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Abstract

We consider the distributions of the lengths of the longest monotone and al-
ternating subsequences in classes of permutations of size n that avoid a specific
pattern or set of patterns, with respect to the uniform distribution on each such
class. We obtain exact results for any class that avoids two patterns of length 3,
as well as results for some classes that avoid one pattern of length 4 or more. In
our results, the longest monotone subsequences have expected length proportional
to n for pattern-avoiding classes, in contrast with the

√
n behaviour that holds for

unrestricted permutations.
In addition, for a pattern τ of length k, we scale the plot of a random τ -avoiding

permutation down to the unit square and study the “rare region,” which is the part
of the square that is exponentially unlikely to contain any points. We prove that
when τ1 > τk, the complement of the rare region is a closed set that contains the
main diagonal of the unit square. For the case τ1 = k, we also show that the lower
boundary of the part of the rare region above the main diagonal is a curve that is
Lipschitz continuous and strictly increasing on [0, 1].

Keywords: pattern-avoiding permutations, longest increasing subsequence prob-
lem, longest alternating subsequence, rare region.

1 Introduction

For each integer n > 1, let [n] := {1, 2, · · · , n}. A permutation of [n] is a bijection
σ : [n] → [n], written as σ = σ1σ2 · · ·σn where σi = σ(i) for i ∈ [n]. The set of all
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permutations on [n] is denoted by Sn. For τ ∈ Sk, we write Sn(τ) to denote the set of all
permutations in Sn that avoid the pattern τ . (See Section 1.4 for complete definitions.)

We use Pτn to denote the uniform probability measure on Sn(τ) : for any subset A of

Sn(τ), we have Pτn(A) := |A|
|Sn(τ)| . We use Eτn(X) and SDτ

n(X) to denote the expected value

and standard deviation of a random variable X on Sn(τ) under Pτn. More generally, if
T is a set of patterns, then Sn(T ) denotes the set of permutations in Sn avoiding all the
patterns in T , and PTn , ETn and SDT

n are the corresponding probability operators.
The cardinalities |Sn(T )| have been studied extensively by researchers in the last few

decades but have been computed only for some limited cases of sets T .
It took 24 years to prove the 1980 conjecture of Stanley and Wilf, which says that

L(τ) := lim
n→∞

|Sn(τ)|1/n exists and is finite for every τ ∈ Sk (1)

(existence was proved by Arratia [3], and finiteness by Marcus and Tardos [20]).
For more on pattern-avoiding permutations, see chapters 4 and 5 in [10], [17], and the

survey paper [27].
For a permutation σ = σ1σ2 · · ·σn ∈ Sn, the complement of σ is σc = σc1σ

c
2 · · ·σcn where

σci = n + 1 − σi for i ∈ [n]. The reverse of σ is defined to be σr = σnσn−1 · · ·σ1. These
operations give rise to bijections among Sn(τ), Sn(τ c) and Sn(τ r). In addition, inversion
gives a bijection from Sn(τ) to Sn(τ−1). Therefore,

|Sn(τ)| = |Sn(τ c)| = |Sn(τ r)| = |Sn(τ−1)| .

The paper is organized as follows. Sections 1.1, 1.2, and 1.3 present the introduction,
background, and overview of our results on the topics of longest monotone subsequences,
longest alternating sequences, and rare regions respectively. Section 1.4 lists some basic
notation and terminology. In sections 2.1 and 2.2, we will state and prove our results
related to the distribution of longest monotone and alternating subsequences respectively
of random permutations from Sn(τ (1), τ (2)) where τ (1), τ (2) ∈ S3. Section 2.3 contains some
results on patterns of length greater than three. Finally, in section 2.4, we will present
our results on the rare regions in permutations’ plots.

1.1 Longest monotone subsequences

For a given σ ∈ Sn, we say that σi1σi2 · · ·σik is an increasing subsequence of length k in σ
if i1 < i2 < · · · < ik and σi1 < σi2 < · · · < σik . Let LISn(σ) be the length of the longest
increasing subsequence in σ. Similarly, let LDSn(σ) be the length of the longest decreasing
subsequence in σ. In a short and elegant argument, usually called the Erdös-Szekeres
lemma, Erdös and Szekeres [14] proved that every permutation of length (r−1)(s−1) + 1
or more contains either a decreasing subsequence of length r or an increasing subsequence
of length s; equivalently, LISn(σ) · LDSn(σ) > n for every σ ∈ Sn.

Determining the asymptotic distribution of LISn on Sn under the uniform distribution
has a rich and interesting history [2]. The efforts of many researchers around this prob-
lem culminated in the celebrated result of Baik, Deift and Johansson in 1999 [5] which
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completely determined the asymptotic distribution of LISn . They proved that

lim
n→∞

P
(

LISn−2
√
n

n1/6
6 t

)
= F (t) for all t ∈ R,

where F is the Tracy-Widom distribution function. This distribution was first obtained
by Tracy and Widom [26] in the context of random matrix theory as the distributional
limit of the (centered and scaled) largest eigenvalue of the Gaussian unitary ensemble.

The longest increasing subsequence problem in the context of pattern-avoiding per-
mutations was first studied by Deutsch, Hildebrand and Wilf [12] for Sn(τ) where τ ∈ S3.

They showed that in the case τ = 231, E231
n (LISn) ∼ n

2
, SD231

n (LISn) ∼
√
n

2
and the nor-

malized LISn converges to the standard normal distribution. For τ = 132 and τ = 321,
we have E132

n (LISn) ∼
√
πn, SD132

n (LISn) ∼
√
n, and E321

n (LISn) ∼ n
2
, SD321

n (LISn) ∼
√
n;

for both of them the normalized LISn converges to non-normal distributions which are
evaluated exactly in [12]. Since LISn(σ) = LDSn(σr) = LISn(σrc) = LISn(σ−1), their
results give a complete picture for LISn and LDSn on Sn(τ) under the uniform measure
for every τ ∈ S3. We are not aware of any existing work on this problem for other classes
of pattern-avoiding permutations.

In section 2.1, we determine the distributions of LISn and LDSn on Sn(T ) for T ⊂ S3

with |T | = 2. The results are summarized in Table 1. The operations reverse, complement,
and inverse induce obvious symmetry bijections among the classes Sn(T ) for different pairs
T , resulting in the five groupings shown in Figure 1. Group (e) is empty for large n, so
we shall present our results in terms of groupings (a) through (d).

LISn LDSn

{τ (1), τ (2)} mean standard asymp. mean standard asymp.
deviation normal? deviation normal?

(a) {132, 321} ∼ 5n
6

∼ 5n
6
√

2
No → 2 → 0 No

(b) {132, 231} n+1
2

√
n−1
2

Yes n+1
2

√
n−1
2

Yes

(c) {132, 123} → 2 → 0 No 3n
4

∼
√
n

4
Yes

(d) {132, 213} ∼ log2 n → constant No n+1
2

√
n−1
2

Yes

Table 1: Summary of asymptotic behaviour of LISn and LDSn on Sn(τ (1), τ (2)) for the
groupings (a)–(d) of Figure 1. See Theorem 2 and Figure 3. (We write “→” to mean
“converges to,” and “an ∼ bn” to mean “an/bn → 1”. Otherwise, expressions are exact.)
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r, c, i
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Figure 1: The bijections among the subclasses Sn(τ (1), τ (2)) for τ (1), τ (2) ∈ S3 under the
operations i = inverse, c = complement, r = reverse.

Our results are less precise for LISn and LDSn on Sn(τ) with longer patterns τ . For
τ ∈ Sk with τ1 = k, we prove (see Corollary 13) that

lim inf
n→∞

Eτn(LISn)

n
>

1

L(τ)
. (2)

In the special case τ = k(k − 1) · · · 21, the Schensted correspondence leads to exact
asymptotics, and in particular to the result that LISn /n converges in probability to 1/(k−
1) (see Theorem 9). We conjecture that the behaviour of Equation (2) is generic, in the
sense that at least one of Eτn(LISn)/n or Eτn(LDSn)/n is bounded away from 0 for any
pattern τ .

