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Abstract

In this paper, we investigate to the structure of minimum vertex and edge cuts of
distance-regular digraphs. We show that each distance-regular digraph Γ, different
from an undirected cycle, is super edge-connected, i.e. any minimum edge cut of Γ
is the set of all edges going into (or coming out of) a single vertex. Moreover, we will
show that except undirected cycles, any distance regular-digraph Γ with diameter
D = 2, degree k ⩽ 3 or λ = 0 (λ is the number of 2-paths from u to v for an edge
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uv of Γ) is super vertex-connected, i.e. any minimum vertex cut of Γ is the set of
all out-neighbors (or in-neighbors) of a single vertex in Γ. These results extend the
same known results for undirected case with quite different proofs.

1 Introduction

A digraph (or a directed graph) is an ordered pair Γ = (V,E), where V is a set whose elements are called
vertices or nodes, and E is a set of ordered pairs of vertices, called arcs or directed edges. In contrast, a
graph in which the edges are bidirectional is called an undirected graph. In order to simplify our nota-
tions, we will use the word “edge” instead of the word “directed edge” in this paper. A digraph with no
multiple edges or loops (corresponding to a binary adjacency matrix with 0’s on the diagonal) is called
simple. Here we only consider finite simple graphs and digraphs. A digraph Γ is called regular with
degree (valency) k, if the in-degree and the out-degree at each vertex of Γ are equal to k. We will denote
by ∂Γ(x, y) (or briefly ∂(x, y)) the distance from a vertex x to a vertex y in a digraph Γ. For every vertex
x, we define the directed shell Γ+

k (x) (resp. Γ−
k (x)) to be the set of vertices at distance k from x (resp.

the set of vertices from which x is at distance k). For distinct vertices u and v of Γ, we say that u is
adjacent to v if there is an edge (directed edge) from u to v. For every x ∈ V (Γ) and A ⊆ V (Γ), by
d+A(x) and d−A(x) we mean the number of out-neighbors and in-neighbors of x in A, respectively. The
maximum (directed) distance between distinct pairs of vertices is called the diameter of Γ and is denoted
by D. The girth g is the smallest length of a cycle in Γ. In this paper, by a walk, path or cycle, we mean
a directed walk, path or cycle. A digraph is (strongly) connected if there is a path between every pair of
vertices. For a connected digraph Γ, a set of edges F ⊆ E(Γ) (resp. a set of vertices F ⊆ V (Γ)) is called
an edge-cut (resp. a vertex-cut) if Γ − F is disconnected. The sizes of the minimum edge-cut and the
minimum vertex-cut of a connected digraph Γ are called the edge connectivity and the vertex connectivity
of Γ, respectively. A digraph is called super edge-connected if any minimum edge cut of Γ is the set of
all edges going into (or coming out of) a single vertex. Also, a digraph is called super vertex-connected if
any minimum vertex cut of Γ is the set of all out-neighbors (or in-neighbors) of a single vertex in Γ. All
of the above concepts can be defined for undirected graphs in a natural way, it only suffices to consider
an undirected graph as a directed graph whose edges are bidirected. For more information on digraphs,
we refer the reader to [2]. Throughout this paper, let Γ = (V,E) be a connected simple digraph of order
n and diameter D.

A distance-regular graph is a regular graph such that for any two vertices v and w at distance i, the
number of vertices adjacent to w and at distance j from v only depends on i and j. Distance-regular
graphs with diameter two are precisely the strongly regular graphs, which have been studied by sev-
eral mathematicians [3]. For more background on different concepts of distance-regularity in graphs see
[5, 6, 11, 16]. The concept of “distance-regular digraphs” was introduced by Damerell [12]. A digraph Γ
with diameter D is distance-regular if for every two vertices u and v with ∂(u, v) = k for 0 ⩽ k ⩽ D, the
numbers aki1 = |Γ+

i (u) ∩ Γ+
1 (v)| for each i with 0 ⩽ i ⩽ k + 1, are independent of the choices of u and

v. Trivial examples of distance-regular digraphs are the directed cycles (the distance-regular digraphs of
degree 1). Moreover, distance-regular digraphs with girth g = 2 are precisely the distance-regular graphs.
We refer the reader to [14, 18, 19] and the references therein, for more information on the distance-regular
digraphs.

