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Abstract

We consider the distributions of the lengths of the longest monotone and al-
ternating subsequences in classes of permutations of size n that avoid a specific
pattern or set of patterns, with respect to the uniform distribution on each such
class. We obtain exact results for any class that avoids two patterns of length 3,
as well as results for some classes that avoid one pattern of length 4 or more. In
our results, the longest monotone subsequences have expected length proportional
to n for pattern-avoiding classes, in contrast with the y/n behaviour that holds for
unrestricted permutations.

In addition, for a pattern 7 of length k, we scale the plot of a random 7-avoiding
permutation down to the unit square and study the “rare region,” which is the part
of the square that is exponentially unlikely to contain any points. We prove that
when 7 > 73, the complement of the rare region is a closed set that contains the
main diagonal of the unit square. For the case 71 = k, we also show that the lower
boundary of the part of the rare region above the main diagonal is a curve that is
Lipschitz continuous and strictly increasing on [0, 1].

Keywords: pattern-avoiding permutations, longest increasing subsequence prob-
lem, longest alternating subsequence, rare region.

1 Introduction

For each integer n > 1, let [n] := {1,2,--- ,n}. A permutation of [n] is a bijection
o : [n] — [n], written as ¢ = o104 --0, where o; = o(i) for i € [n]. The set of all
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permutations on [n] is denoted by S,,. For 7 € Sk, we write S,,(7) to denote the set of all
permutations in S,, that avoid the pattern 7. (See Section 1.4 for complete definitions.)

We use P] to denote the uniform probability measure on S, (7) : for any subset A of
Sn(T), we have P7 (A) := |S‘:é‘f)|' We use E7 (X) and SD] (X)) to denote the expected value
and standard deviation of a random variable X on S,(7) under P]. More generally, if
T is a set of patterns, then S,,(T") denotes the set of permutations in S,, avoiding all the
patterns in 7', and PZ, E! and SD? are the corresponding probability operators.

The cardinalities |.S,,(7T")| have been studied extensively by researchers in the last few
decades but have been computed only for some limited cases of sets T.

It took 24 years to prove the 1980 conjecture of Stanley and Wilf, which says that

L(7) := lim [S,(7)|"™ exists and is finite for every 7 € S}, (1)
n—oo

(existence was proved by Arratia [3], and finiteness by Marcus and Tardos [20]).

For more on pattern-avoiding permutations, see chapters 4 and 5 in [10], [17], and the
survey paper [27].

For a permutation o = 0109 - - - 0, € Sy, the complement of o is 0¢ = 0§05 - - - of, where
of =n+1—o0; for i € [n]. The reverse of ¢ is defined to be 0" = 0,,0,_1 ---01. These
operations give rise to bijections among S, (7), S, (7¢) and S,,(7"). In addition, inversion
gives a bijection from S,(7) to S, (77!). Therefore,

[Su(T)] = 1Su(7%)] = [Su(7")] = [Su(r 7).

The paper is organized as follows. Sections 1.1, 1.2, and 1.3 present the introduction,
background, and overview of our results on the topics of longest monotone subsequences,
longest alternating sequences, and rare regions respectively. Section 1.4 lists some basic
notation and terminology. In sections 2.1 and 2.2, we will state and prove our results
related to the distribution of longest monotone and alternating subsequences respectively
of random permutations from S, (7", 7®) where 7", 7(2) € S3. Section 2.3 contains some
results on patterns of length greater than three. Finally, in section 2.4, we will present
our results on the rare regions in permutations’ plots.

1.1 Longest monotone subsequences

For a given o € S,,, we say that o;,0;, - - - 0y, is an increasing subsequence of length k in o
if iy <ip <--- <ipand oy, <oy <--- <oy, Let LIS, (o) be the length of the longest
increasing subsequence in . Similarly, let LDS,, (o) be the length of the longest decreasing
subsequence in . In a short and elegant argument, usually called the FErdos-Szekeres
lemma, Erdos and Szekeres [14] proved that every permutation of length (r—1)(s—1) + 1
or more contains either a decreasing subsequence of length r or an increasing subsequence
of length s; equivalently, LIS, (o) - LDS,,(c) > n for every o € S,,.

Determining the asymptotic distribution of LIS,, on S,, under the uniform distribution
has a rich and interesting history [2]. The efforts of many researchers around this prob-
lem culminated in the celebrated result of Baik, Deift and Johansson in 1999 [5] which



completely determined the asymptotic distribution of LIS,,. They proved that

lim P (LIS“I—_/GQ\/ﬁ < t) = F(t) forall teR,
n—00 n

where F' is the Tracy-Widom distribution function. This distribution was first obtained
by Tracy and Widom [26] in the context of random matrix theory as the distributional
limit of the (centered and scaled) largest eigenvalue of the Gaussian unitary ensemble.

The longest increasing subsequence problem in the context of pattern-avoiding per-
mutations was first studied by Deutsch, Hildebrand and Wilf [12] for S,,(7) where 7 € S.
They showed that in the case 7 = 231, E2*'(LIS,) ~ 2, SD*'(LIS,) ~ ‘/TE and the nor-
malized LIS, converges to the standard normal distribution. For 7 = 132 and 7 = 321,
we have E,**(LIS,) ~ v/an, SD,**(LIS,) ~ v/n, and E}*' (LIS,) ~ 2, SD;*!(LIS,,) ~ /n;
for both of them the normalized LIS, converges to non-normal distributions which are
evaluated exactly in [12]. Since LIS,(c) = LDS,(¢") = LIS,(¢7¢) = LIS,(c7!), their
results give a complete picture for LIS,, and LDS,, on S, (7) under the uniform measure
for every 7 € S3. We are not aware of any existing work on this problem for other classes
of pattern-avoiding permutations.

In section 2.1, we determine the distributions of LIS,, and LDS,, on S, (T") for " C Ss
with |T'| = 2. The results are summarized in Table 1. The operations reverse, complement,
and inverse induce obvious symmetry bijections among the classes S,,(T) for different pairs
T, resulting in the five groupings shown in Figure 1. Group (e) is empty for large n, so
we shall present our results in terms of groupings (a) through (d).

H | LIS, H LDS, |
{T(l) . T® } mean standard asymp. || mean | standard | asymp.
deviation | normal? deviation | normal?
(a) {132,321} | ~ 2 ~ & No — 2 -0 No
(b) {132,231} | =H vol Yes ntl -l Yes
(c) {132,123} | —2 —0 No in ~ VT Yes
(d) {132,213} | ~ logyn | — constant No ntl = Yes

Table 1: Summary of asymptotic behaviour of LIS, and LDS, on S,(7(", 7)) for the
groupings (a)—(d) of Figure 1. See Theorem 2 and Figure 3. (We write “—” to mean
“converges to,” and “a, ~ b,” to mean “a, /b, — 17. Otherwise, expressions are exact.)
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Figure 1: The bijections among the subclasses S, (7)), 7?) for 7 7)) € S5 under the
operations ¢ = inverse, ¢ = complement, r = reverse.