1.2 Longest alternating subsequences

In 2006, an analogous theory for alternating subsequences in Sn with the uniform proba-
bility measure was developed by Stanley [25] and Widom [28]. For a given σ ∈ Sn, we say
that σi1σi2 · · ·σik is an alternating subsequence of length k in σ if i1 < i2 < · · · < ik and
σi1 > σi2 < σi3 > σi4 · · ·σik . Let LASn(σ) be the length of the longest alternating subse-

quence in σ. Stanley proved that E(LASn) = 4n+1
6

for n > 2 and SD(LASn) =
√

8
45
n− 13

180

for n > 4. Furthermore, Widom proved that LASn is asymptotically normal.
In [15], Firro, Mansour and Wilson studied the longest alternating subsequence prob-

lem for pattern-avoiding permutations. They showed that for each τ ∈ S3, LASn on
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Sn(τ) is asymptotically normal with mean Eτn(LASn) ∼ n/2 and standard deviation
SDτ

n(LASn) ∼
√
n/2. For the exact values of the means and standard deviations, see

[15]. We are not aware of any existing work on this problem for other classes of pattern-
avoiding permutations.

We consider LASn on Sn(T ) for T ⊂ S3 with |T | = 2. Some cases such as T =
{132, 231} force LASn 6 3 for every n. Barring such cases, we show that LASn is asymp-
totically normal with mean n/2 and standard deviation

√
n/2 (Theorem 7).

For patterns τ of length 4 or more, our results for LASn on Sn(τ) are less complete.
In some cases, including 4231 and 2413, we can show that the expected value of LASn is
at least cn for some positive constant c (see Theorem 16). We conjecture that this is true
for every pattern (except 12 and 21).

1.3 Rare regions

A permutation σ ∈ Sn can be visualized via its plot, which is the set {(i, σi) : i ∈ [n]} of
n points in the plane. Plots of randomly generated τ -avoiding permutations are shown
in Figure 2 for some patterns τ of length 4. Such plots suggest that for some patterns,
there can be large regions of [n]2 that rarely contain any points of randomly generated
members of Sn(τ). Let’s first introduce some definitions.

To deal with these concepts, we scale the plot of σ down to the unit square, and
consider what parts of the unit square are likely to remain empty. We shall say that a
point (x, y) of [0, 1]2 is τ -rare if

for every sequence {(In, Jn)}n>1 such that (In, Jn) ∈ [n]2 and lim
n→∞

(
In
n
,
Jn
n

)
= (x, y),

we have lim sup
n→∞

Pτn(σIn = Jn)1/n < 1 ;

that is, every sequence (In, Jn) of grid points that scales down to (x, y) has exponentially
decaying probabilities of being in the plot of Sn(τ). Then the “rare region” R ≡ R(τ) is
defined to be the set of all τ -rare points in the unit square. Let R↑ = R∩{(x, y) ∈ [0, 1]2 :
y > x} be the part of the rare region above the diagonal y = x. Using this terminology,
we have the following basic result from [4] (see Theorems 1.3 and 8.1 and Proposition
3.1).

Theorem 1 ([4]). Assume τ ∈ Sk and τ1 > τk.
(a) Assume τ1 = k. Then there is a δ > 0 such that [0, δ] × [1 − δ, 1] ⊂ R; that is, all
points sufficiently close to the point (0, 1) are τ -rare.
(b) Assume τ1 < k. Then R↑ = ∅; that is, there are no τ -rare points above the diagonal.

Without loss of generality, we shall assume for the rest of this paragraph that τ ∈ Sk
and τ1 > τk. We define the “good region” G to be the complement of the rare region:
G = [0, 1]2 \R. We prove that the region G contains the diagonal y = x and is a closed set
(Theorems 17 and 18). When τ1 = k, we prove that the boundary between R↑ and G is
a curve y = r↑(x) that is Lipschitz continuous and strictly increasing on [0, 1]. Moreover,
the left and right derivatives of r↑ are in the interval [L(τ)−1, L(τ)] at every point (see
Theorem 17).
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Figure 2: Examples of randomly generated permutations in Sn(τ) for some patterns
τ ∈ S4. The top left figure was generated by Yosef Bisk under the supervision of N.
Madras, using a modification of the Monte Carlo algorithm of [18].
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1.4 Notation and terminology

This section contains basic notation and terminology used in this paper, much of which
is standard in the permutation pattern literature.

For τ ∈ Sk and σ ∈ Sn, we say that σ contains the pattern τ if there is a subsequence
σi1σi2 · · ·σik of k elements of σ that appears in the same relative order as the pattern τ .
For example, the permutation σ = 6431257 contains the patterns 321 and 3124 (since σ
contains the subsequences σ1σ2σ3 = 643 or σ1σ3σ5 = 632, and σ2σ4σ5σ7 = 4127). We say
that σ avoids the pattern τ if it does not contain τ . The set of all permutations in Sn
avoiding τ is denoted by Sn(τ). For any set T of patterns, we write Sn(T ) to denote the
set of permutations in Sn avoiding all the patterns in T , that is, Sn(T ) = ∩τ∈TSn(τ). For
example, the permutation 521346 is in S6(132, 2314) because it avoids both 132 and 2314.

The direct sum of two permutations σ ∈ Sn and φ ∈ Sm is the permutation σ ⊕ φ in
Sn+m obtained by concatenating φ to the northeast corner of σ,

σ ⊕ φ = σ1 · · ·σn(n+ φ1) · · · (n+ φm) ,

while the skew sum concatenates φ to the southeast corner of σ,

σ 	 φ = (m+ σ1) · · · (m+ σn)φ1 · · ·φm .

A permutation is layered if it is the direct sum of one or more decreasing permutations.
For a given permutation σ, we say that σi is a left-to-right maximum if σi > σj for all

j < i. In this situation, i is referred as the location of the left-to-right maximum. (For
clarity, we sometimes refer to σi as the height.) Similarly, we say that σi is a right-to-left
maximum if σi > σj for all j > i.

For natural numbers n, i, and j, we define Sn(τ ;σi = j) to be the set of permutations
σ in Sn(τ) such that σi = j. More generally, for any statement P about a generic
permutation σ, we let Sn(τ ;P) be the set of permutations in Sn(τ) for which P is true.

The number of elements in a set A is denoted by |A|.
For two sequences {an}n>1 and {bn}n>1, we write an ∼ bn if limn→∞

an
bn

= 1.

2 Results and proofs

In this section, we will state and prove our results.

2.1 Longest monotone subsequences of permutations in Sn(τ
(1), τ (2)) for τ (1),

τ (2) ∈ S3

In Table 1, we summarized our results on the mean and standard deviation of LISn and
LDSn on Sn(τ (1), τ (2)) for τ (1), τ (2) ∈ S3, and whether they are asymptotically normal or
not.

Theorem 2 below gives fuller descriptions of the distributions of the longest mono-
tone subsequences in these cases. To prepare for the statement of the theorem, we first
introduce the relevant distributions.
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We use Bin(n, p) to denote a binomial random variable with parameters n and p.
For n > 3, let D[n] denote the triangular set of lattice points above the diagonal in

the square [n]× [n], together with the origin; that is, D[n] = {(k,m) ∈ Z2 : 1 6 k < m 6
n} ∪ {(0, 0)}. Then |D[n]| =

(
n
2

)
+ 1. We put uniform probability measure on D[n] and

consider the following random variable:

Dn((k,m)) = n−min(m− k, k) = max(n−m+ k, n− k).

Then we have

P(Dn = n− j) =
2n− 4j + 1(

n
2

)
+ 1

for 1 6 j 6
n

2
, and P(Dn = n) =

1(
n
2

)
+ 1

.

Here is a way to think about Dn, given that (k,m) 6= (0, 0). Choose two points uniformly
without replacement from [n]; let k be the smaller number and let m be the larger. Then
Dn is the number of points remaining in [n] after discarding the smaller of the intervals
(0, k] and (k,m].