If we replace Γ+
1 (v) by Γ−

1 (v), in the above definition, we get a new family of digraphs called “weakly
distance-regular digraphs”. This concept was introduced by Comellas et al. [10], as a generalization
of distance-regular digraphs. In fact, distance-regular digraphs are precisely weakly distance-regular di-
graphs with normal adjacency matrices (a matrix A is normal if AAT = ATA, where AT is the transpose
of A). Also, in [10] it has been shown that a digraph Γ of diameter D is weakly distance-regular if for each
nonnegative integer ℓ ⩽ D, the number of walks of length ℓ from a vertex u to a vertex v only depends on ℓ
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and their distance ∂(u, v). Note that in [20], Suzuki and Wang suggested that a “weakly distance-regular
digraph” is a digraph with the following property: for all vertices u and v with (∂(u, v), ∂(v, u)) = (k1, k2),
the number of vertices w satisfying (∂(u,w), ∂(w, u)) = (i1, i2) and (∂(v, w), ∂(w, v)) = (j1, j2) depends
only on the values k1, k2, i1, i2, j1, j2. In this paper, we do not assume the Suzuki and Wang’s definition
of weakly distance-regular digraphs and we only consider the mentioned definition that was introduced
by Comellas et al. in [10].

The weakly distance-regular digraphs with diameter two are the same as the strongly regular digraphs
introduced by Duval in [13] as an extension of strongly regular graphs to the directed case. A k-regular
digraph on n vertices is called a strongly regular digraph with parameters (n, k, t, λ, µ) if the number of
walks of length two between two vertices is t, λ or µ when these vertices are the same, adjacent, or not
adjacent, respectively. The case t = k corresponds to the undirected case. On the other extreme, the
case t = 0, we have tournaments. For more details, we refer to Brouwer’s website [4].

In [9] Brouwer and Mesner showed that all strongly regular graphs are super vertex-connected. Also,
in [7] Brouwer and Haemers proved that the edge connectivity of a distance-regular graph of degree k
is equal to k and, for k > 2, the graph is super edge-connected. The same result for minimum vertex
cuts of distance-regular graphs was obtained by Brouwer and Koolen in [8]. In fact they showed that
the vertex-connectivity of a distance-regular graph Γ of degree k equals k. Moreover, Γ is super vertex-
connected for k > 2. Note that here we assume that the graph on one vertex with no edge is disconnected
and so each complete graph is super vertex-connected, while in [8] these graphs are the only exception
among the distance-regular graphs that are not super vertex-connected (since the authors considered a
complete graph on one vertex as a connected graph). Note that distance-regular graphs with degree 2
are precisely the (undirected) cycles. Therefore, except undirected cycles, each distance-regular graph
is super edge-connected as well as super vertex-connected. The eigenvalue methods are the main tools
to obtain the most of the above results. In this paper, we investigate to the structure of minimum edge
and vertex cuts in distance-regular and strongly regular digraphs and we only use the combinatorial
techniques to extend the mentioned results on the minimum cuts for directed case.

