3} ∪ F0 ∪ R. In

particular, either G ∈ {B1, B2, B3} or γ(G) 6
2n
5
.

Now we give a natural generalization of Theorem E (by using Theorem E).

Theorem 2.1 Let l > 0 be an integer, and let G be an l-leaf minimally connected

graph of order n (> 3). Then γ(G) >
2n+l

5
if and only if either l = 0 and G ∈

{B1, B2, B3} ∪ R or G ∈ Fl. In particular, either l = 0 and G ∈ {B1, B2, B3} or

γ(G) 6
2n+l

5
.
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Proof. If l = 0, then by Theorem E, the desired result holds. Thus we may assume
that l > 1. If G ∈ Fl, then we can easily check that γ(G) = 2n+l

5
. Thus it suffices to

show that if γ(G) >
2n+l

5
, then G ∈ Fl. For v ∈ L(G), let uv be the unique neighbor

of v. Let H be the graph obtained from G by adding for each v ∈ L(G), a new path
Qv = xvyvzv and edges vxv, vzv (see Figure 5). Then δ(H) > 2 and H has a bridge

uv

v v

zv

yv

xv

G H

Figure 5: Construction of H

vuv where v is a leaf of G. In particular, H 6∈ {B1, B2, B3} ∪ R. Furthermore, by
Lemma 1.2 and the construction of H , we see that H is 0-leaf minimally connected. This
together with Theorem E leads to γ(H) 6

2|V (H)|

5
. Let S be a dominating set of H with

|S| = γ(H), and let S0 = (S− (
⋃

v∈L(G)({v}∪V (Qv))))∪{uv : v ∈ L(G)}. Then

by the construction ofH , S0 is a dominating set ofG. For v ∈ L(G), since {v}∪V (Qv)
cannot be dominated by one vertex of H , we have |S ∩ ({v, uv} ∪ V (Qv))| > 2. This
implies that |S0| 6 |S| − l. Since |V (H)| = n + 3l, we have

γ(G) 6 |S0|

6 |S| − l

6
2|V (H)|

5
− l

=
2(n + 3l)

5
− l

=
2n + l

5
. (2.1)

Since γ(G) >
2n+l

5
, the equality of (2.1) holds. In particular, γ(H) = 2|V (H)|

5
. Since

H 6∈ {B1, B2, B3} ∪R, it follows from Theorem E that H ∈ F0. By the construction
of H , there exist l disjoint cycles of H having 4 vertices such that G is obtained from
H by deleting 3 consecutive vertices of each of those cycles. It follows that G ∈ Fl.

This completes the proof of Theorem 2.1. �

Proof of Theorem 1.1. Let G be a connected graph of order n (> 3) having exactly l

leaves. Since every leaf of G is adjacent to a vertex in V (G)−L(G), V (G)−L(G) is
a dominating set of G. In particular,

γ(G) 6 n − l. (2.2)
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By Fact 1.1, G has a spanning l-leaf minimally connected subgraph H . Since deleting
an edge cannot decrease the domination number, we have γ(G) 6 γ(H). This together
with Theorem 2.1 implies that either l = 0 and H ∈ {B1, B2, B3} or γ(G) 6 γ(H) 6
2n+l

5
. Since B is the set of graphs B containing one of B1, B2 and B3 as a spanning

subgraph and satisfying γ(B) >
2|V (B)|

5
, this together with (2.2) implies that either

l = 0 and H ∈ B or γ(G) 6 min{2n+l

5
, n− l}. Consequently Theorem 1.1 holds. �

Remark 1 In the proof of Theorem 1.1, we further assume that γ(G) >
n

2
. Then it

follows from Theorem 2.1 that l = n

2
and H ∈ F

n

2 , and so H is the corona of a tree. By

tedious arguments, this implies that G is either C4 or the corona of a connected graph.

Thus we also get Theorem B as a corollary of Theorem 2.1.

Now we argue a sharpness of Theorem 1.1. Fix an integer l > 0. Let n be an integer
with n > max{2l, 3} and n + 3l ≡ 0 (mod 5), and let A be a (γ, l)-optimal set with
|A| = n+3l

5
. Then every minimal-connected graph G with respect to A has n vertices

and l leaves, and satisfies γ(G) = 2n+l

5
. Thus Theorem 1.1 for the case where 0 6 l 6 n

2
is best possible.

Let n be an integer with max{l + 1, 3} 6 n 6 2l − 1. Let L1 be a star having
exactly 2l−n+1 leaves, and for each 2 6 i 6 n− l, let Li be a star of order 2. For each
i (1 6 i 6 n− l), we define the attachment vertex of Li as one of the central vertices of
Li. Then every minimal-connected graph G with respect to {Li : 1 6 i 6 n− l} has n
vertices and l leaves, and satisfies γ(G) = n − l. Thus Theorem 1.1 for the case where
n+1
2

6 l 6 n − 1 is best possible.