Let X1, X2, · · · be an independent sequence of Bernoulli(1
2
) random variables:

P(Xi = 1) = P(Xi = 0) =
1

2
for all i > 1. (3)

Then define the following random variables for n > 3:

Tn = n− 1−
n−2∑
i=2

Xi +
n−1∑
i=2

XiXi−1 (4)

Rn = the length of the longest run of zeros in X1, X2, · · · , Xn. (5)

For two random variables X and Y , we write X
d
= Y to say that X and Y have the

same distribution.

Theorem 2. Let T denote a 2-element subset of S3. Consider Sn(T ) with the uniform
probability measure. Then we have the following:

(a) For T = {132, 321}, LISn
d
= Dn and LDSn 6 2.

(b) For T = {132, 231}, LISn
d
= LDSn

d
= Bin(n− 1, 1/2) + 1.

(c) For T = {132, 123}, LDSn
d
= Tn and LISn 6 2.

(d) For T = {132, 213}, LDSn
d
= Bin(n− 1, 1/2) + 1 and LISn

d
= Rn−1 +1.

The proof of Theorem 2 exploits the nice structure of each Sn(T ). First, we note that
Simion and Schmidt [24] showed

|Sn(132, 321)| =
(
n

2

)
+ 1 and |Sn(132, 231)| = |Sn(132, 123)| = |Sn(132, 213)| = 2n−1.

8



(a) (b)

(c) (d)

Figure 3: Examples of permutations from Sn(τ (1), τ (2)) for τ (1), τ (2) ∈ S3 and n = 40.
The permutations from S40(132, 321), S40(132, 231), S40(132, 123) and S40(132, 213) were
generated randomly, and the rest were obtained using bijections of Figure 1.

The proofs of each part of Theorem 2 includes an explicit bijection for Sn(τ): with D[n]
for part (a), and with binary strings of length n − 1 for the other parts. We shall use
these bijections again in the proof of Theorem 7 in Section 2.2 about longest alternating
subsequences.

Proof of Theorem 2. (a) The case T = {132, 321}: We will follow Propositions 11 and 13
in [24] which shows that there exists a bijection between Sn(132, 321) \ {12 · · ·n} and the
2-element subsets of [n]. Let σ ∈ Sn(132, 321).

If σ is not the identity permutation, let m be the largest i such that σi 6= i, and let k
be the index such that σk = m. Then we must have σ1σ2 · · ·σk−1 = (m− k + 1)(m− k +
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(a) (b)

Figure 4: The left figure is the plot of the permutation σ = 5 6 1 2 3 4 7 8 9 10 in
S10(132, 321) where k = 2 and m = 6. The right figure is the plot of the permutation
σ = 10 7 5 4 2 1 3 6 8 9 in S10(132, 231) which corresponds to the 0-1 sequence of length 9,
101101001.

2) · · · (m− 1) and σk+1σk+2 · · ·σm = 12 · · · (m− k). That is, σ must have the form

σ = (m− k + 1)(m− k + 2) · · ·m12 · · · (m− k)(m+ 1)(m+ 2) · · ·n

for some 1 6 k 6 m 6 n, and m = k iff σ = 12 · · ·n. See Figure 4(a) for an example.
For 1 6 k < m 6 n, the pair {k,m} determines σ uniquely. It follows from this

argument that with uniform probability measure on Sn(132, 321), LISn
d
= Dn .

Remark 3. We note that σ ∈ Sn(132, 321) can be represented as the inflation of 213
by the increasing permutations τ (1), τ (2), τ (3) where τ (1) = 12 · · · k, τ (2) = 12 · · · (m − k),
τ (3) = 12 · · · (n−m); that is, σ = 213[τ (1), τ (2), τ (3)]. Sn(132, 321) is an example of a 3× 3
monotone grid class (see section 4 of [27]).

(b) The case T = {132, 231}: Let σ ∈ Sn(132, 231). Let k be the index such that σk = 1.
To avoid the pattern 132, we must have σk+1 < σk+2 < · · · < σn; and to avoid the
pattern 231, we must have σ1 > σ2 > · · · > σk−1. In the terminology of [7], Sn(132, 231)
is a skinny monotone grid class, that is, it is the juxtaposition of a decreasing and an
increasing sequence (see chapter 3 of [7]).

For our permutation σ we obtain a 0-1 sequence of length n − 1 by labeling the
decreasing points in the plot of σ with 1 and the increasing points with 0, and reading
them from bottom to top, excluding the point σk = 1. That is, for j ∈ [n−1], let i
be the index such that σi = j + 1, and then set xj to be 1 (respectively, 0) if i < k
(respectively, i > k). See Figure 4(b) for an example. It is not hard to see that this gives
a bijection between Sn(132, 231) and {0, 1}n−1. Thus the uniform distribution ensures
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(c) (d)

Figure 5: The left figure is the plot of the permutation σ =
20 19 18 16 15 17 13 12 11 10 14 9 7 6 8 4 5 3 1 2 in S20(132, 123) which corresponds to
the 0-1 sequence of length 19, 1110010000110010110. The right figure is the plot of
the permutation σ = 19 20 16 17 18 14 15 12 13 11 4 5 6 7 8 9 10 2 3 1 in S20(132, 213) which
corresponds to the 0-1 sequence of length 19, 0100101011000000101.

that every sequence has probability 2−(n−1) and hence that x1, . . . , xn−1 are independent
Bernoulli(1

2
) random variables.

Then we have

LDSn(σ) = k + 1 =
n−1∑
i=1

1xi=1 + 1 and LISn(σ) = l + 1 =
n−1∑
i=1

1xi=0 + 1 ,

and hence LDSn
d
= LISn

d
= Bin(n− 1, 1/2) + 1.

(c) The case T = {132, 123}: Let σ ∈ Sn(132, 123). Suppose σk = n for some k ∈ [n]. To
avoid the pattern 123, we must have σ1 > σ2 > · · · > σk−1; and to avoid 132, we must
have σi > n− k whenever i < k. Therefore, recalling notation from Section 1.4, we must
have σ = (δ ⊕ 1)	 φ where δ is a decreasing permutation (possibly of length 0), 1 is the
one-element permutation, and φ avoids 123 and 132. Iterating this argument, we see that
σ is the skew sum of one or more permutations of the form δ ⊕ 1. In the terminology of
[1], ∪nSn(132, 123) is the class 	(D⊕ 1). Observe that each “⊕1” in this decomposition
corresponds to a right-to-left maximum of σ.

We construct a map from Sn(132, 123) to the set of 0-1 sequences x1x2 · · ·xn−1 as
follows. Given σ ∈ Sn(132, 123), let 1 6 i1 < i2 < · · · < ik 6 n − 1 be the locations in
[n − 1] of its right-to-left maxima. Then define xi1 = xi2 = · · · = xik = 1 and xj = 0
for j /∈ {i1, i2, · · · , ik}. It is not hard to see that this map is a bijection. Moreover, fixing
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xn = x0 = 1, we have

LDSn(σ) =
k+1∑
j=1

max(1, ij − ij−1 − 1)

=
k+1∑
j=1

(ij − ij−1 − 1) +
k+1∑
j=1

1ij=ij−1+1

=
n−1∑
i=1

1xi=0 +
n∑
i=1

1xi−1=xi=1

= 2 +
n−2∑
i=2

1xi=0 +
n−1∑
i=2

1xi−1=xi=1

= 2 +
n−2∑
i=2

(1− xi) +
n−1∑
i=2

xixi−1

= n− 1−
n−2∑
i=2

xi +
n−1∑
i=2

xixi−1.

Therefore with the uniform probability measure on Sn(132, 123), LDSn
d
= Tn .

Example 4. For the 0-1 sequence 01101 of length 5, the corresponding permutation of
length 6 in S6(132, 123) is σ = 5 6 4 2 3 1. See also the example in Figure 5(c).

(d) The case T = {132, 213}: Let σ ∈ Sn(132, 213). Suppose σk = n for some k ∈ [n]. To
avoid the pattern 213, we must have σ1 < σ2 < · · · < σk; and to avoid 132, we must have
σi > n−k whenever i < k. Therefore, σ = λ	φ where λ is the increasing permutation of
length k, and φ ∈ Sn−k(132, 213). Iterating this argument, we see that σ is the skew sum
of one or more increasing permutations. Thus, this class is the reverse (or complement)
of the layered permutations.