Our results are less precise for LIS, and LDS,, on S, (7) with longer patterns 7. For
T € Sg with 74 = k, we prove (see Corollary 13) that
E(LIS,) _ 1

h}gg}lf - > o)

(2)

In the special case 7 = k(k — 1)---21, the Schensted correspondence leads to exact
asymptotics, and in particular to the result that LIS, /n converges in probability to 1/(k—
1) (see Theorem 9). We conjecture that the behaviour of Equation (2) is generic, in the
sense that at least one of E; (LIS,)/n or E] (LDS,)/n is bounded away from 0 for any
pattern 7.

1.2 Longest alternating subsequences

In 2006, an analogous theory for alternating subsequences in .S,, with the uniform proba-
bility measure was developed by Stanley [25] and Widom [28]. For a given o € S,,, we say

that o;,04, - - - 05, is an alternating subsequence of length k in o if i1 < 19 < --- < 4 and
g, > 04y < 045 > 04, -0y, Let LAS, (o) be the length of the longest alternating subse-
quence in 0. Stanley proved that E(LAS,,) = % forn > 2 and SD(LAS,,) = %n — %

for n > 4. Furthermore, Widom proved that LAS,, is asymptotically normal.
In [15], Firro, Mansour and Wilson studied the longest alternating subsequence prob-
lem for pattern-avoiding permutations. They showed that for each 7 € S3, LAS, on



Sn(7) is asymptotically normal with mean E(LAS,) ~ n/2 and standard deviation
SD] (LAS,,) ~ +/n/2. For the exact values of the means and standard deviations, see
[15]. We are not aware of any existing work on this problem for other classes of pattern-
avoiding permutations.

We consider LAS,, on S,(7T') for T C S3 with || = 2. Some cases such as T =
{132,231} force LAS,, < 3 for every n. Barring such cases, we show that LAS,, is asymp-
totically normal with mean n/2 and standard deviation \/n/2 (Theorem 7).

For patterns 7 of length 4 or more, our results for LAS,, on S,(7) are less complete.
In some cases, including 4231 and 2413, we can show that the expected value of LAS,, is
at least cn for some positive constant ¢ (see Theorem 16). We conjecture that this is true
for every pattern (except 12 and 21).

1.3 Rare regions

A permutation o € S,, can be visualized via its plot, which is the set {(i,0;) : i € [n]} of
n points in the plane. Plots of randomly generated 7-avoiding permutations are shown
in Figure 2 for some patterns 7 of length 4. Such plots suggest that for some patterns,
there can be large regions of [n]? that rarely contain any points of randomly generated
members of S, (7). Let’s first introduce some definitions.

To deal with these concepts, we scale the plot of ¢ down to the unit square, and
consider what parts of the unit square are likely to remain empty. We shall say that a
point (z,y) of [0,1]? is T-rare if

I
for every sequence {(I,, J,)}n>1 such that (I,,,.J,,) € [n]* and lim (—n, ﬁ) = (z,y),

n—oo n n

we have limsupP? (o7, = J,)/"

n—oo

< 1;

that is, every sequence (I, J,,) of grid points that scales down to (z,y) has exponentially
decaying probabilities of being in the plot of S, (7). Then the “rare region” R = R(7) is
defined to be the set of all 7-rare points in the unit square. Let R" = RN {(z,y) € [0,1]* :
y > x} be the part of the rare region above the diagonal y = z. Using this terminology,
we have the following basic result from [4] (see Theorems 1.3 and 8.1 and Proposition
3.1).

Theorem 1 ([4]). Assume T € S, and 11 > Ty.

(a) Assume 7 = k. Then there is a 6 > 0 such that [0,6] x [1 —d,1] C R; that is, all
points sufficiently close to the point (0,1) are T-rare.

(b) Assume 7, < k. Then R' = (); that is, there are no T-rare points above the diagonal.

Without loss of generality, we shall assume for the rest of this paragraph that 7 € S
and 7 > 7. We define the “good region” G to be the complement of the rare region:
G = [0,1]2\'R. We prove that the region G contains the diagonal y = x and is a closed set
(Theorems 17 and 18). When 7, = k, we prove that the boundary between R and G is
a curve y = r'(x) that is Lipschitz continuous and strictly increasing on [0, 1]. Moreover,
the left and right derivatives of r' are in the interval [L(7)~!, L(7)] at every point (see
Theorem 17).
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Figure 2: Examples of randomly generated permutations in S,(7) for some patterns
7 € S4. The top left figure was generated by Yosef Bisk under the supervision of N.
Madras, using a modification of the Monte Carlo algorithm of [18].



1.4 Notation and terminology

This section contains basic notation and terminology used in this paper, much of which
is standard in the permutation pattern literature.

For 7 € S, and o € S,,, we say that o contains the pattern 7 if there is a subsequence
0i,0;, - -+ 05, of k elements of o that appears in the same relative order as the pattern 7.
For example, the permutation o = 6431257 contains the patterns 321 and 3124 (since o
contains the subsequences 010503 = 643 or 010305 = 632, and 09040507 = 4127). We say
that o avoids the pattern 7 if it does not contain 7. The set of all permutations in S,
avoiding 7 is denoted by S, (7). For any set T' of patterns, we write S, (T") to denote the
set of permutations in S, avoiding all the patterns in T', that is, S,,(T) = N,erS, (7). For
example, the permutation 521346 is in S(132,2314) because it avoids both 132 and 2314.

The direct sum of two permutations o € S, and ¢ € S, is the permutation ¢ & ¢ in
Snhim Obtained by concatenating ¢ to the northeast corner of o,

oOP = o1 on(n+¢1) - (n+dm),
while the skew sum concatenates ¢ to the southeast corner of o,
oS¢ = (m+oy) - (m+0,)b1 O -

A permutation is layered if it is the direct sum of one or more decreasing permutations.

For a given permutation o, we say that o; is a left-to-right mazimum if o; > o; for all
J < 4. In this situation, 7 is referred as the location of the left-to-right maximum. (For
clarity, we sometimes refer to o; as the height.) Similarly, we say that o; is a right-to-left
mazimum if o; > o; for all j > 1.

For natural numbers n, 7, and j, we define S,,(7; 0; = ) to be the set of permutations
o in S,(7) such that o; = j. More generally, for any statement P about a generic
permutation o, we let S, (7;P) be the set of permutations in S, (7) for which P is true.

The number of elements in a set A is denoted by |A|.

For two sequences {a, },>1 and {b,},>1, we write a, ~ b, if lim,_,, =1

2 Results and proofs

In this section, we will state and prove our results.

2.1 Longest monotone subsequences of permutations in S,, (7", 7(?) for 71,
(2)
T € Sg

In Table 1, we summarized our results on the mean and standard deviation of LIS,, and
LDS,, on S,(7M, 7)) for 7M7) € S5, and whether they are asymptotically normal or
not.

Theorem 2 below gives fuller descriptions of the distributions of the longest mono-
tone subsequences in these cases. To prepare for the statement of the theorem, we first
introduce the relevant distributions.



We use Bin(n, p) to denote a binomial random variable with parameters n and p.

For n > 3, let D[n] denote the triangular set of lattice points above the diagonal in
the square [n] x [n], together with the origin; that is, D[n] = {(k,m) € Z*: 1 < k <m <
n} U{(0,0)}. Then |D[n]| = (}) + 1. We put uniform probability measure on D[n] and
consider the following random variable:

D,((k,m)) = n—min(m — k, k) = max(n —m+ k,n — k).