3 Total domination

In this section, we find a relationship between total domination and the number of leaves.

3.1 Definition and known results

Let G be a graph without isolated vertices. For two subsets X,Y of V (G), we say
that X totally dominates Y if Y ⊆

⋃

u∈X NG(u). A subset of V (G) which totally
dominates V (G) is called a total dominating set of G. The minimum cardinality of a
total dominating set of G is called the total domination number of G, and is denoted
by γt(G). The concept of total domination was introduced in [3], and has been actively
studied (see a book [13]).

A study of upper bounds of the total domination number derives from the following
theorem proved by Cockayne, Dawes and Hedetniemi [3].

Theorem F (Cockayne et al. [3]) Let G be a connected graph of order n (> 3).
Then γt(G) 6

2n
3
.

Brigham, Carrington and Vitray [1] characterized the graphs attaining the equality of
Theorem F.

the electronic journal of combinatorics (), # 8



Theorem G (Brigham et al. [1]) Let G be a connected graph of order n. Then

γt(G) = 2n
3

if and only if G is either C3 or C6 or the (P3, v)-corona of a connected

graph where v is an endvertex of P3.

For graphs with minimum degree at least two, Henning [12] gave a sharp upper bound
of the total domination number as follows (here Bt is the set consisting of graphs depicted
in Figure 6).

B1
t

B2
t

B3
t

B6
t

B5
t

B4
t

Figure 6: The graphs belonging to Bt

Theorem H (Henning [12]) Let G be a connected graph of order n with δ(G) > 2.
Then either G ∈ Bt or γt(G) 6

4n
7
.

Indeed, he showed a stronger theorem than Theorem H. In order to state his result,
we give a further definition.

Let U0
t
and U1

t
be the graphs depicted in Figure 7. We define the attachment vertex

of U i
t
as the vertex of U i

t
enclosed with a circle.

U1
t

U0
t

Figure 7: The graphs U0
t
and U1

t

Let l > 0 be an integer. A set A of vertex-disjoint graphs is (γt, l)-optimal if

(O1′) each graph in A is a copy of one of U0
t
and U1

t
,

(O2′) |{A ∈ A : A ≃ U0
t
}| = l, and

(O3′) |A| > 2.
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R1
t

R2
t

R3
t

Figure 8: The graphs belonging to Rt

Let Fl
t
be the set of minimal-connected graphs with respect to a (γt, l)-optimal set. Then

we can easily check that every graph in Fl
t
is l-leaf minimally connected. Let Rt be the

set of graphs depicted in Figure 8.
Henning [12] showed the following theorem, which gives Theorem H as a corollary.

Theorem I (Henning [12]) Let G be a 0-leaf minimally connected graph of order n.

Then γt(G) >
4n
7

if and only if G ∈ {B1
t
, B2

t
, B3

t
, B4

t
}∪F0

t
∪Rt. In particular, either

G ∈ {B1
t
, B2

t
, B3

t
, B4

t
} or γt(G) 6

4n
7
.

3.2 Main result for total domination

The main result in this section is the following.

Theorem 3.1 Let l > 0 be an integer, and let G be an l-leaf minimally connected

graph of order n (> 3). Then γt(G) >
4n+2l

7
if and only if either l = 0 and

G ∈ {B1
t
, B2

t
, B3

t
, B4

t
} ∪ Rt or G ∈ Fl

t
. In particular, either l = 0 and G ∈

{B1
t
, B2

t
, B3

t
, B4

t
} or γt(G) 6

4n+2l
7

.

Proof. If l = 0, then by Theorem I, the desired result holds. Thus we may assume
that l > 1. If G ∈ Fl

t
, then we can easily check that γt(G) = 4n+2l

7
. Thus it suffices

to show that if γt(G) >
4n+2l

7
, then G ∈ Fl

t
. For v ∈ L(G), let uv be the unique

neighbor of v. Let H be the graph obtained from G by adding for each v ∈ L(G), a
new path Qv = xvyvzvwv and edges vxv, uvwv (see Figure 9). Then δ(H) > 2 and H

uv

v

G

uv

v

H

xv

yv

zv

wv

Figure 9: Construction of H

has a cutvertex uv where v is a leaf of G. In particular, H 6∈ {B1
t
, B2

t
, B3

t
, B4

t
} ∪ Rt.

Furthermore, by Lemma 1.2 and the construction of H , we see that H is 0-leaf minimally
connected. This together with Theorem I leads to γt(H) 6

4|V (H)|

7
.