Observe also that a member of Sn(132, 213) is uniquely determined by the locations
of its right-to-left maxima. Therefore, as in the proof of part (c), we obtain a a bijection
between Sn(132, 213) and the set of 0-1 sequences x1x2 · · · xn−1 by setting xi to be 1
(respectively 0) if σi is (respectively, is not) a left-to-right maximum of σ. Then we have

LDSn(σ) =
n−1∑
i=1

1xi=1 + 1

and
LISn(σ) = 1 + length of the longest run of zeros in x1x2 · · ·xn−1.

Therefore, with the uniform probability measure on Sn(132, 213), we have LDSn
d
= Bin(n−

1, 1/2) + 1 and LISn
d
= Rn−1 +1.
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Example 5. The permutation σ = 5 6 1 2 3 4 in S6(132, 213) corresponds to the 0-1 se-
quence 01000 of length 5. See also the example in Figure 5(d).

Recall that a composition of an integer n is a way of writing n as the sum of an ordered
sequence of positive integers. Two sequences with the same terms but in different order
correspond to different compositions but to the same partition of their sum. It is known
that each positive integer n has 2n−1 distinct compositions, and that there is an explicit
bijection between the compositions of n and the set of layered permutations of length n.
Probabilistic properties of random integer compositions and partitions have been studied
in the literature. From this viewpoint, our results for group (d) correspond to results on
page 337 and in Theorem 8.39 of [16].

We conclude this subsection by explaining how the results of Table 1 follow from The-
orem 2 and some classical results. The mean and standard deviation of Dn are asymptot-
ically

E(Dn) ∼ 5n

6
and SD(Dn) ∼ 5n

6
√

2
.

It is easy to show that

E(Tn) =
3n

4
and SD(Tn) ∼

√
n

4
.

Moreover, the fact that the limiting distribution of (Tn−E(Tn))/SD(Tn) is standard
normal is a consequence of the following lemma, which can be found for example in [11].

Lemma 6 ([11], Theorem 7.3.1). Suppose that {Yn} is a sequence of m-dependent, uni-
formly bounded random variables such that as n→ +∞

SD(Sn)

n1/3
→ +∞

where Sn = Y1 + Y2 + · · · + Yn. Then (Sn − E(Sn))/ SD(Sn) converges in distribution to
the standard normal distribution.

Finally, Erdös and Renyi [13] proved that

lim
n→∞

Rn

log2 n
= 1 a.s. (6)

It is also known that as n tends to infinity E(Rn) ∼ log2 n, SD(Rn) converges to a positive
constant, and Rn− log2 n possesses no limit distribution; for more on this topic see the
survey paper [23].

2.2 Longest alternating subsequences

In this section, we will present our results on the asymptotic behaviour of the length of
the longest alternating subsequence, LASn, on Sn(τ (1), τ (2)) with τ (1), τ (2) ∈ S3 under the
uniform probability distribution. For a result on LASn for longer patterns, see Theorem 16
in section 2.3.
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Theorem 7. Let T denote a 2-element subset of S3. Consider Sn(T ) with the uniform
probability measure. Then we have the following:

a) If T = {132, 321}, then we have LASn(σ) 6 3 for any σ ∈ Sn(T ).

b) If T = {132, 231}, then we have LASn(σ) 6 3 for any σ ∈ Sn(T ).

If T = {132, 312}, then LASn is asymptotically normal with the mean ETn (LASn) ∼
n/2 and the standard deviation SDT

n (LASn) ∼
√
n/2.

c) If T = {132, 123}, then LASn is asymptotically normal with the mean ETn (LASn) ∼
n/2 and the standard deviation SDT

n (LASn) ∼
√
n/2.

d) If T = {132, 213}, then LASn is asymptotically normal with the mean ETn (LASn) ∼
n/2 and the standard deviation SDT

n (LASn) ∼
√
n/2.

Remark 8. Parts (a) through (d) correspond to the labeling in Figures 1 and 3. Note that
since |LASn(σ) − LASn(σc)| 6 1 and |LASn(σ) − LASn(σr)| 6 1, it suffices to consider
one representative pair from each symmetry class in Figure 1 except the symmetry class
in Figure 1-(b).

The proof uses the structures exploited in the proof of Theorem 2. The proof of part
(b) needs a bit of new work, so we prove it last.

Proof of Theorem 7. (a) Assume σ ∈ Sn(132, 321). Recall from the proof of Theorem 2(a)
that σ is either the identity or else it can be represented as σ = 213[τ (1), τ (2), τ (3)],
the inflation of 213 by increasing permutations τ (1), τ (2), τ (3) (Figure 3(a)). Therefore,
LASn(σ) 6 3.

(c) Recall that the bijection in the proof of Theorem 2(c) defines xi = 1 if σi is a right-
to-left maximum, and xi = 0 otherwise, for each i ∈ [n − 1]. Then x1, x2, · · · , xn−1 are
independent Bernoulli(1

2
) random variables.

Let An =
n−1∑
i=1

1xi=01xi+1=1. Note that |LASn−2 An | 6 4. It is easy to show that

E(An) ∼ n
4

and SD(An) ∼
√
n

4
. Moreover, by Lemma 6, normalized An converges to

the standard normal distribution. Therefore ETn (LASn) ∼ 2E(An) and SDT
n (LASn) ∼

2 SD(An), and we get the asymptotic normality of LASn .

(d) Using the bijection from the proof of Theorem 2(d), the proof will be the same as in
part (c) above.

(b) Let σ ∈ Sn(132, 231). As shown in the proof of Theorem 2, σ is the juxtaposition of
a decreasing and an increasing subsequence. Therefore LASn(σ) 6 3.

Let σ ∈ Sn(132, 312). Note that all the entries greater (respectively, smaller) than σ1

must be in the increasing (respectively, decreasing) order, otherwise we would have a 132
(respectively, 312) pattern.

For i ∈ [n− 1], define xi to be 1 if σi+1 > σ1, and 0 otherwise. Then x1, x2, · · · , xn−1

are independent Bernoulli(1
2
) random variables.
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Set An =
n−1∑
i=1

1xi=11xi+1=0. Then the rest of the proof follows as for part (c).

2.3 Results for patterns of length k > 4

In this subsection, we will present our results on longer patterns. Theorem 9 concerns
monotone patterns. It yields precise properties because we can exploit the Schensted
correspondence, which we review below. The next group of results proves that LISn is
unlikely to be o(n) on Sn(τ) when τ is of the form τ = kτ2 · · · τk ∈ Sk. Finally, Theorem
16 proves an analogous result for LASn on Sn(τ) for some patterns τ .

First we recall some basic definitions used in the algebraic combinatorics of permuta-
tions. For more on this topic, see chapter 7 of [10] or the survey paper [2]. A partition
λ = (λ1, · · · , λj) of an integer n > 1 is a sequence of integers with λ1 > λ2 > · · · > λj > 1
and

∑
i λi = n. A partition λ can be identified with its associated Ferrers shape of n cells

with λi left justified cells in row i. A (standard) Young Tableau is a Ferrers shape on n
boxes in which each number in [n] is assigned to its own box, so that the numbers are
increasing within each row and each column (going down). The Schensted [22] correspon-
dence induces a bijection between permutations and pairs (P,Q) of Young Tableaux of
the same shape. The number of Young Tableaux of a given shape λ, denoted by dλ, is
given by the celebrated hook length formula of Frame and Robinson:

dλ =
n!∏
c hc

.

The hook length hc of a cell c in a Ferrers shape is the number of cells to the right of c
in its row, the cells below c in its column, and the cell c itself. For illustration, in the
following Ferrers shape corresponding to the partition λ = (5, 4, 2), each cell c is occupied
by its hook length hc. (Lest confusion arise, we note that it is not a Young Tableau.)

7 6 4 3 1

5 4 2 1

2 1

Importantly, if the Schensted correspondence associates the shape λ with a given
σ ∈ Sn, then λ1 = LISn(σ). In [22], Schensted shows also that the length of the decreasing
subsequences in σ are encoded by the P -tableau of σ: For any σ ∈ Sn, we have

Pσr = P t
σ (7)

where Pσr is the P -tableau of the reverse σr of σ and P t
σ is the transpose (reflection

through anti-diagonal) of Pσ.