Then we have

PD, =n—j) = WL << o
(5) +1 (5) +1
Here is a way to think about D,,, given that (k,m) # (0,0). Choose two points uniformly
without replacement from [n]; let k& be the smaller number and let m be the larger. Then
D,, is the number of points remaining in [n| after discarding the smaller of the intervals
(0, k] and (k,m].
Let X, X5, -+ be an independent sequence of Bernoulli(%) random variables:

, and P(D,=n) =

|3

for all ¢ > 1. (3)

N | —

Then define the following random variables for n > 3:

n—2 n—1

T,=n-1-Y X;+» XX, (4)
i=2 i=2

R,, = the length of the longest run of zeros in Xy, Xo,---, X,,. (5)

For two random variables X and Y, we write X =Y to say that X and Y have the
same distribution.

Theorem 2. Let T denote a 2-element subset of Ss. Consider S,(T) with the uniform
probability measure. Then we have the following:

a) For T = {132,321}, LIS, = D,, and LDS,, < 2.

(a)

(b) For T = {132,231}, LIS, = LDS,, = Bin(n — 1,1/2) + 1.

(¢c) For T = {132,123}, LDS, = T, and LIS, < 2.

(d) For T = {132,213}, LDS, = Bin(n — 1,1/2) + 1 and LIS, = R,,_; +1.

The proof of Theorem 2 exploits the nice structure of each S, (7). First, we note that
Simion and Schmidt [24] showed

15, (132, 321)| = (Z) +1 and |S,(132,231)] = |5,(132,123)| = |S,(132,213)| = 2" .

8



0 (132,321) . (231,123) w0, (132,231) 0 (312,3{3)
30 30 30 %0
20 20 20 .. 20
10 10 10 10
o— 0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 010 20 30 40
0 (312,123) 0 (213,321) 0 (132,312) . e, (231,213)

0 o .
0 30 . 30 30
20 20 . 20 2
10 10 10 . 10 .
0 0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 22 30 40

(a) (b)
e, (132,123) 0 (231,321) 01 (132,213) 0 (231,312)
30 30 . . 30 . 30
20 2 20 "’ 20
10 I . 10 10 .
0 * 0 * 0
0 10 20 30 40 0 10 20 30 40 0 10 2 30 40 0 10 20 30 40
0 (312,321) e d0p, (213,123)
30 K 30
20 20
10 10
0 0
0 10 20 30 40 0 10 20 30 40
(c) (d)

Figure 3: Examples of permutations from S, (1), 7®) for 7V, 7 € S and n = 40.
The permutations from Syo(132,321), S40(132,231), S40(132,123) and S40(132,213) were
generated randomly, and the rest were obtained using bijections of Figure 1.

The proofs of each part of Theorem 2 includes an explicit bijection for S, (7): with D[n]
for part (a), and with binary strings of length n — 1 for the other parts. We shall use
these bijections again in the proof of Theorem 7 in Section 2.2 about longest alternating
subsequences.

Proof of Theorem 2. (a) The case T = {132,321}: We will follow Propositions 11 and 13
in [24] which shows that there exists a bijection between S, (132,321) \ {12---n} and the
2-element subsets of [n]. Let o € S,,(132, 321).

If o is not the identity permutation, let m be the largest ¢ such that o; # 4, and let k
be the index such that o = m. Then we must have o109+ 051 = (m—k+1)(m —k+



Figure 4: The left figure is the plot of the permutation 0 = 56123478910 in
S10(132,321) where k = 2 and m = 6. The right figure is the plot of the permutation
0=10754213689 in S15(132,231) which corresponds to the 0-1 sequence of length 9,
101101001.

2)---(m—1)and 041090 = 12+ - (m — k). That is, ¢ must have the form
c=m—-k+1)(m—-k+2)---ml2---(m—k)(m+1)(m+2)---n

for some 1 < k <m < n,and m =k iff c = 12---n. See Figure 4(a) for an example.
For 1 < k < m < n, the pair {k,m} determines o uniquely. It follows from this

argument that with uniform probability measure on S,(132,321), LIS, = D,, .

Remark 3. We note that o € S,(132,321) can be represented as the inflation of 213
by the increasing permutations 7, 732 763 where 7 = 12.- -k, 7@ = 12... (m — k),
73 =12 (n—m); that is, o = 213[rM 7@ 7)), S, (132,321) is an example of a 3 x 3
monotone grid class (see section 4 of [27]).

(b) The case T = {132,231}: Let 0 € S,(132,231). Let k be the index such that o = 1.
To avoid the pattern 132, we must have o1 < opi0 < .-+ < 0p; and to avoid the
pattern 231, we must have o1 > gy > --+ > 0}_1. In the terminology of [7], S, (132,231)
is a skinny monotone grid class, that is, it is the juxtaposition of a decreasing and an
increasing sequence (see chapter 3 of [7]).

For our permutation ¢ we obtain a 0-1 sequence of length n — 1 by labeling the
decreasing points in the plot of ¢ with 1 and the increasing points with 0, and reading
them from bottom to top, excluding the point o, = 1. That is, for j € [n—1], let i
be the index such that o; = j + 1, and then set z; to be 1 (respectively, 0) if i < k
(respectively, i > k). See Figure 4(b) for an example. It is not hard to see that this gives
a bijection between S, (132,231) and {0,1}" . Thus the uniform distribution ensures

10



Figure 5: The left figure is the plot of the permutation o =
2019181615171312111014976845312 in S9(132,123) which corresponds to
the 0-1 sequence of length 19, 1110010000110010110. The right figure is the plot of
the permutation 0 = 1920161718141512131145678910231 in Sy(132,213) which
corresponds to the 0-1 sequence of length 19, 0100101011000000101.

that every sequence has probability 27~ and hence that z1,..., 2, 1 are independent
Bernoulli(1) random variables.
Then we have

n—1 n—1
LDS,(0) = k+1 = Y 1,1 +1 and LIS (o) = [+1 = Y 1,0+1,
=1 =1

and hence LDS,, = LIS,, = Bin(n —1,1/2) + 1.

(c) The case T'= {132,123}: Let 0 € S5,,(132,123). Suppose o = n for some k € [n]. To
avoid the pattern 123, we must have oy > 09 > -+ > 05_1; and to avoid 132, we must
have o; > n — k whenever ¢ < k. Therefore, recalling notation from Section 1.4, we must
have 0 = (0 @ 1) © ¢ where ¢ is a decreasing permutation (possibly of length 0), 1 is the
one-element permutation, and ¢ avoids 123 and 132. Iterating this argument, we see that
o is the skew sum of one or more permutations of the form § & 1. In the terminology of
[1], U,,S,(132,123) is the class (D @ 1). Observe that each “@1” in this decomposition
corresponds to a right-to-left maximum of o.

We construct a map from S, (132,123) to the set of 0-1 sequences xixs---,_1 as
follows. Given o € S,,(132,123), let 1 < iy < is < -+ < i) < n — 1 be the locations in
[n — 1] of its right-to-left maxima. Then define z;, = z;, = --- = 2;, = 1l and z; = 0
for j & {1,142, ,ix}. It is not hard to see that this map is a bijection. Moreover, fixing

11



T, = ro = 1, we have

k+1
LDS, (o) = Zmax(l,ij — i1 — 1)
j=1

k+1 k+1
= E (ij —ij1— 1)+ E Limi; 1
=1 =1

n—1 n
= Z 1xi:0 + Z 1961-71:1‘1:1
= n—2 = n—1
=24 Lo+ Y oo
E
= n—2 nizl2
=n—1-— ZCL’Z + inxi—b
1=2 =2

Therefore with the uniform probability measure on S, (132,123), LDS,, = T, .