Let S be a total dominating set of H with |S| = γt(H). Then the following claim
holds.
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Claim 3.1 Let v ∈ L(G), and suppose that |S ∩ ({v, uv} ∪ V (Qv))| 6 3. Then

|S ∩ ({v, uv} ∪ V (Qv))| = 3, S ∩ {v, wv} = ∅ and S ∩ (NH(uv) − {v, wv}) 6= ∅.

Proof. Since S ∩ ({v, uv} ∪ V (Qv)) totally dominates {v} ∪ V (Qv) in H , we have
|S ∩ ({v, uv} ∪ V (Qv))| = 3. Since γt(C6) = 4 and {v, uv} ∪ V (Qv) induces C6 in
H , if S ∩ ({v, uv} ∪ V (Qv)) totally dominates {v, uv} ∪ V (Qv), then |S ∩ ({v} ∪
V (Qv))| > 4, which is a contradiction. Thus S ∩ ({v, uv} ∪ V (Qv)) cannot totally
dominate {uv} in H . This leads to the desired conclusion. �

By Claim 3.1, |S ∩ ({v, uv} ∪ V (Qv))| > 3 for every v ∈ L(G). For v ∈ L(G),
if |S ∩ ({v, uv} ∪ V (Qv))| = 3, let Tv = {uv}; if |S ∩ ({v, uv} ∪ V (Qv))| > 4,
let Tv = {v, uv}. Let S0 = (S − (

⋃

v∈L(G)({v, uv} ∪ V (Qv)))) ∪ (
⋃

v∈L(G) Tv). For

v ∈ L(G), it follows from Claim 3.1 and the definition of Tv that if v 6∈ S0, then v 6∈ S.
Thus we have

S ∩ V (G) ⊆ S0. (3.1)

We show that S0 is a total dominating set of G. Since S is a total dominating set
of H and {uv : v ∈ L(G)} ⊆ S0, it follows that S0 totally dominates V (G) − {uv :
v ∈ L(G)} in G. Thus it suffices to show that S0 totally dominates {uv} for each
v ∈ L(G). If |S ∩ ({v, uv} ∪ V (Qv))| > 4, then v ∈ S0, and hence S0 totally
dominates {uv} in G; if NG(uv) ∩ S ∩ V (G) 6= ∅, then it follows from (3.1) that S0

totally dominates {uv} in G. Thus we may assume that |S ∩ ({v, uv} ∪ V (Qv))| = 3
and NG(uv) ∩ S ∩ V (G) = ∅. Since S ∩ (NH(uv) − {v, wv}) 6= ∅ by Claim 3.1,
this implies that there exists v′ ∈ L(G) with v′ 6= v such that uv′ = uv (i.e., uv is
adjacent to two leaves v and v′ of G) and S ∩ {v′, wv′} 6= ∅. Then by Claim 3.1,
|S∩ ({v′, uv′}∪V (Qv′))| > 4, and hence v′ ∈ S0. Consequently S0 totally dominates
{uv} in G.

Claim 3.2 We have |S0| 6 |S| − 2l.

Proof. Let u ∈ {uv : v ∈ L(G)}, and set Xu = NG(u) ∩ L(G). We first show that

|S0 ∩ Xu| + 1 6
∑

v∈Xu

|S ∩ ({v} ∪ V (Qv))| + |S ∩ {u}| − 2|Xu|. (3.2)

Fix a vertex v0 ∈ Xu. Then

|S0 ∩ {v0}| + 1 = |Tv0
|

6 |S ∩ ({v0, uv0
} ∪ V (Qv0

))| − 2

= |S ∩ ({v0} ∪ V (Qv0
))| + |S ∩ {u}| − 2. (3.3)

Furthermore, by the definition of Tv,

|S0 ∩ {v}| 6 |S ∩ ({v} ∪ V (Qv))| − 2 for every v ∈ Xu − {v0}. (3.4)
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It follows from (3.3) and (3.4) that (3.2) holds.
Since u ∈ {uv : v ∈ L(G)} is arbitrary, we have

∣

∣S0∩{v, uv : v ∈ L(G)}
∣

∣

=
∑

u∈{uv:v∈L(G)}

(|S0 ∩ Xu| + 1)

6
∑

u∈{uv:v∈L(G)}

(

∑

v∈Xu

|S ∩ ({v} ∪ V (Qv))| + |S ∩ {u}| − 2|Xu|

)

=
∑

v∈L(G)

|S ∩ ({v} ∪ V (Qv))| + |S ∩ {uv : v ∈ L(G)}| − 2l

=
∑

v∈L(G)

|S ∩ ({v, uv} ∪ V (Qv))| − 2l.