Theorem 9. Consider Sn(τ) with τ = k(k − 1) · · · 1. Then whenever 0 < ε < k − 2, we
have

lim
n→∞

Pτn
(

LISn >
1 + ε

k − 1
n

)1/n

=

[
(1 + ε)(1+ε)

(
1− ε

k − 2

)k−2−ε
]− 2

k−1

(8)
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and

Pτn
(

LISn <
n

k − 1

)
= 0 for every n. (9)

Therefore
LISn
n
→ 1

k − 1
in probability as n→∞.

Proof of Theorem 9. Fix the decreasing pattern τ = k(k − 1) · · · 1. For any σ ∈ Sn(τ),
there will be at most k−1 rows in the corresponding Ferrers shape because LDSn(σ) 6 k−1
and LDSn(σ) = LISn(σr) = number of columns in Pσr = number of rows in Pσ by
Equation (7). Note also that it follows from the Erdös-Szekeres lemma that LISn(σ) > n

k−1

for all σ ∈ Sn(τ). This proves Equation (9).
LetHn,k denote the set of partitions of n with at most k−1 rows in their corresponding

Ferrers shape. For notational convenience, we will consider

Hn,k := {(λ1, · · · , λk−1) ∈ Zk−1 : λ1 > · · · > λk−1 > 0,
k−1∑
i=1

λi = n}.

For a given ε > 0, let Hε
n,k := {λ ∈ Hn,k : λ1 > n 1+ε

k−1
} and let

Cεk :=

{
(x1, · · · , xk−1) ∈ Rk−1 : x1 > x2 > · · · > xk−1 > 0,

k−1∑
i=1

xi = 1, x1 >
1 + ε

k − 1

}
.

Let Λn be a random variable taking values in Hn,k with the distribution Q ≡ Qn,k
given by

Q(Λn = λ) :=
d2
λ

|Sn(τ)|
. (10)

This distribution can be considered as a “shape distribution” on the Ferrers shapes corre-
sponding to the uniform distribution on permutations in Sn(τ). Specifically, Pτn(LISn(σ) =
a) = Q(Λn,1 = a).

Note that for λ = (λ1, · · · , λk−1) ∈ Hn,k, we have

k−1∏
i=1

λi! 6
∏
c

hc 6
k−1∏
i=1

(λi + k − 1)!,

and hence
n!∏k−1

i=1 (λi + k − 1)!
6

n!∏
c hc

6
n!∏k−1
i=1 λi!

. (11)

If x ∈ Cεk and the sequence {λ(n)} (with λ(n) ∈ Hε
n,k) satisfies limn→∞ λ(n)/n = x, then

by Stirling’s approximation, n! ∼ nne−n
√

2πn, we see from Equation (11) that

lim
n→∞

d
1/n
λ(n) = D(x) :=

1

xx11 · · ·x
xk−1

k−1

(12)
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where 00 = 1. Note that the maximum of D(x) over Cεk is attained at x = α defined by
α1 = 1+ε

k−1
and α2 = · · · = αk−1 = 1

k−1
(1 − ε

k−2
), with the value D(α) = (k − 1)/[(1 +

ε)(1+ε)(1− ε
k−2

)k−2−ε]1/(k−1). (To see this, first note that if we fix x1 = A, then a Lagrange

multiplier calculation shows that the maximum is at x(A) := (A, 1−A
k−2

, . . . , 1−A
k−2

); then

show that logD(x(A)) is a concave function of A ∈ (0, 1) with maximum at A = 1
k−1

.)
For k > 2, Regev [21] proved that the Stanley-Wilf limit of the increasing pattern

τ = 12 · · · k is given by
L(12 · · · k) = (k − 1)2. (13)

Using Equations (10) and (13), we see that

lim inf
n→∞

Q(Λn ∈ Hε
n,k)

1/n >
D(α)2

(k − 1)2
. (14)

For the complementary inequality, let λ̂(n) := argmaxλ∈Hεn,kQ(Λn = λ). Then

Q(Λn ∈ Hε
n,k) 6 |Hε

n,k| Q(Λn = λ̂(n)). (15)

Since Cεk is a compact set and λ̂(n)
n
∈ Cεk, there exists a subsequence λ̂(nl) such that λ̂(nl)

nl
converges to a point z ∈ Cεk and

lim
l→∞
Q(Λnl = λ̂(nl))

1/nl = lim sup
n→∞

Q(Λn = λ̂(n))1/n. (16)

Since |Hε
n,k| = O(nk−1) as n→∞, we see from Equations (15) and (16) and the argument

for Equation (14) that

lim sup
n→∞

Q(Λn ∈ Hε
n,k)

1/n 6
D(z)2

(k − 1)2
6

D(α)2

(k − 1)2
. (17)

Equations (14) and (17) imply that Equation (8) holds, and the theorem follows.

The next group of results concerns LISn when τ1 = k. The key observation is that
LISn is at least as big as the number of left-to-right maxima (Equation (18)). Theorem
10 then tells us that LISn is at least a constant times n, with very high probability.

Let RLn(σ) be the number of right-to-left maxima in the permutation σ, and LRn(σ)
be the number of left-to-right maxima in σ. Note that the left-to-right maxima (right-to-
left maxima) in σ form an increasing (decreasing) subsequence in σ. In particular,

LISn(σ) > LRn(σ) and LDSn(σ) > RLn(σ). (18)

Recall also the notation Sn(τ ;P) from Section 1.4.

Theorem 10. Let τ = kτ2 · · · τk ∈ Sk. For every real δ such that 0 < δ < 1/L(τ), the
following strict inequality holds:

lim sup
n→∞

|Sn(τ ; LRn < δn)|1/n < L(τ).

17



Theorem 10 is an immediate consequence of Theorem 11, which is a stronger (and
more technical) result. We will also need Theorem 11 for the proof of Theorem 17(b).

For τ ∈ Sk, δ > 0, and an interval I, define

Sn(τ ; LRn[I] < δn)

= {σ ∈ Sn(τ) : σ has fewer than δn left-to-right maxima σi such that σi ∈ I }.

Theorem 11. Let τ = kτ2 · · · τk ∈ Sk. For 0 6 α1 < α2 6 1, let In = [an, bn] where
an/n→ α1 and bn/n→ α2. For every 0 < δ < α2−α1

L(τ)
, the following strict inequality holds:

lim sup
n→∞

|Sn(τ ; LRn[In] < δn)|1/n < L(τ).

Intuitively, this result says that for a typical member of Sn(τ), the left-to-right maxima
fill [1, n] with a positive density throughout [1, n].

We shall require an insertion operation I which was introduced in [4]. Suppose σ ∈ Sn
and h ∈ [n]. Let J = min{j : σj > h}. Define the permutation θ ∈ Sn+1 as follows:

θi =


σi if i < J

h if i = J

σi−1 if i > J + 1 and σi−1 < h

σi−1 + 1 if i > J + 1 and σi−1 > h

We denote θ by I(σ;h). Think of I(σ;h) as inserting a new left-to-right maximum in σ at
height h, while preserving all the other left-to-right maxima of σ (perhaps shifting them
slightly).

The proof of Theorem 11 is similar to the proof of Proposition 6.2 of [4]. The main
idea is that repeated use of I can transform a permutation σ in Sn(τ) into many other
permutations σ′ in Sn+r(τ) with r more left-to-right maxima. By insisting that σ started
with few left-to-right maxima, we significantly limit the number of choices of σ that could
give rise to a particular σ′. We then estimate how much smaller the number of preimages
σ is than the number of images σ′, which is at most L(τ)n+r.

The following lemma says that if τ1 = k, then I preserves τ -avoidance. For the proof,
see the proof of Lemma 6.1 in [4].

Lemma 12 ([4]). Let τ = kτ2 · · · τk ∈ Sk. Assume 1 6 h1 < h2 < · · · < hr 6 n. Let
σ(r) = σ ∈ Sn(τ) and let σ(l−1) = I(σ(l);hl) for l = r, r−1, · · · , 2, 1. We denote σ(0) by
I(σ;h1, h2, · · · , hr). Then we have

σ(0) ∈ Sn+r(τ).