Example 4. For the 0-1 sequence 01101 of length 5, the corresponding permutation of
length 6 in Sg(132,123) is 0 = 56423 1. See also the example in Figure 5(c).

(d) The case T = {132,213}: Let 0 € S,,(132,213). Suppose o, = n for some k € [n]. To
avoid the pattern 213, we must have o, < 09 < --- < 0; and to avoid 132, we must have
o; > n —k whenever i < k. Therefore, 0 = A © ¢ where \ is the increasing permutation of
length k, and ¢ € S,,_x(132,213). Iterating this argument, we see that o is the skew sum
of one or more increasing permutations. Thus, this class is the reverse (or complement)
of the layered permutations.

Observe also that a member of S,,(132,213) is uniquely determined by the locations
of its right-to-left maxima. Therefore, as in the proof of part (c), we obtain a a bijection
between S,(132,213) and the set of 0-1 sequences xjxs---x,_ 1 by setting z; to be 1
(respectively 0) if o; is (respectively, is not) a left-to-right maximum of o. Then we have

n—1
LDS,(0) =Y ly-1+1
=1

and
LIS, (0) = 1 + length of the longest run of zeros in x;x9 -+ - ;1.

Therefore, with the uniform probability measure on S, (132, 213), we have LDS,, = Bin(n—
1,1/2) +1 and LIS, = R,,_; +1. O

12



Example 5. The permutation ¢ = 561234 in S(132,213) corresponds to the 0-1 se-
quence 01000 of length 5. See also the example in Figure 5(d).

Recall that a composition of an integer n is a way of writing n as the sum of an ordered
sequence of positive integers. Two sequences with the same terms but in different order
correspond to different compositions but to the same partition of their sum. It is known
that each positive integer n has 2"~ ! distinct compositions, and that there is an explicit
bijection between the compositions of n and the set of layered permutations of length n.
Probabilistic properties of random integer compositions and partitions have been studied
in the literature. From this viewpoint, our results for group (d) correspond to results on
page 337 and in Theorem 8.39 of [16].

We conclude this subsection by explaining how the results of Table 1 follow from The-
orem 2 and some classical results. The mean and standard deviation of D,, are asymptot-
ically

It is easy to show that

Moreover, the fact that the limiting distribution of (T, —E(T,))/SD(T,) is standard
normal is a consequence of the following lemma, which can be found for example in [11].

Lemma 6 ([11], Theorem 7.3.1). Suppose that {Y,} is a sequence of m-dependent, uni-
formly bounded random variables such that as n — +o0
SD(Sn)
/3
where S, = Y1 + Yo+ ---+Y,. Then (S, — E(S,))/SD(S,) converges in distribution to
the standard normal distribution.

— +00

Finally, Erdos and Renyi [13] proved that

=1 as. (6)

It is also known that as n tends to infinity E(R,,) ~ log, n, SD(R,,) converges to a positive
constant, and R,, —log, n possesses no limit distribution; for more on this topic see the
survey paper [23].

2.2 Longest alternating subsequences

In this section, we will present our results on the asymptotic behaviour of the length of
the longest alternating subsequence, LAS,,, on S, (7", 7)) with 7, 72 € S5 under the
uniform probability distribution. For a result on LAS,, for longer patterns, see Theorem 16
in section 2.3.
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Theorem 7. Let T denote a 2-element subset of Ss. Consider S,(T) with the uniform
probability measure. Then we have the following:

a) If T = {132,321}, then we have LAS, (c) < 3 for any o € S,(T).
b) If T = {132,231}, then we have LAS,(c) < 3 for any o € S,,(T).

If T = {132,312}, then LAS, is asymptotically normal with the mean EX(LAS,) ~
n/2 and the standard deviation SD!(LAS,) ~ /n/2.

c) If T = {132,123}, then LAS, is asymptotically normal with the mean EX(LAS,) ~
n/2 and the standard deviation SD(LAS,) ~ /n/2.

d) If T = {132,213}, then LAS, is asymptotically normal with the mean EL (LAS,) ~
n/2 and the standard deviation SDX(LAS,) ~ /n/2.

Remark 8. Parts (a) through (d) correspond to the labeling in Figures 1 and 3. Note that
since | LAS, (¢0) — LAS,,(¢¢)| < 1 and |LAS, (¢) — LAS,(¢")] < 1, it suffices to consider
one representative pair from each symmetry class in Figure 1 except the symmetry class
in Figure 1-(b).

The proof uses the structures exploited in the proof of Theorem 2. The proof of part
(b) needs a bit of new work, so we prove it last.

Proof of Theorem 7. (a) Assume o € 5,,(132,321). Recall from the proof of Theorem 2(a)
that o is either the identity or else it can be represented as o = 213[r(M) 72 73]
the inflation of 213 by increasing permutations 7V, 73 73 (Figure 3(a)). Therefore,

LAS, (o) < 3.

(¢) Recall that the bijection in the proof of Theorem 2(c¢) defines z; = 1 if o; is a right-
to-left maximum, and x; = 0 otherwise, for each i € [n — 1]. Then xy, 29, ,x,_1 are

independent Bernoulli(3) random variables.
n—1
Let A, = leizolzw:l. Note that |LAS, —2A, | < 4. It is easy to show that
i=1
E(A,) ~ 7 and SD(A,) ~ */TE. Moreover, by Lemma 6, normalized A, converges to
the standard normal distribution. Therefore EX(LAS,) ~ 2E(A,) and SD!(LAS,) ~
2SD(A,), and we get the asymptotic normality of LAS,, .

(d) Using the bijection from the proof of Theorem 2(d), the proof will be the same as in
part (c¢) above.

(b) Let 0 € S,,(132,231). As shown in the proof of Theorem 2, o is the juxtaposition of
a decreasing and an increasing subsequence. Therefore LAS,, (o) < 3.

Let 0 € S,(132,312). Note that all the entries greater (respectively, smaller) than oy
must be in the increasing (respectively, decreasing) order, otherwise we would have a 132
(respectively, 312) pattern.

For i € [n — 1], define z; to be 1 if 0,41 > o1, and 0 otherwise. Then xy, 29, -+ , 2, 1
are independent Bernoulli(%) random variables.

14



n—1

Set A, = Z ly,=114,,,—0- Then the rest of the proof follows as for part (c). O
i=1

2.3 Results for patterns of length k£ > 4

In this subsection, we will present our results on longer patterns. Theorem 9 concerns
monotone patterns. It yields precise properties because we can exploit the Schensted
correspondence, which we review below. The next group of results proves that LIS, is
unlikely to be o(n) on S,(7) when 7 is of the form 7 = kry - - - 7, € S. Finally, Theorem
16 proves an analogous result for LAS,, on S,(7) for some patterns 7.