This together with the fact that S0 ∩ (V (G)− {v, uv : v ∈ L(G)}) = S ∩ (V (G)−
{v, uv : v ∈ L(G)}) leads to the desired conclusion. �

Since |V (H)| = n + 4l, it follows from Claim 3.2 that

γt(G) 6 |S0|

6 |S| − 2l

6
4|V (H)|

7
− 2l

=
4(n + 4l)

7
− 2l

=
4n + 2l

7
. (3.5)

Since γt(G) >
4n+2l

7
, the equality of (3.5) holds. In particular, γt(H) = 4|V (H)|

7
.

Since H 6∈ {B1
t
, B2

t
, B3

t
, B4

t
} ∪ Rt, it follows from Theorem I that H ∈ F0

t
. By the

construction of H , there exist l disjoint cycles of H having 6 vertices such that G is
obtained from H by deleting 4 consecutive vertices of each of those cycles. It follows that
G ∈ Fl

t
. This completes the proof of Theorem 3.1. �

As a corollary of Theorem 3.1, we get the following theorem.

Theorem 3.2 Let l > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly l leaves. Then either l = 0 and G ∈ Bt or

γt(G) 6











4n+2l
7

(0 6 l 6 n

3
)

n − l (n+1
3

6 l 6 n − 2)

2 (l = n − 1).
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Proof. If l = n − 1, then G is a star, and hence γt(G) = 2, as desired. Thus we may
assume that l 6 n− 2. Then |V (G)−L(G)| > 2 and each vertex in V (G) is adjacent
to a vertex in V (G)− L(G). In particular, V (G)− L(G) is a total dominating set of
G, and so

γt(G) 6 n − l. (3.6)

By Fact 1.1, G has a spanning l-leaf minimally connected subgraph H . Since deleting
an edge cannot decrease the total domination number, we have γt(G) 6 γt(H). This
together with Theorem 3.1 implies that either l = 0 and H ∈ {B1

t
, B2

t
, B3

t
, B4

t
} or

γt(G) 6 γt(H) 6
4n+2l

7
. Since Bt is the set of graphs B containing one of B1

t
, B2

t
, B3

t

and B4
t
as a spanning subgraph and satisfying γt(B) >

4|V (B)|

7
, this together with (3.6)

implies that either l = 0 and H ∈ Bt or γt(G) 6 min{4n+2l
7

, n − l}. Consequently
Theorem 3.2 holds. �

Remark 2 In the proof of Theorem 3.2, we further assume that γt(G) >
2n
3
. Then it

follows from Theorem 3.1 that l = n

3
and H ∈ F

n

3

t , and so H is the (P3, v)-corona of a

tree where v is an endvertex of P3. By tedious arguments, this implies that G is either

C3 or C6 or the (P3, v)-corona of a connected graph. Thus we also get Theorem G as a

corollary of Theorem 3.1.

Now we argue a sharpness of Theorem 3.2. Fix an integer l > 0. Let n be an integer
with n > max{3l, 4} and n + 4l ≡ 0 (mod 7), and let A be a (γt, l)-optimal set
with |A| = n+4l

7
. Then every minimal-connected graph G with respect to A has n

vertices and l leaves, and satisfies γt(G) = 4n+2l
7

. Thus Theorem 3.2 for the case where
0 6 l 6 n

3
is best possible.

Assume that l > 2, and let n be an integer with 2l 6 n 6 3l − 1. For each
i (1 6 i 6 n − 2l), let Li be a path of order 3, and for each i (n − 2l + 1 6 i 6 l),
let Li be a path of order 2. For each i (1 6 i 6 l), we define the attachment vertex of
Li as one of the endvertices of Li. Then every minimal-connected graph G with respect
to {Li : 1 6 i 6 l} has n vertices and l leaves, and satisfies γt(G) = n − l. Thus
Theorem 3.2 for the case where n+1

3
6 l 6 n

2
is best possible.

Let n be an integer with l + 2 6 n 6 2l − 1. Let L′
1 be a star having exactly

2l − n + 1 leaves, and for each 2 6 i 6 n − l, let L′
i
be a star of order 2. For each

i (1 6 i 6 n− l), we define the attachment vertex of L′
i
as one of the central vertices of

L′
i
. Then every minimal-connected graph G with respect to {L′

i
: 1 6 i 6 n− l} has n

vertices and l leaves, and satisfies γt(G) = n− l. Thus Theorem 3.2 for the case where
n+1
2

6 l 6 n− 2 is best possible. Moreover, since the total domination number of a star
is 2, Theorem 3.2 for the case where l = n − 1 is best possible.