Observe also that hi + i− 1 is a left-to-right maximum of σ(0) for each i ∈ [r].

Proof of Theorem 11. Assume 0 < δ < α2−α1

L(τ)
and choose a positive integer M so that

L(τ)
M

< 1− δL(τ)
α2−α1

. Let r ≡ rn := b bn−an−2
M
c.
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For fixed n, define the intervals of heights in In as Ji := (dane+ (i− 1)M, dane+ iM ]
for each i ∈ [r]. Then J1, · · · ,Jr are disjoint subintervals of In.

In the following, we shall use the notation of Lemma 12. Define the function Ψ ≡ Ψn

as
Ψ : Sn(τ ; LRn[In] < δn)× [M ]r → Sn+r(τ)

such that Ψ(σ, (ĥ1, ĥ2, · · · , ĥr)) = I(σ;h1, h2, · · · , hr), where hi = dane + ĥi + (i − 1)M
for i ∈ [r] (so that hi ∈ Ji). Corresponding to the intervals of heights Ji, we define the
shifted intervals of heights as follows:

J Ψ
i := Ji + i− 1 = (dane+ (i− 1)(M + 1), dane+ i(M + 1)− 1], i = 1, · · · , r.

Then J Ψ
1 . . . . ,J Ψ

r are disjoint subintervals of (an, bn + r). Given σ′ ∈ Image Ψ, we want
to find an upper bound on the number of (σ̄, (h̄1, h̄2, · · · , h̄r)) in the domain of Ψ such
that

Ψ(σ̄, (h̄1, h̄2, · · · , h̄r)) = σ′. (19)

For i ∈ [r], let bi be the number of left-to-right maxima of σ′ in J Ψ
i . Observe that if

Equation (19) holds, then dane + h̄i + (i − 1)M + i − 1 is a left-to-right maximum of σ′

in J Ψ
i .

Also note that there are at most δn + r left-to-right maxima of σ′ in (an, bn + r). It
follows that

|Ψ−1(σ′)| 6
r∏
i=1

bi 6

(∑r
i=1 bi
r

)r
6

(
δn+ r

r

)r
.

Therefore

|Sn(τ ; LRn[In] < δn)|M r =
∑

σ′∈Image Ψ

|Ψ−1(σ′)| 6 |Sn+r(τ)|
(
δn+ r

r

)r
,

and hence

|Sn(τ ; LRn[In] < δn)| 6 L(τ)n+r

(
δn+ r

Mr

)r
.

Since
rn
n
→ α2 − α1

M
as n→∞, it follows that

lim sup
n→∞

|Sn(τ ; LRn[In] < δn)|1/n 6 L(τ)

(
δL(τ)

α2 − α1

+
L(τ)

M

)(α2−α1)/M

< L(τ).

Then Theorem 11 follows.

Theorem 10 and Equation (18) imply the following.

Corollary 13. Consider Sn(τ) with τ = kτ2 · · · τk ∈ Sk. Then

lim inf
n→∞

Eτn(LISn)

n
>

1

L(τ)
.
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Proof of Corollary 13. Recall from Equation (18) that LISn(σ) > LRn(σ) for every σ ∈
Sn. Therefore for any 0 < δ < 1

L(τ)
,

Eτn(LISn) > Eτn(LRn) > Eτn(LRn 1LRn>δn) > δn
|Sn(τ ; LRn > δn)|

|Sn(τ)|
.

Then the result follows from Theorem 10.

The next result provides a sharp contrast with Theorem 10 in the case τ = kτ2 · · · τk.
Thus it is of some independent interest, even though it tells us nothing about longest
increasing subsequences.

Theorem 14. Assume τ ∈ Sk and satisfies at least one of the following conditions:

(i) τ1 < τ2, or
(ii) k occurs to the right of k−1 in τ .

Then
lim inf
n→∞

Eτn(LRn) 6 L(τ). (20)

If also k 6 5 or if τ1 = 1 or if τk = k, then we can replace the above “lim inf” by “lim
sup.”

We shall use the following result in the proof of Theorem 14. For its proof, see Theorem
6.4, Remark 2, and Theorem 7.1 of [4]. Presumably the result (21) holds for every τ , but
the proof remains elusive.

Theorem 15 ([4]). For every τ in Sk with k 6 5 or when τ1 (or τk) equals 1 or k, we
have

lim
n→∞

|Sn+1(τ)|
|Sn(τ)|

= L(τ) . (21)

Proof of Theorem 14. First assume that condition (ii) holds, i.e. that k occurs to the
right of k−1 in τ .

For each σ ∈ Sn and i = 1, · · · , n+1, let σi be the permutation in Sn+1 obtained by
inserting n + 1 between the (i−1)th and ith positions of σ. That is, σi = σ1 · · ·σi−1(n +
1)σi · · · σn.

For a given σ ∈ Sn(τ), define

Wn(σ) = the number of values of i for which σi ∈ Sn+1(τ).

Let σ ∈ Sn(τ) and suppose σi is a left-to-right maximum. Suppose that σi contains a
subsequence that forms the pattern τ . Then the following must be true:

• For some j < i, σj and n+ 1 must be the second-largest and largest entries,
respectively, in this subsequence.

• This subsequence cannot include σi, because σi is a left-to-right maximum
and thus σj < σi.
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But then replacing n+1 with σi in this subsequence of σi would produce a subsequence
of σ that forms the pattern τ , which is a contradiction. Hence σi ∈ Sn+1(τ).

By the above argument, for any σ ∈ Sn(τ) we have

LRn(σ) 6 Wn(σ). (22)

As argued in Lemma 2.1 of [18], we note that for each ρ ∈ Sn+1(τ), there is a unique
σ ∈ Sn(τ) and a unique i ∈ [n+ 1] such that σi = ρ. It follows that∑

σ∈Sn(τ)

Wn(σ) = Sn+1(τ).

Dividing both sides by |Sn(τ)| gives us

Eτn(Wn) =
|Sn+1(τ)|
|Sn(τ)|

. (23)

From [3], we also have

L(τ) := lim
n→∞

|Sn(τ)|1/n = sup
n>1
|Sn(τ)|1/n. (24)

Hence lim infn→∞ Eτn(Wn) 6 L(τ) by Equations (23) and (24). Together with Equation
(22), this proves Equation (20). The final statement of Theorem 14 follows from Theo-
rem 15.

This concludes the proof of Theorem 14 under condition (ii). The theorem under
condition (i) will follow upon applying the bijection B : σ 7→ (σ−1)rc, which corresponds
to reflection through the decreasing diagonal. We only require two observations: firstly,
that τ satisfies condition (i) if and only if B(τ) satisfies condition (ii), and secondly that
LRn(σ) = LRn(B(σ)) for every σ ∈ Sn (indeed, j = σi is a left-to-right maximum of σ if
and only if (B(σ))n+1−j = n+ 1− i is a left-to-right maximum of B(σ)).

In particular, for k = 4, we conclude that Eτn(LRn) is of order n when τ1 = 4, and is
bounded for every other τ ∈ S4 except perhaps 2143.

For all nontrivial cases of pattern-avoidance that we have considered, the longest
monotone subsequence (i.e., the maximum of LISn and LDSn) is of order n on average,
which contrasts with the order

√
n that holds for the set of all permutations. We don’t

yet know whether this order n behaviour holds in general under pattern avoidance, but
this hypothesis is consistent with our limited simulation experiments so far. For exam-
ple, Figure 6 summarizes some simulation results on the length of the longest increasing
subsequence for random permutations in Sn(2413). The data suggest that E2413

n (LISn)/n
converges to a number between 0.2 and 0.25.