First we recall some basic definitions used in the algebraic combinatorics of permuta-
tions. For more on this topic, see chapter 7 of [10] or the survey paper [2]. A partition
A= (A1,---,A;) of an integer n > 1 is a sequence of integers with Ay > Ay > --- > \; > 1
and ) . \; = n. A partition A can be identified with its associated Ferrers shape of n cells
with \; left justified cells in row i. A (standard) Young Tableau is a Ferrers shape on n
boxes in which each number in [n] is assigned to its own box, so that the numbers are
increasing within each row and each column (going down). The Schensted [22] correspon-
dence induces a bijection between permutations and pairs (P, Q) of Young Tableaux of
the same shape. The number of Young Tableaux of a given shape A, denoted by d,, is
given by the celebrated hook length formula of Frame and Robinson:

n!
= —Hc e
The hook length h. of a cell ¢ in a Ferrers shape is the number of cells to the right of ¢
in its row, the cells below ¢ in its column, and the cell ¢ itself. For illustration, in the

following Ferrers shape corresponding to the partition A\ = (5,4, 2), each cell ¢ is occupied
by its hook length h.. (Lest confusion arise, we note that it is not a Young Tableau.)

dy

71614131
5|4
2|1

Importantly, if the Schensted correspondence associates the shape A with a given
o € Sy, then A\; = LIS, (). In [22], Schensted shows also that the length of the decreasing
subsequences in ¢ are encoded by the P-tableau of o: For any o € S,,, we have

P, = P! (7)

where P, is the P-tableau of the reverse " of o and P! is the transpose (reflection
through anti-diagonal) of P,.

Theorem 9. Consider S, (1) with 7 = k(k —1)---1. Then whenever 0 < ¢ < k — 2, we

have
_ 2
E k—2—e k—1
<1+6)(1+e) (1_ k—2> ] (8)
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and

P7 (LISn <7 n 1) =0 for every n. (9)
Therefore
LIS, 1 , .
— wn probability as n — oo.
n kE—1

Proof of Theorem 9. Fix the decreasing pattern 7 = k(k — 1)---1. For any o € S,(7),
there will be at most k—1 rows in the corresponding Ferrers shape because LDS,, (o) < k—1
and LDS, (o) = LIS, (¢") = number of columns in P,» = number of rows in P, by
Equation (7). Note also that it follows from the Erdos-Szekeres lemma that LIS, (o) >
for all 0 € S,,(7). This proves Equation (9).

Let H,, » denote the set of partitions of n with at most £—1 rows in their corresponding
Ferrers shape. For notational convenience, we will consider

_n_
k—1

Hogo = {( A1, , A1) € /D VS VR ) Ai =n}.

For a given € > 0, let HS , := {A € Hpp 0 A > ni25} and let

k—1
E ) 1+e€

Let A, be a random variable taking values in H, ; with the distribution Q = Q,
given by

QA,=\) = &
! Skl
This distribution can be considered as a “shape distribution” on the Ferrers shapes corre-
sponding to the uniform distribution on permutations in S, (7). Specifically, P; (LIS, (o) =
a) = QA1 =a).

Note that for A = (Ag, -+, A\e—1) € Hpx, we have

(10)

k—1 k—1
1> < IJre < JJv+E-1),
i=1 c i=1
and hence
n! n! n!

- < - < —. 11
M+ k—10 - TLhe T )

If z € Cj, and the sequence {\(n)} (with A\(n) € H;, ) satisfies lim,, o, A(n)/n = z, then
by Stirling’s approximation, n! ~ n"e~"/2mwn, we see from Equation (11) that

1

Tp—1

lim dY/", = D(z) := — T
’xl ...xkil

n-soo A

(12)
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where 0° = 1. Note that the maximum of D(z) over C{ is attained at = « defined by

o = 3 and ap = -+ = a1 = (1 — £5), with the value D(o) = (k —1)/[(1 +

€)1+ (1 — 5)2=]V/(*=D_ (To see this, first note that if we fix z; = A, then a Lagrange

T - : : ._ 1-A 1-A\,
multiplier calculation shows that the maximum is at z(A) := (A, 1=5,...,=5); then

show that log D(z(A)) is a concave function of A € (0,1) with maximum at A = 15.)
For k > 2, Regev [21] proved that the Stanley-Wilf limit of the increasing pattern

7 =12---k is given by

L(12---k) = (k—1)% (13)
Using Equations (10) and (13), we see that
L D(e)?
€ 1/n
hggolf Q(An € Hy i) mo> =1 (14)
For the complementary inequality, let A(n) := argmax, o _Q(A, = A). Then
QAn € Hip) < [Hipl QAn = A(n)). (15)
Since Cj, is a compact set and @ € Cy, there exists a subsequence X(nl) such that %’Zl)
converges to a point z € C; and
lim Q(A,, = A(n))Y™ = limsup Q(A, = A(n))"/™. (16)

l=o0 n—00

Since |H, .| = O(n*~') as n — oo, we see from Equations (15) and (16) and the argument
for Equation (14) that

PP _ Do)

I An € HG )Y < < . 17
lin—?ogp Q( S Hn,k) (IC _ 1)2 (IC _ 1)2 ( )
Equations (14) and (17) imply that Equation (8) holds, and the theorem follows. O

The next group of results concerns LIS, when 71 = k. The key observation is that
LIS, is at least as big as the number of left-to-right maxima (Equation (18)). Theorem
10 then tells us that LIS, is at least a constant times n, with very high probability.

Let RL, (o) be the number of right-to-left maxima in the permutation o, and LR,,(0)
be the number of left-to-right maxima in . Note that the left-to-right maxima (right-to-
left maxima) in o form an increasing (decreasing) subsequence in o. In particular,

LIS,(c) 2 LR,(¢) and LDS,(0) = RL,(0). (18)
Recall also the notation S,(7;P) from Section 1.4.

Theorem 10. Let 7 = kry- -7, € Sy. For every real 6 such that 0 < § < 1/L(T), the
following strict inequality holds:

limsup | S, (7; LR, < on)[Y" < L(7).

n—oo
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Theorem 10 is an immediate consequence of Theorem 11, which is a stronger (and
more technical) result. We will also need Theorem 11 for the proof of Theorem 17(b).
For 7 € Si, 6 > 0, and an interval I, define

Sn(7; LR, [I] < 0n)
= {0 € S,(7) : 0 has fewer than on left-to-right maxima o; such that o; € I }.

Theorem 11. Let 7 = krp-+ 1 € Sk. For 0 < oy < ay < 1, let I, = [ay,,b,] where
an/n — oy and b, /n — ay. For every 0 < 6 < ”‘z(_:)”, the following strict inequality holds:

lim sup | S,, (7; LR, [I,,] < 6n)|Y™ < L(7).
n—oo
Intuitively, this result says that for a typical member of S,,(7), the left-to-right maxima
fill [1,n] with a positive density throughout [1,n].
We shall require an insertion operation Z which was introduced in [4]. Suppose o € S,
and h € [n]. Let J = min{j : 0; > h}. Define the permutation 6 € S, as follows:

o; ifi<J
, I if i = J
L Oi—1 ifi>J+1and0i_1<h

0'1;1—'—1 1fz2J—|—1andoz,1>h

We denote 6 by Z(o; h). Think of Z(o; h) as inserting a new left-to-right maximum in o at
height h, while preserving all the other left-to-right maxima of ¢ (perhaps shifting them
slightly).