4 Roman domination

In this section, we find a relationship between Roman domination and the number of
leaves.
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4.1 Definition and known results

Let G be a graph. A function f : V (G) → {0, 1, 2} is a Roman dominating function

of G if each vertex y ∈ V (G) with f(y) = 0 is adjacent to a vertex x ∈ V (G) with
f(x) = 2. For a function f : V (G) → {0, 1, 2}, the weight w(f) of f is defined by
w(f) =

∑

v∈V (G) f(v). The minimum weight of a Roman dominating function of G

is called the Roman domination number of G, and is denoted by γR(G). The Roman
domination number was introduced by Stewart [19], and was studied by Cockayne, Dreyer
Jr., Hedetniemi and Hedetniemi, [4] in earnest. Recently, various properties on the Roman
domination number has been explored in, for example, [8, 9, 14, 15].

Chambers, Kinnersley, Prince and West [2] gave a sharp upper bound of the Roman
domination number for connected graphs with a characterization of the graphs attaining
the equality.

Theorem J (Chambers et al. [2]) Let G be a connected graph of order n (> 3).
Then γR(G) 6

4n
5
.

Theorem K (Chambers et al. [2]) Let G be a connected graph of order n. Then

γR(G) = 4n
5

if and only if G is either C5 or the (P5, v)-corona of a connected graph

where v is the unique central vertex of P5.

They also proved the following theorem (here BR is the set consisting of graphs de-
picted in Figure 10).

B1
R

B2
R

B3
R

B4
R

B5
R

Figure 10: The graphs belonging to BR

Theorem L (Chambers et al. [2]) LetG be a connected graph of order n with δ(G) >

2. Then either G ∈ BR or γR(G) 6
8n
11
.

Let U0
R
, U1

R
and U2

R
be the graphs depicted in Figure 11. We define the attachment

vertex of U i
R
as the vertex of U i

R
enclosed with a circle.

U0
R

U1
R

U2
R

Figure 11: The graphs U0
R
, U1

R
and U2

R

Let l > 0 be an integer. A set A of vertex-disjoint graphs is (γR, l)-optimal if
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(O1′′) each graph in A is a copy of one of U0
R
, U1

R
and U2

R
, and

(O2′′) 2|{A ∈ A : A ≃ U0
R
}| + |{A ∈ A : A ≃ U1

R
}| = l.

Let Fl
R

be the set of minimal-connected graphs with respect to a (γR, l)-optimal set.
Then we can easily check that every graph in Fl

R
is l-leaf minimally connected.

Chambers et al. [2] proved the following theorem, which gives Theorem L as a corollary.

Theorem M (Chambers et al. [2]) Let G be a 0-leaf minimally connected graph of

order n. Then γR(G) >
8n
11

if and only if G ∈ {B1
R
, B2

R
, B3

R
} ∪ F0

R
. In particular,

either G ∈ {B1
R
, B2

R
, B3

R
} or γR(G) 6

8n
11
.

4.2 Main result for Roman domination

The main result in this section is the following.

Theorem 4.1 Let l > 0 be an integer, and let G be an l-leaf minimally connected

graph of order n (> 3). Then γR(G) >
8n+2l

11
if and only if either l = 0 and G ∈

{B1
R
, B2

R
, B3

R
} or G ∈ Fl

R
. In particular, either l = 0 and G ∈ {B1

R
, B2

R
, B3

R
} or

γR(G) 6
8n+2l

11
.

Proof. If l = 0, then by Theorem M, the desired result holds. Thus we may assume that
l > 1. If G ∈ Fl

R
, then by tedious arguments, we can check that γR(G) = 8n+2l

11
. Thus

it suffices to show that if γR(G) >
8n+2l

11
, then G ∈ Fl

R
. For v ∈ L(G), let uv be the

unique neighbor of v. LetH be the graph obtained fromG by adding for each v ∈ L(G),
a new path Qv = xvyvzv and edges vxv, uvzv (see Figure 12). Then δ(H) > 2 and

uv

v

G

uv

v

H

xv

yv

zv

Figure 12: Construction of H

H has a cutvertex uv where v is a leaf of G. In particular, H 6∈ {B1
R
, B2

R
, B3

R
}.

Furthermore, by Lemma 1.2 and the construction of H , we see that H is 0-leaf minimally
connected. This together with Theorem M leads to γR(H) 6

8|V (H)|

11
.

Let f : V (H) → {0, 1, 2} be a Roman dominating function of H with w(f) =
γR(H). Then the following claim holds.