As described in Section 2.2, it is known that the expected length of the longest al-
ternating subsequence is either bounded or else asymptotically proportional to n/2, for
all cases of Sn(T ) with T consisting of one or two patterns of length 3. We do not know
whether this extends to all longer patterns, but we can prove the following.
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n E2413
n (LISn) E2413

n (LISn)/n

75 22.3425± 0.3783 0.2979± 0.0050
100 29.1375± 0.5336 0.2914± 0.0053
125 35.0050± 0.5866 0.2800± 0.0047
150 39.9825± 0.7321 0.2665± 0.0049
175 46.4550± 0.8172 0.2655± 0.0047
200 51.5350± 0.8890 0.2577± 0.0044
225 56.3400± 1.0091 0.2504± 0.0045
235 59.3122± 1.0020 0.2524± 0.0043
250 62.9425± 1.1173 0.2518± 0.0045

Figure 6: 95% confidence interval on E2413
n (LISn) and E2413

n (LISn)/n for permutations
avoiding 2413. For each n, we used a sample of 400 (approximately independent) permu-
tations generated by the Markov Chain Monte Carlo method of [18].

Figure 7: Examples of randomly generated 2413-avoiding permutations in S150(2413)
and S200(2413). These are reminiscent of plots given in [6] of separable permutations,
Sn(2413, 3142), which appears to be a more tractable class.

Theorem 16. Consider Sn(τ) with τ ∈ Sk where k > 4. Assume that either

(a) τ1 = k and τ2 6= k − 1, or

(b) |τi − τi+1| > 1 for every i ∈ [k − 1].

Then

lim inf
n→∞

Eτn(LASn)

n
>

2

L(τ)2
.
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In particular, Theorem 16 proves that Eτn(LASn)/n is bounded away from 0 for the
patterns τ = 4231 (part (a)) and τ = 2413 (part (b)). Permutations which satisfy the
condition in part (b) are called 1-prolific in [9].

The strategy of the proof is similar to that of Theorem 11.

Proof of Theorem 16. (a) Assume τ ∈ Sk with τ1 = k and τ2 6= k− 1. It suffices to prove
that for every positive real δ < L(τ)−2, we have

lim sup
n→∞

|Sn(τ ; LASn < 2δn)|1/n < L(τ). (25)

Suppose σ ∈ Sn and h ∈ [n]. Let J = min{j : σj > h}. Define the permutation
θ ∈ Sn+2 as follows:

θi =



σi if i < J

h+ 1 if i = J

h if i = J + 1

σi−2 if i > J + 2 and σi−2 < h

σi−2 + 2 if i > J + 2 and σi−2 > h

We denote θ by I2(σ;h). Think of I2(σ;h) as inserting two new points into σ in a 21
pattern, adjacent in location as well as in height, with the left point being a new left-to-
right maximum at height h+ 1.

Assume 1 6 h1 < h2 < · · · < hr 6 n. Let σ(r) = σ and let σ(l−1) = I2(σ(l);hl) for
l = r, r− 1, · · · , 1. Then we denote σ(0) by I2(σ;h1, h2, · · · , hr). It is not hard to see that
σ(0) avoids τ , and that σ(0) has left-to-right maxima with heights hi + 2i− 1 (i ∈ [r]).

Fix 0 < δ < L(τ)−2 and choose a positive integer M such that δ + 1
M
< L(τ)−2. Let

r ≡ rn := bn/Mc.
For each i ∈ [r], we define Ji = ((i− 1)M, iM ] (the “intervals of heights”).
For each permutation σ ∈ Sn, define the set of heights

A∗(σ) := {σt : σt is a left-to-right maximum and σt+1 = σt − 1} .

E.g., A∗(254367981) = {5, 9}. Then it follows that LASn(σ) > 2|A∗(σ)|. Next, let

S∗n(τ) := {σ ∈ Sn(τ) : |A∗(σ)| < δn} .

Then we have
Sn(τ ; LASn < 2δn) ⊂ S∗n(τ) . (26)

Define the function Ψ2 ≡ Ψ2,n as

Ψ2 : S∗n(τ)× [M ]r → Sn+2r(τ)

such that Ψ2(σ, (ĥ1, ĥ2, · · · , ĥr)) = I2(σ;h1, h2, · · · , hr), where hi = ĥi + (i − 1)M for
i ∈ [r] (so that hi ∈ Ji). We also define the set of shifted intervals of heights as follows:

J Ψ
i := Ji + 2i− 1 = ((i− 1)(M + 2) + 1, i(M + 2)− 1], i = 1, · · · , r.

23



Then J Ψ
i , . . . ,J Ψ

r are disjoint intervals in [1, n+ 2r].
Given σ′ ∈ Image Ψ2, we would like to find an upper bound on the number of

(σ̄, (h̄1, h̄2, · · · , h̄r)) in the domain of Ψ2 such that

Ψ2(σ̄, (h̄1, h̄2, · · · , h̄r)) = σ′. (27)

For i ∈ [r], let b∗i = |A∗(σ′) ∩ J Ψ
i |. Observe that if Equation (27) holds, then h̄i + (i −

1)M + (2i− 1) ∈ A∗(σ′) ∩ J Ψ
i . Note that |A∗(σ′)| 6 δn+ r. Therefore

|Ψ−1
2 (σ′)| 6

r∏
i=1

b∗i 6

(∑r
i=1 b

∗
i

r

)r
6

(
δn+ r

r

)r
.

Therefore,

|S∗n(τ)|M r =
∑

σ′∈Image Ψ2

|Ψ−1
2 (σ′)| 6 |Sn+2r(τ)|

(
δn+ r

r

)r
,

and hence

|S∗n(τ)| 6 L(τ)n+2r

(
δn+ r

Mr

)r
.

It follows that

lim sup
n→∞

|S∗n(τ)|1/n 6 L(τ)

(
L(τ)2

(
δ +

1

M

))1/M

< L(τ).

Equation (25) follows from this and Equation (26), and the result of part (a) is proved.

(b) Assume τ ∈ Sk and |τi − τi−1| > 1 for every i ∈ [k − 1]. Given σ ∈ Sn(τ) and
h ∈ [n], let H∗(σ;h) be the permutation θ defined as follows. Let J be the index such
that σJ = h (note the distinction from part (a) here), and let

θi =



σi if i 6 J and σi 6 h

σi + 2 if i 6 J and σi > h

h+ 2 if i = J + 1

h+ 1 if i = J + 2

σi−2 if i > J + 2 and σi−2 6 h

σi−2 + 2 if i > J + 2 and σi−2 > h

Then θ ∈ Sn+2(τ). In effect, H∗ inserts two points into σ to the right of location J , so
that σJ (= θJ) and the two new points (θJ+1 and θJ+2) form a 132 pattern with three
contiguous heights. As in part (a), assume 1 6 h1 < h2 < · · · < hr 6 n. Let σ(r) = σ and
let σ(l−1) = H∗(σ(l);hl) for l = r, r−1, · · · , 1. Then we denote σ(0) byH∗(σ;h1, h2, · · · , hr).

For each permutation σ, we define the set of heights

B∗(σ) := {σt : σt = σt+1 − 2 = σt+2 − 1} .
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Then LASn(σ) > 2|B∗(σ)|. Arguing as in part (a) with the same choice of δ, M , and r,
we obtain

|Sn(τ ; |B∗(σ)| < δn)| 6 L(τ)n+2r

(
δn+ r

Mr

)r
and the result of part (b) follows.

2.4 Rare regions for Sn(τ ).

As noted in Section 1.3, plots of random permutations avoiding some patterns have large
regions that are usually empty (see Figure 2). The results of this subsection relate to
these regions.

Without loss of generality, we shall assume for the rest of this subsection that τ ∈ Sk
and τ1 > τk. Recall from Section 1.3 that the “rare region” R ≡ R(τ) is the set

R = {(x, y) ∈ [0, 1]2 : for all sequences {(In, Jn)}n>1 such that (In, Jn) ∈ [n]2 and

lim
n→∞

(
In
n
,
Jn
n

)
= (x, y), we have lim sup

n→∞
|Sn(τ ;σIn = Jn)|1/n < L(τ)},

We also defined G = [0, 1]2\R (the “good region”) and R↑ = R∩{(x, y) ∈ [0, 1]2 : y > x}.
For every x ∈ [0, 1], let

r↑(x) = sup{y : (x, y) ∈ G} and r↓(x) = inf{y : (x, y) ∈ G} .