The proof of Theorem 11 is similar to the proof of Proposition 6.2 of [4]. The main
idea is that repeated use of Z can transform a permutation ¢ in S, (7) into many other
permutations ¢’ in S,,1,.(7) with 7 more left-to-right maxima. By insisting that o started
with few left-to-right maxima, we significantly limit the number of choices of o that could
give rise to a particular o’. We then estimate how much smaller the number of preimages
o is than the number of images o', which is at most L(7)"".

The following lemma says that if 71 = k, then Z preserves m-avoidance. For the proof,
see the proof of Lemma 6.1 in [4].

Lemma 12 ([4]). Let 7 = kry-- -1 € Sk. Assume 1 < hy < hg < -+ < h, < n. Let
o =0 € S,(1) and let =Y = Z(cW; 1) for | = r,r—1,---,2,1. We denote c© by
Z(o;hy, ho, -+, h). Then we have

o0 € S, (7).
Observe also that h; +i — 1 is a left-to-right maximum of ¢ for each i € [r].

Proof of Theorem 11. Assume 0 < § < 221 and choose a positive integer M so that

L(r)
L(T) 5L(7_ = o | bn—an—2
7<1—mLetT:T’n—LTJ
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For fixed n, define the intervals of heights in I, as J; := ([a,|+ (i —1)M, [a, | +iM]
for each i € [r]. Then Ji,--- ,J, are disjoint subintervals of I,,.
In the following, we shall use the notation of Lemma 12. Define the function ¥ = ¥,
as
U S, (7 LRy [1L] < 0n) x [M]" — S, (T)

such that U(o, (hy, ha, -+, hy)) = Z(o; hy, he, -+, hy), where h; = [an] + hi + (i — )M
for ¢ € [r] (so that h; € J;). Corresponding to the intervals of heights J;, we define the
shifted intervals of heights as follows:

TV =Ti+i—1 = (Ja, ]+ (=DM +1),Ja,] +i(M+1)=1], i=1,--r

Then JY...., 7Y are disjoint subintervals of (a,, b, + 7). Given ¢’ € Image ¥, we want
to find an upper bound on the number of (7, (hy, hs,--- ,h,)) in the domain of ¥ such
that

U (5, (hy,hay -+ hy)) =0’ (19)

For i € [r], let b; be the number of left-to-right maxima of ¢’ in J;”. Observe that if
Equation (19) holds, then [a,] + h; + (i — 1)M + i — 1 is a left-to-right maximum of o’
in J.¥.

Also note that there are at most én + r left-to-right maxima of ¢’ in (a,, b, + ). It

follows that
- "ob\" on+r\"
v < | | b, < h < .

Therefore

|Sy(7; LR, [ 1] < dn)|M™ = Z U 1(o")] < |Sn+r(r)|(

o’€lmage ¥

§n+r>T

r

and hence

on+r\"
LR, |1 < L) | ——— ] .
Sum L1 < )] < Ly (2L

. Tn Qg —
Since — —
n

as n — 00, it follows that

(az—a1)/M
lim sup |S, (7 LR [1] < 6n)]/" < L(T)( oL | L(T)) < L(r).

n—o0 o — (1 M
Then Theorem 11 follows. L]
Theorem 10 and Equation (18) imply the following.
Corollary 13. Consider S, () with T = kto-- -1 € Si. Then
ET(LIS,) - 1

hggf - > )
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Proof of Corollary 13. Recall from Equation (18) that LIS, (o) > LR, (o) for every o €

S,. Therefore for any 0 < § < ﬁ,

|Sn(T; LR, = dn)|
S (7)]
Then the result follows from Theorem 10. OJ

E;(LIS,) > E}(LR,) > EJ (LR, Iir,>sm) = On

The next result provides a sharp contrast with Theorem 10 in the case 7 = k7o - - - 7.
Thus it is of some independent interest, even though it tells us nothing about longest
increasing subsequences.

Theorem 14. Assume T € Sy and satisfies at least one of the following conditions:

(i) 71 < T, or
1) k occurs to the right of k—1 in 1.
g

Then
liminf E7 (LR,,) < L(7). (20)

n—o0

If also k < 5 orif 1 = 1 or if 7, = k, then we can replace the above “lim inf” by “lim

sup.”
We shall use the following result in the proof of Theorem 14. For its proof, see Theorem
6.4, Remark 2, and Theorem 7.1 of [4]. Presumably the result (21) holds for every 7, but

the proof remains elusive.

Theorem 15 ([4]). For every T in Sy with k < 5 or when 7 (or 1) equals 1 or k, we
have

1S ()

=00 |Sp(7)]
Proof of Theorem 1/. First assume that condition (i) holds, i.e. that k occurs to the
right of k—1 in 7.

For each 0 € S, and i = 1,--- ,n+1, let ¢° be the permutation in S, obtained by
inserting n + 1 between the (i—1)" and " positions of o. That is, o' = oy -+ 0;_1(n +
Voo,

For a given o € S, (7), define

= L(r). (21)

W, (c) = the number of values of i for which ¢* € S, 1(7).

Let 0 € S,(7) and suppose o; is a left-to-right maximum. Suppose that o’ contains a
subsequence that forms the pattern 7. Then the following must be true:

e For some j < %, 0; and n+ 1 must be the second-largest and largest entries,
respectively, in this subsequence.

e This subsequence cannot include o;, because o; is a left-to-right maximum
and thus o; < 0;.
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But then replacing n+1 with o; in this subsequence of o would produce a subsequence
of o that forms the pattern 7, which is a contradiction. Hence o’ € S, 1(7).
By the above argument, for any o € S,,(7) we have

LR,(0) < W,(0). (22)

As argued in Lemma 2.1 of [18], we note that for each p € S, ,1(7), there is a unique
o € S,(7) and a unique i € [n + 1] such that o' = p. It follows that

> Wa(0) = Sui (7).

o€Sn(T)
Dividing both sides by |S,(7)| gives us

[Sn11(7)]

BT (W,) = 2l 23
W) =5, (23)
From [3], we also have
L(7) := lim |Sn(7')|1/" = sup |Sn(7')|1/". (24)
n—oo n>1

Hence liminf, . E; (W,) < L(7) by Equations (23) and (24). Together with Equation
(22), this proves Equation (20). The final statement of Theorem 14 follows from Theo-
rem 15.

This concludes the proof of Theorem 14 under condition (ii). The theorem under
condition (7) will follow upon applying the bijection B : o +— (671)", which corresponds
to reflection through the decreasing diagonal. We only require two observations: firstly,
that 7 satisfies condition (%) if and only if B(7) satisfies condition (i), and secondly that
LR,(0) = LR, (B(0)) for every o € S,, (indeed, j = o; is a left-to-right maximum of o if
and only if (B(0))n4+1-; = n+ 1 — i is a left-to-right maximum of B(0)).