Claim 4.1 Let v ∈ L(G), and suppose that
∑

a∈{v,uv}∪V (Qv)
f(a) 6 3. Then we

have
∑

a∈{v,uv}∪V (Qv)
f(a) = 3, f(uv) = 0, f(v) 6= 2, f(zv) 6= 2 and also

(NH(uv) − {v, zv}) ∩ {b ∈ V (H) : f(b) = 2} 6= ∅.
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Proof. Since each vertex a ∈ {v} ∪ V (Qv) with f(a) = 0 is adjacent to a vertex
b ∈ {v, uv} ∪ V (Qv) with f(b) = 2, we see that

∑

a∈{v,uv}∪V (Qv)
f(a) = 3. Let H ′

be the subgraph of H induced by {v, uv}∪V (Qv), and let f ′ be the restriction of f to
V (H ′). Since γR(C5) = 4 and H ′ ≃ C5, if either f(uv) 6= 0 or f(v) = 2 or f(zv) =
2, then f ′ is a Roman dominating function of H ′, and hence

∑

a∈V (H′) f(a) > 4, which

is a contradiction. Thus f(uv) = 0, f(v) 6= 2 and f(zv) 6= 2. This leads to the desired
conclusion. �

By Claim 4.1,
∑

a∈{v,uv}∪V (Qv)
f(a) > 3 for every v ∈ L(G). Now we define the

function g : {v, uv : v ∈ L(G)} → {0, 1, 2} as follows: For u ∈ {uv : v ∈ L(G)},
if there exists a vertex v ∈ NG(u) ∩ L(G) such that

∑

a∈{v,uv}∪V (Qv)
f(a) > 4, let

g(u) = 2; otherwise, let g(u) = 0. For v ∈ L(G), if g(uv) = 2, let g(v) = 0; if
g(uv) = 0, let g(v) = 1. Let f0 be the function with f0 : V (G) → {0, 1, 2} and

f0(a) =

{

g(a) (a ∈ {v, uv : v ∈ L(G)})

f(a) (Otherwise).

It follows from Claim 4.1 and the definition of f0, we have

f0(a) > f(a) for all a ∈ V (G) − L(G). (4.1)

Claim 4.2 The function f0 is a Roman dominating function of G.

Proof. Let p ∈ V (G) be a vertex with f0(p) = 0. It suffices to show that p is adjacent
to a vertex of G assigned 2 by f0. If p ∈ L(G), then we have f0(up) = g(up) = 2; if
p ∈ V (G) − {v, uv : v ∈ L(G)}, then it follows from (4.1) that there exists a vertex
q ∈ NG(p) with f0(q) = f(q) = 2. Thus we may assume that p ∈ {uv : v ∈ L(G)}.
For every v ∈ NG(p) ∩ L(G), since f0(p) = 0, we have

∑

a∈{v,uv}∪V (Qv)
f(a) = 3,

and hence f(p) = 0, f(v) 6= 2 and f(zv) 6= 2 by Claim 4.1. By the fact that f is a
Roman dominating function of H and (4.1), there exists a vertex q ∈ NH(p)−{v, zv :
v ∈ L(G)} (⊆ NG(p)) with f0(q) = f(q) = 2. �

Claim 4.3 We have w(f0) 6 w(f) − 2l.

Proof. Let u ∈ {uv : v ∈ L(G)}, and set Xu = NG(u) ∩ L(G). We first show that

∑

v∈Xu

f0(v) + f0(u) 6
∑

v∈Xu

(

∑

a∈{v}∪V (Qv)

f(a)

)

+ f(u) − 2|Xu|. (4.2)

For the moment, we assume that f0(u) = 0 (i.e., g(u) = 0). Then by the definition
of g(u) and Claim 4.1, f(u) = 0 and

∑

a∈{v}∪V (Qv)
f(a) = 3 for every v ∈ Xu. Hence

∑

v∈Xu

(
∑

a∈{v}∪V (Qv)
f(a)) + f(u) − 2|Xu| = |Xu|. On the other hand, f0(v) = 1

for every v ∈ Xu. Hence
∑

v∈Xu

f0(v) + f0(u) = |Xu|. Consequently we get (4.2).
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Thus we may assume that f0(u) = 2 (i.e., g(u) = 2). Then there exists a
vertex v0 ∈ Xu such that

∑

a∈{v0}∪V (Qv0
) f(a) + f(u) > 4. For a vertex v ∈

Xu − {v0}, if
∑

a∈{v,u}∪V (Qv)
f(a) = 3, then by Claim 4.1, f(u) = 0, and hence

∑

a∈{v}∪V (Qv)
f(a) = 3; if

∑

a∈{v,u}∪V (Qv)
f(a) > 4, then

∑

a∈{v}∪V (Qv)
f(a) > 2

because f(u) 6 2. In either case, we have
∑

a∈{v}∪V (Qv)
f(a) > 2. Hence

∑

v∈Xu

(

∑

a∈{v}∪V (Qv)

f(a)

)

+ f(u) − 2|Xu|

=
∑

a∈{v0}∪V (Qv0
)

f(a) + f(u) +
∑

v∈Xu−{v0}

(

∑

a∈{v}∪V (Qv)

f(a)

)

− 2|Xu|

> 4 + 2(|Xu| − 1) − 2|Xu|

= 2. (4.3)

On the other hand, f0(v) = 0 for every v ∈ Xu. Hence
∑

v∈Xu

f0(v) + f0(u) = 2. It
follows from (4.3) that (4.2) holds.