(We shall see that r↑ and r↓ are well-defined functions since the set {y : (x, y) ∈ G} is
never empty.)

By Theorem 1, we know that R↑ 6= ∅ if and only if τ1 = k; in particular, when τ1 6= k,
then r↑ is identically 1. (Similarly, r↓ is identically 0 when τk 6= 1.) The other case, in
which τ1 = k, is addressed in the following theorem.

Theorem 17. Assume τ = kτ2 · · · τk ∈ Sk.

(a) If (x, y) ∈ G, then the convex hull of {(x, y), (0, 0), (1, 1)} is contained in G. In
particular, G contains the diagonal {(x, x) : x ∈ [0, 1]}.

(b) G ⊂ {(x, y) ∈ [0, 1]2 : y 6 L(τ)x and y 6 1− (1− x)/L(τ)}.

(c) The function r↑ satisfies r↑(0) = 0, r↑(1) = 1, and r↑(x) > x for every x ∈ (0, 1).

(d) The function r↑ is strictly increasing and Lipschitz continuous, with left and right
derivatives contained in the interval [L(τ)−1, L(τ)] at every point.

Theorem 17(b) implies that for every τ ∈ Sk with τ1 = k, the closure of R↑(τ) includes
the point (0, 0). This had been proven in Proposition 9.2 of [4] under an additional assump-
tion (called “TPIP”) on τ2 · · · τk. Theorem 17(b) shows that this additional assumption
is unnecessary.
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Proof of Theorem 17. (a) Note that {(0, 0), (1, 1)} ⊂ G since |Sn(τ ;σ1 = 1)| = |Sn−1(τ)|
and |Sn(τ ;σn = n)| = |Sn−1(τ)| for all n > 1.

Let (x, y) ∈ G. Then there exist In, Jn ∈ [n] such that ( In
n
, Jn
n

)→ (x, y) and

lim sup
n→∞

|Sn(τ ;σIn = Jn)|
1
n = L(τ).

Let t ∈ (0, 1) and let m := mn be a sequence of integers such that n
n+m

→ t. Then it

follows that ( In
n+m

, Jn
n+m

)→ (tx, ty) and

|Sn+m(τ ;σIn = Jn)|
1

n+m > |Sn(τ ;σIn = Jn)|
1
n

n
n+m |Sm(τ)|

1
m

m
m+n

(the inequality is proved using the injection Sn(τ)×Sm(τ) ↪→ Sn+m(τ) given by the direct
sum (defined in Section 1.4)).

Hence we have

lim sup
n→∞

|Sn+m(τ ;σIn = Jn)|
1

n+m > L(τ)tL(τ)1−t = L(τ).

Therefore l1 := {(0, 0)+t(x, y) : 0 < t < 1} ⊂ G. By a similar argument, we can show that
l2 := {(1− t)(1, 1) + t(x, y) : 0 < t < 1} ⊂ G and l3 := {(0, 0) + t(1, 1) : 0 < t < 1} ⊂ G.
Since any point in the convex hull of {(x, y), (0, 0), (1, 1)} can be written as a linear
combination of (0, 0) and a point from l2, the result follows.

(b) Assume (x, y) ∈ [0, 1]2 and y > L(τ)x. Assume that
(
In
n
, Jn
n

)
→ (x, y). If σI = J, then

every left-to-right maxima σi with σi < J must satisfy i < I. Therefore,

Sn(τ ;σIn = Jn) ⊂ Sn(τ ; LRn([1, Jn]) < In).

In Theorem 11, let α1 = 0, α2 = y, and choose δ such that x < δ < y
L(τ)

. Then Sn(τ ;σIn =

Jn) ⊂ Sn(τ ; LRn([1, Jn]) < δn) for all sufficiently large n. Therefore, by Theorem 11, we
see that (x, y) ∈ R. Therefore G ⊂ {(x, y) ∈ [0, 1]2 : y 6 L(τ)x}.

To show the rest of (b), consider the mapping (x, y) 7→ (1−y, 1−x), which is the
reflection through the line x + y = 1. This reflection corresponds to the bijection σ 7→
(σ−1)rc. Letting τ̃ = (τ−1)rc, we have L(τ̃) = L(τ) and τ̃1 = k. Now suppose (x, y) ∈ G(τ).
Then (1− y, 1− x) ∈ G(τ̃), and hence (1− x) 6 L(τ̃)(1− y) by the preceding paragraph.
Therefore y 6 1− (1− x)/L(τ). This completes the proof of (b).

(c) Since (0, 0) ∈ G, part (b) implies that r↑(0) = 0. The rest of part (c) follows from
part (a).

(d) Strict monotonicity follows from the convex hull property of part (a), together with
the fact (a consequence of (b)) that r↑(x) < 1 for every x ∈ (0, 1). Next, observe that if
0 < u < v < 1, then the convex hull property implies that the point (u, r↑(u)) cannot be
below the line segment joining (0, 0) to (v, r↑(v)). That is, r↑(v)/v 6 r↑(u)/u, and so

r↑(v)− r↑(u)

v − u
6

r↑(u)
(
v
u

)
− r↑(u)

v − u
=

r↑(u)

u
6 L(τ)

(where the final inequality follows from part (b)). This proves the upper bound on the
derivatives. The lower bound follows using the reflection argument from part (b).
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Theorem 18 below holds for any pattern τ . Together with Theorem 17, it shows that
the graph of r↑ is precisely the boundary between R↑ and G (when R↑ is not empty).

Theorem 18. Let τ ∈ Sk. Then G = {(x, y) ∈ [0, 1]2 : r↓(x) 6 y 6 r↑(x)}.

Proof of Theorem 18. Without loss of generality, assume τ1 > τk. It suffices to show that
for every (x, y) ∈ [0, 1]2 with y > x, we have (x, y) ∈ G if and only if y 6 r↑(x). We
already know this from the discussion preceding Theorem 17 when τ1 6= k, so assume
τ1 = k. The desired result will follow from the convex hull property of Theorem 17(a) if
we can prove that the point (x, r↑(x)) is in G for every x ∈ (0, 1). We shall accomplish
this by proving that G is closed.

Proving that G is closed is essentially an exercise in analysis. Here are the details. Con-
sider a point (x, y) in the closure of G. It suffices to construct a strictly increasing sequence
of natural numbers n(1), n(2), . . . and a sequence of pairs of integers {(in(m), jn(m)) : m >
1} such that (in(m), jn(m)) ∈ [n(m)]2 for every m, limm→∞(in(m), jn(m))/n(m) = (x, y),
and limm→∞ |Sn(m)(τ ;σin(m)

= jn(m))|1/n(m) = L(τ). We shall construct the sequences
inductively. Let n(1) = 1 = i1 = j1. Given m > 1 and n(m − 1) ∈ N, choose
(x(m), y(m)) ∈ G such that ||(x(m), y(m))−(x, y)||1 < 1/m. Then there exists a sequence
{(In(m), Jn(m)) : n > 1} such that (In(m), Jn(m)) ∈ [n]2 for every n,

lim
n→∞

(
In(m)

n
,
Jn(m)

n

)
= (x(m), y(m)), and

lim sup
n→∞

|Sn(τ ;σIn(m) = Jn(m))|1/n = L(τ).

Therefore we can choose n′ > n(m− 1) such that

|Sn′(τ ;σIn′ (m) = Jn′(m))|1/n′ > L(τ)− 1

m
and∥∥∥∥(In′(m)

n′
,
Jn′(m)

n′

)
− (x(m), y(m))

∥∥∥∥
1

<
1

m
.

Let n(m) = n′, in(m) = In′(m), and jn(m) = Jn′(m). One can now check that these
sequences have the desired properties. Hence (x, y) ∈ G. Thus G is closed, and the
theorem follows.

It is known that r↑ is the identity function r↑(x) = x for the monotone pattern
τ = k(k−1) · · · 1, as well as for some other patterns [19]. So far, there is no pattern τ ∈ Sk
with τ1 = k for which we can prove that r↑ is not the identity function. Simulations are
not yet clear about whether 4231 is one such pattern; see Figure 2 as well as [8]. We
conjecture that r↑ is always a concave function.
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