In particular, for k = 4, we conclude that ET(LR,,) is of order n when 71 = 4, and is
bounded for every other 7 € Sy except perhaps 2143. O

For all nontrivial cases of pattern-avoidance that we have considered, the longest
monotone subsequence (i.e., the maximum of LIS, and LDS,) is of order n on average,
which contrasts with the order /n that holds for the set of all permutations. We don’t
yet know whether this order n behaviour holds in general under pattern avoidance, but
this hypothesis is consistent with our limited simulation experiments so far. For exam-
ple, Figure 6 summarizes some simulation results on the length of the longest increasing
subsequence for random permutations in S,,(2413). The data suggest that E**'*(LIS,,)/n
converges to a number between 0.2 and 0.25.

As described in Section 2.2, it is known that the expected length of the longest al-
ternating subsequence is either bounded or else asymptotically proportional to n/2, for
all cases of S,,(T") with T consisting of one or two patterns of length 3. We do not know
whether this extends to all longer patterns, but we can prove the following.

21



N

EZ'"3(LIS,,)

| EZ'P(LIS,)/n |

75

22.3425 £ 0.3783

0.2979 £ 0.0050

100

29.1375 £ 0.5336

0.2914 £ 0.0053

125

35.0050 %= 0.5866

0.2800 £ 0.0047

150

39.9825 £ 0.7321

0.2665 £ 0.0049

175

46.4550 £ 0.8172

0.2655 £ 0.0047

200

51.5350 £ 0.8890

0.2577 £ 0.0044

225

56.3400 £ 1.0091

0.2504 £ 0.0045

235

59.3122 £ 1.0020

0.2524 £ 0.0043

250

62.9425 £ 1.1173

0.2518 £ 0.0045
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n
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Figure 6: 95% confidence interval on E2**3(LIS,) and E>*'*(LIS,)/n for permutations
avoiding 2413. For each n, we used a sample of 400 (approximately independent) permu-
tations generated by the Markov Chain Monte Carlo method of [18].
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Figure 7: Examples of randomly generated 2413-avoiding permutations in Si50(2413)
and S00(2413). These are reminiscent of plots given in [6] of separable permutations,
S, (2413,3142), which appears to be a more tractable class.

Theorem 16. Consider S,,(7) with T € Sy, where k > 4. Assume that either

(a) m =k and o £k — 1, or

(b) |1i — Tix1| > 1 for every i € [k — 1].

Then

Ep(LAS,) _

lim inf —=2
n—oo n

T L(r)
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In particular, Theorem 16 proves that E] (LAS,)/n is bounded away from 0 for the
patterns 7 = 4231 (part (a)) and 7 = 2413 (part (b)). Permutations which satisfy the
condition in part (b) are called 1-prolific in [9].

The strategy of the proof is similar to that of Theorem 11.

Proof of Theorem 16. (a) Assume 7 € Sy with 77 = k and 7 # k — 1. It suffices to prove
that for every positive real § < L(7)72, we have

lim sup | S, (73 LAS,, < 20n)|Y™ < L(7). (25)

n—o0

Suppose 0 € S, and h € [n]. Let J = min{j : 0; > h}. Define the permutation
0 € S, as follows:

o; ife<J
h+1 ife=J
0;=14h ifi=J+1
Oi_9 ifi>J+2and o9 <h
(Ti—2 + 2 ifi>J+2and o,y > h

We denote 0 by Zy(o; h). Think of Zy(o; h) as inserting two new points into o in a 21
pattern, adjacent in location as well as in height, with the left point being a new left-to-
right maximum at height h + 1.

Assume 1 < hy < hy < -+ < h, < n. Let ¢ = ¢ and let o'=Y = T,(cW; k) for
l=7r,r—1,---,1. Then we denote 0¥ by Z,(c; hy, hg,--- , h,). It is not hard to see that
o© avoids 7, and that ¢(® has left-to-right maxima with heights h; +2i — 1 (i € [r]).

Fix 0 < 0 < L(7)"? and choose a positive integer M such that 6 + 57 < L(7)~2. Let
r=r,:=|n/M].

For each i € [r], we define J; = ((i — 1)M,iM] (the “intervals of heights”).

For each permutation o € 5,,, define the set of heights

A* (o) = {oy: oy is a left-to-right maximum and 0,41 = 0, — 1}.
E.g., A*(254367981) = {5,9}. Then it follows that LAS, (o) > 2| A*(0)|. Next, let
SH(1) == {o € Sy(r) : |[A*(0)] < on}.

Then we have

Sp(1;LAS,, <2dn) C Si(7). (26)

Define the function ¥y = ¥y, as
Uy 2 Si(1) x [M]" = Spiar(T)

such that Wy(o, (hy, by, -+, hy)) = To(o;hy, he, -+ h,), where by = h; + (i — 1)M for
i € [r] (so that h; € J;). We also define the set of shifted intervals of heights as follows:

T = Ji+2i—1= ((i—1)(M+2)+1,i(M+2)—1], i=1,--,r
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Then JY,..., 7Y are disjoint intervals in [1,n + 27].
Given o' € Image W,, we would like to find an upper bound on the number of
(&, (h1,h2, -+ ,h,)) in the domain of ¥y such that

Uy, (T, oy -+ By)) = 0. (27)

For i € [r], let bf = |A*(0') N J¥|. Observe that if Equation (27) holds, then h; + (i —
M + (2i — 1) € A*(0') N J*. Note that | A*(o”)| < dn + r. Therefore

] o (SLbY (Gt
ute)] < [T < (220 < (220
i=1

Therefore,

S = Y [ue)] < \anr(T)\(

o’€lmage Vo

5n—|—r)r

r

and hence

on+nr\"
* < n+2r )
5:00 < o (T

It follows that

limsup [, (7)|"/* < L(7) (L(r)2 (5+%))1/M < L(7).

Equation (25) follows from this and Equation (26), and the result of part (a) is proved.

(b) Assume 7 € Si and |1; — 7;—1| > 1 for every i € [k — 1]. Given o € S,(7) and
h € [n], let H*(o;h) be the permutation 6 defined as follows. Let J be the index such
that oy = h (note the distinction from part (a) here), and let

o; ifie<Jando; < h
o; +2 ifi<Jand o, > h
h+2 ifi=J+1

h+1 ifi=J42

Oi_o ifi>J+2and o, o < h
(0io+2 iti>J+2and o9 > D

Then 6 € S,.2(7). In effect, H* inserts two points into o to the right of location J, so

that o; (= 6;) and the two new points (6, and 6;,5) form a 132 pattern with three

contiguous heights. As in part (a), assume 1 < hy < hy < --- < h, < n. Let oM = ¢ and

let =Y = H*(oW: by) for I = r,r—1,--- 1. Then we denote ¢(*) by H*(o; hy, ha, -+ , hy).
For each permutation o, we define the set of heights

B*(c) := {0y : 0y =041 — 2 =040 — 1}.
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Then LAS, (o) > 2|B*(0)|. Arguing as in part (a) with the same choice of ¢, M, and r,
we obtain

on+nr\"
. * < n—+2r
.73 1B (o) < o] < 2o ()

and the result of part (b) follows. O

2.4 Rare regions for S, (7).

As noted in Section 1.3, plots of random permutations avoiding some patterns have large
regions that are usually empty (see Figure 2). The results of this subsection relate to
these regions.