Note that

∑

u∈{uv:v∈L(G)}

(

∑

v∈Xu

f0(v) + f0(u)

)

=
∑

a∈{v,uv:v∈L(G)}

f0(a),

∑

u∈{uv:v∈L(G)}

(

∑

v∈Xu

(

∑

a∈{v}∪V (Qv)

f(a)

))

=
∑

v∈L(G)

(

∑

a∈{v}∪V (Qv)

f(a)

)

and
∑

u∈{uv:v∈L(G)}

|Xu| = l.

Since u ∈ {uv : v ∈ L(G)} is arbitrary, it follows from (4.2) that

∑

a∈{v,uv:v∈L(G)}

f0(a) 6
∑

v∈L(G)

(

∑

a∈{v}∪V (Qv)

f(a)

)

+
∑

v∈L(G)

f(uv) − 2l

=
∑

v∈L(G)

(

∑

a∈{v,uv}∪V (Qv)

f(a)

)

− 2l.

This together with the fact that f0(a) = f(a) for every a ∈ V (G)−{v, u : v ∈ L(G)}
leads to the desired conclusion. �

the electronic journal of combinatorics (), # 17



Since |V (H)| = n + 3l, it follows from Claims 4.2 and 4.3 that

γR(G) 6 w(f0)

6 w(f) − 2l

6
8|V (H)|

11
− 2l

=
8(n + 3l)

11
− 2l

=
8n + 2l

11
. (4.4)

Since γR(G) >
8n+2l

11
, the equality of (4.4) holds. In particular, γR(H) = 8|V (H)|

11
. By

the construction of H , there exist l disjoint cycles of H having 5 vertices such that G

is obtained from H by deleting 3 consecutive vertices of each of those cycles. It follows
that G ∈ Fl

R
. This completes the proof of Theorem 4.1. �

As a corollary of Theorem 4.1, we get the following result.

Theorem 4.2 Let l > 0 be an integer, and let G be a connected graph of order n (> 3)
having exactly l leaves. Then either l = 0 and G ∈ BR or

γR(G) 6











8n+2l
11

(0 6 l 6 2n
5
)

n − l

2
(2n+1

5
6 l 6 2n

3
)

2n − 2l (2n+1
3

6 l 6 n − 1).

We start with a lemma. A tree obtained from a star by subdividing some edges is
called a spider. Note that any stars and any paths are spiders. We show the following
lemma.

Lemma 4.3 Let l > 2 be an integer, and let G be a connected graph having exactly l

leaves. Then there exists a subgraph H of G such that each component of H is a spider

and L(H) = L(G).

Proof. For u, v ∈ L(G) with u 6= v, a path P of G joining u and v is a spider with
L(P ) ⊆ L(G). Thus there exists a subgraph H of G such that each component of
H is a spider and L(H) ⊆ L(G). Choose H so that |L(H)| is as large as possible.
Suppose that L(H) 6= L(G), and let x ∈ L(G) − L(H). Since dG(x) = 1, we
have x ∈ V (G) − V (H). Let Q be a shortest path of G joining x and V (H). Write
V (H) ∩ V (Q) = {y}, and let T be the component of H containing y. Note that
dT (y) > 2. If dT (y) = ∆(T ), then T ′ = T ∪Q is a spider with L(T ′) = L(T )∪{x},
and hence H ′ = H ∪Q is a subgraph of G such that each component of H ′ is a spider
and L(H ′) = L(H) ∪ {x} ⊆ L(G), which contradicts the maximality of |L(H)|.
Thus dT (y) = 2 and ∆(T ) > 3. Let z be the vertex of T with dT (z) = ∆(T ), and
let w ∈ L(T ) be the vertex such that the path Pz of T joining w and z contains y.
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Since dT (z) > 3, T1 = T − (V (Pz) − {z}) is a spider with L(T1) = L(T ) − {w}.
Let Py be the path of Pz joining w and y. Then T2 = Py ∪ Q is a path of G with
endvertices w and x. In particular, T2 is a spider with L(T2) ⊆ L(G). Thus H ′′ =
(H − V (T ))∪ T1 ∪ T2 is a subgraph of G such that each component of H ′′ is a spider
and L(H ′′) = L(H)∪{x} ⊆ L(G), which contradicts the maximality of |L(H)|. �

Proof of Theorem 4.2. Let G be a connected graph of order n (> 3) having exactly l

leaves. It is known that γR(G1) 6 2γ(G1) for any graph G1 (see [4]). This together
with (2.2) in the proof of Theorem 1.1 leads to

γR(G) 6 2n − 2l. (4.5)

We show that γR(G) 6 n− l

2
. If l ∈ {0, 1}, then we can easily check that γR(G) 6

n− 1. Thus we may assume that l > 2. Then by Lemma 4.3, G has a subgraph G′ such
that each component of G′ is a spider and L(G′) = L(G). For each component T of
G′, let xT be a vertex of T with dT (xT ) = ∆(T ), and let X = {xT : T is a component
of G′}. Note that |X| 6 l

2
and |

⋃

x∈X(NG(x) − X)| >
∑

x∈X |NG′(x)| = l. Hence
the function f : V (G) → {0, 1, 2} with

f(a) =











2 (a ∈ X)

0 (a ∈
⋃

x∈X(NG(x) − X))

1 (Otherwise)

is a Roman dominating function of G with w(f) = n+ |X|− |
⋃

x∈X(NG(x)−X)| 6

n − l

2
. Consequently we have

γR(G) 6 n −
l

2
. (4.6)

By Fact 1.1, G has a spanning l-leaf minimally connected subgraph H . Since deleting
an edge cannot decrease the Roman domination number, we have γR(G) 6 γR(H).
This together with Theorem 4.1 implies that either l = 0 and G ∈ {B1

R
, B2

R
, B3

R
}

or γR(G) 6
8n+2l

11
. Since BR is the set of graphs B containing one of B1

R
, B2

R
and

B3
R
as a spanning subgraph and satisfying γ(B) >

8|V (B)|

11
, this together with (4.5) and

(4.6) implies that either l = 0 and H ∈ BR or γ(G) 6 min{8n+2l
11

, n − l

2
, 2n − 2l}.

Consequently Theorem 4.2 holds. �

Remark 3 In the proof of Theorem 4.2, we further assume that γR(G) >
4n
5
. Then it

follows from Theorem 4.1 that l = 2n
5

and H ∈ F
2n

5

R , and so H is the (P5, v)-corona of

a tree where v is the unique central vertex of P5. By tedious arguments, this implies that

G is either C5 or the (P5, v)-corona of a connected graph. Thus we also get Theorem K

as a corollary of Theorem 4.1.
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Now we argue a sharpness of Theorem 4.2. Fix an integer l > 0. Let n be an integer
with n > max{5l

2
, 5} and n + 3l ≡ 0 (mod 11), and let A be a (γR, l)-optimal set

with |A| = n+3l
11

. Then every minimal-connected graph G with respect to A has n

vertices and l leaves, and satisfies γR(G) = 8n+2l
11

. Thus Theorem 4.2 for the case where

0 6 l 6 2n
5

is best possible.

Assume that l is even, and let n be an integer with 2l 6 n 6
5l
2
− 1. For each

i (1 6 i 6 n− 2l), let Li be a path of order 5, and for each i (n− 2l+1 6 i 6 l

2
), let

Li be a path of order 4. For each i (1 6 i 6 l

2
), we define the attachment vertex of Li

as one of the central vertices of Li. Then every minimal-connected graph G with respect
to {Li : 1 6 i 6

l

2
} has n vertices and l leaves, and satisfies γR(G) = n − l

2
. Thus

Theorem 4.2 for the case where 2n+1
5

6 l 6 n

2
is best possible.

Again assume that l is even, and let n be an integer with 3l
2
6 n 6 2l− 1. For each

i (1 6 i 6 n− 3l
2
), let L′

i
be a path of order 4, and for each i (n− 3l

2
+1 6 i 6 l

2
), let

L′
i
be a path of order 3. For each i (1 6 i 6 l

2
), we define the attachment vertex of L′

i

as one of the central vertices of L′
i
. Then every minimal-connected graph G with respect

to {L′
i
: 1 6 i 6

l

2
} has n vertices and l leaves, and satisfies γR(G) = n − l

2
. Thus

Theorem 4.2 for the case where n+1
2

6 l 6 2n
3

is best possible.

Let n be an integer with l + 1 6 n 6
3l−1
2

. Let L′′
1 be a star having exactly

3l − 2n + 2 leaves, and for each 2 6 i 6 n − l, let L′′
i
be a star of order 3. For each

i (1 6 i 6 n − l), we define the attachment vertex of L′′
i
as one of the central vertices

of L′′
i
. Then every minimal-connected graph G with respect to {L′′

i
: 1 6 i 6 n − l}

has n vertices and l leaves, and satisfies γR(G) = 2n − 2l. Thus Theorem 4.2 for the
case where 2n+1

3
6 l 6 n − 1 is best possible.
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