Without loss of generality, we shall assume for the rest of this subsection that 7 € S
and 71 > 7. Recall from Section 1.3 that the “rare region” R = R(7) is the set

R = {(x,y) € [0,1)* : for all sequences {(I,,, J,,)}n>1 such that (I,,,.J,) € [n]*> and
1
lim <—n, ﬁ) = (z,y), we have limsup|S,(m;07, = J,)|"/" < L(7)},
nsoo \ NN n—s0
We also defined G = [0, 1]>\ R (the “good region”) and R" = RN {(z,y) € [0,1]? : y > x}.
For every x € [0, 1], let

r’(z) = sup{y: (z,y) € G} and 7 (z) = inf{y: (z,y) € G}.

(We shall see that r! and r* are well-defined functions since the set {y : (z,y) € G} is
never empty.)

By Theorem 1, we know that R' # () if and only if 7, = k; in particular, when 7 # k,
then 7' is identically 1. (Similarly, r+ is identically 0 when 73, # 1.) The other case, in
which 7 = k, is addressed in the following theorem.

Theorem 17. Assume 7 = k1y--- 71, € Si.

(a) If (x,y) € G, then the convex hull of {(x,y),(0,0),(1,1)} is contained in G. In
particular, G contains the diagonal {(z,x) : x € [0,1]}.

(b) G C {(z,y) €[0,1*: y < L(r)w and y <1— (1 —x)/L(7)}.
(c) The function v satisfies r1(0) = 0, (1) = 1, and r'(z) > x for every x € (0,1).

(d) The function r' is strictly increasing and Lipschitz continuous, with left and right
derivatives contained in the interval [L(7)™Y, L(7)] at every point.

Theorem 17(b) implies that for every 7 € Sy, with 7, = k, the closure of RT(7) includes
the point (0, 0). This had been proven in Proposition 9.2 of [4] under an additional assump-
tion (called “TPIP”) on 7y - - 7. Theorem 17(b) shows that this additional assumption
is unnecessary.
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Proof of Theorem 17. (a) Note that {(0,0),(1,1)} C G since |S,(7;01 = 1)| = [Sp_1(7)|
and |S,(1;0, =n)| = |S,_1(7)| for all n > 1.
Let (z,y) € G. Then there exist I,,, J, € [n] such that (£,22) — (z,y) and

limsup |S, (707, = Jo)|7 = L(7).

n—o0

Let t € (0,1) and let m := m,,
follows that (2o o) s (tx,ty) and

+m’ n+m

ST 01, = T > [Su(rs 01, = Jo) |2 557 | Sy (7)| 57

(the inequality is proved using the injection S, (7) X Sy, (7) < Sy 14m(7) given by the direct
sum (defined in Section 1.4)).
Hence we have
limsup [Sp (7507, = J)|[77 > L(r)'L(r)"™" = L(r).
n—oo

Therefore [ := {(0,0)+t(x,y) : 0 <t < 1} C G. By a similar argument, we can show that
Lh={1—-1t)(1,1)+¢t(z,y): 0<t <1} CGand 3 :={(0,0)+¢t1,1):0<t <1} CG.
Since any point in the convex hull of {(z,y),(0,0),(1,1)} can be written as a linear
combination of (0,0) and a point from b, the result follows.

(b) Assume (z,y) € [0,1]* and y > L()z. Assume that (£, 22) — (z,y). If o; = J, then
every left-to-right maxima o; with o; < J must satisfy ¢ < I. Therefore,

Su(Ty01, = Jn) C Su(m;LR,L([1, Jn)) < I,)-

In Theorem 11, let ay = 0, as = y, and choose d such that z < § < L( 3 Then S, (7507, =
Jn) C Sp(m; LR,([1, J,]) < on) for all sufficiently large n. Therefore, by Theorem 11, we
see that (z,y) € R. Therefore G C {(z,y) € [0,1]?: L(r)z}.

To show the rest of (b), consider the mapping (x y) +— (1l—y,1—x), which is the
reflection through the line « +y = 1. This reflection corresponds to the bijection o —
(71, Letting 7 = (77')", we have L(7) = L(7) and 7, = k. Now suppose (z,y) € G(T).
Then (1 —y,1—2x) € G(7), and hence (1 —z) < L(7)(1 — y) by the preceding paragraph.
Therefore y < 1 — (1 — xz)/L(7). This completes the proof of (b).

(c) Since (0,0) € G, part (b) implies that 77(0) = 0. The rest of part (c) follows from
part (a).

(d) Strict monotonicity follows from the convex hull property of part (a), together with
the fact (a consequence of (b)) that r'(z) < 1 for every x € (0,1). Next, observe that if
0 <u < v < 1, then the convex hull property implies that the point (u,7T(u)) cannot be
below the line segment joining (0,0) to (v,7T(v)). That is, 7T (v)/v < rT(u)/u, and so

T — T
) =) ) () =) )

X
Vv—1Uu v—1Uu u

(where the final inequality follows from part (b)). This proves the upper bound on the
derivatives. The lower bound follows using the reflection argument from part (b). O
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Theorem 18 below holds for any pattern 7. Together with Theorem 17, it shows that
the graph of r' is precisely the boundary between R" and G (when R' is not empty).

Theorem 18. Let 7 € Sp. Then G = {(x,y) € [0,1]? : r¥(z) <y < rT(2)}.

Proof of Theorem 18. Without loss of generality, assume 7, > 7. It suffices to show that
for every (z,y) € [0,1]* with y > z, we have (z,y) € G if and only if y < r'(z). We
already know this from the discussion preceding Theorem 17 when 7 # k, so assume
71 = k. The desired result will follow from the convex hull property of Theorem 17(a) if
we can prove that the point (z,77(z)) is in G for every z € (0,1). We shall accomplish
this by proving that G is closed.

Proving that G is closed is essentially an exercise in analysis. Here are the details. Con-
sider a point (x,y) in the closure of G. It suffices to construct a strictly increasing sequence

of natural numbers n(1),n(2),... and a sequence of pairs of integers {(in(m), Jnm)) : M =
1} such that (in(m), Jnm)) € [n(m)]? for every m, lmy, oo (inm), jnm))/n(m) = (z,y),
and limy, o0 [Sn(m) (T;Jin(m) = jn(m))|1/”(m) = L(7). We shall construct the sequences

inductively. Let n(l) = 1 = 4, = j;. Given m > 1 and n(m — 1) € N, choose
(x(m),y(m)) € G such that ||(z(m),y(m))—(z,y)|[1 < 1/m. Then there exists a sequence
{(I,(m), J,(m)) : n > 1} such that (I,(m), J,(m)) € [n]? for every n,

i (#4720 (o) o)), and

n—o0 n n

lim Sup |, (73 01, (my = Ju ()| = L(7).

n—oo

Therefore we can choose n’ > n(m — 1) such that

(S (7501, m) = e (m))|V" > L(7) _% and
H(I”}WJ";T )) = (am).y(m)|| < =

Let n(m) = 0/, ingm) = Ly(m), and juum) = Jw(m). One can now check that these
sequences have the desired properties. Hence (z,y) € G. Thus G is closed, and the
theorem follows. ]

It is known that r' is the identity function r'(z) = x for the monotone pattern
T =k(k—1)---1, as well as for some other patterns [19]. So far, there is no pattern 7 € Sy
with 7, = k for which we can prove that 7' is not the identity function. Simulations are
not yet clear about whether 4231 is one such pattern; see Figure 2 as well as [8]. We
conjecture that 1 is always a concave function.
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