The paper is organized as follows. In the next section, we show that each distance-regular digraph,
different from an undirected cycle, is super edge-connected. In Section 3, we will investigate to the problem
of super vertex-connectivity of distance-regular digraphs and we will show that except undirected cycles,
all distance regular-digraphs with diameter D = 2, degree k ⩽ 3 or λ = 0 are super vertex-connected,
where λ is the number of 2-paths from u to v for an edge uv of Γ. Based on these results we conjecture
that (similar to the main result in Section 2) except undirected cycles, each distance-regular digraph
is super vertex-connected. In Section 4, we will investigate to the minimum cuts of strongly regular
digraphs. A well-known result in [15] implies that each strongly regular digraph with degree k ⩾ 3 is
super edge-connected. Hence by only looking at the strongly regular digraphs with degree k = 1, 2 we
will characterize those that are super edge-connected. Moreover, we will give a strongly regular digraph
with degree k = 3 that is not super vertex-connected. This example shows that the statement of our
conjecture in Section 3 (Conjecture 9) does not hold for strongly regular digraphs. Note that distance-
regular digraphs are precisely weakly distance-regular digraphs with normal adjacency matrices. Also,
weakly distance-regular digraphs with diameter 2 are precisely strongly regular digraphs. Based on the
above results, in the last section we conjecture that each weakly distance-regular digraph with degree
k > 2 is super edge-connected. In contrast, a strongly regular digraph with degree k = 3 given in Section 4
(see Figure 1) shows that the same conjecture for the super vertex-connectivity of weakly distance-regular
digraphs is incorrect.
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2 Minimum edge cuts of distance-regular digraphs

In this section, we investigate to the minimum edge cuts of distance-regular digraphs and we show that
if a distance-regular digraph Γ is not an undirected cycle, then Γ is super edge-connected. Note that a
distance-regular digraph Γ with girth g = 2 is a distance-regular graph and, due to a result of Brouwer
and Haemers in [7], Γ is super edge-connected, unless it is an undirected cycle. Hence here we only focus
on distance-regular digraphs with girth g ⩾ 3. First we give a useful known result that will be used later
on.

Lemma 1. ([17]) In any edge cut [A, V −A] of a regular digraph, the number of edges from A to V −A
equals the number of edges from V −A to A.

We remind that for every two vertices u and v with 0 ⩽ ∂(u, v) = k ⩽ D of a distance-regular
digraph Γ with diameter D, the numbers aki1 = |Γ+

i (u)∩Γ+
1 (v)| and bki1 = |Γ+

i (u)∩Γ−
1 (v)| for each i with

0 ⩽ i ⩽ k + 1, are independent of the choices of u and v. Since, the adjacency matrix A of a distance-
regular digraph Γ is normal, that is, the matrix satisfying AAT = ATA, we have ak11 = |Γ+

1 (u)∩Γ
+
1 (v)| =

|Γ−
1 (u)∩Γ−

1 (v)| for two vertices u and v with 0 ⩽ ∂(u, v) = k ⩽ D. Finally we remind that the notations
b111 and b211 are usually denoted by λ and µ, respectively. In fact in a distance-regular digraph Γ, the
parameters λ and µ are the numbers of 2-paths from u to v when ∂(u, v) = 1 and ∂(u, v) = 2, respectively.

Now we introduce a family D of distance-regular digraphs as an extension of trivial examples (the
directed cycles). Assume that A×B = {(a, b)|a ∈ A, b ∈ B} for two sets A and B. For t ⩾ 3, we denote by

C[X1, X2, . . . , Xt] a digraph with vertex set V =
∪t

i=1 Xi and edge set E =
∪t−1

i=1(Xi×Xi+1)
∪
(Xt×X1).

If t ⩾ 3 and ρ = |Xi| is constant, then Γ = C[X1, X2, . . . , Xt] is a distance-regular digraph with λ = 0.
We denote this family of distance-regular digraphs by D. In the following we will see that the family
D are exactly all distance-regular digraphs with λ = 0 that are not undirected. Since distance regular
digraphs with girth g = 2 are precisely distance-regular graphs, we can say that the family D are exactly
all distance-regular digraphs with g ⩾ 3 and λ = 0.

In [12], Damerell showed that every distance-regular digraph Γ with girth g is stable; that is, ∂(x, y)+
∂(y, x) = g for every two vertices x and y at distance 0 < ∂(x, y) < g. Consequently, every distance-
regular digraph with girth g ⩾ 3 has diameter D = g (known as long type) or D = g − 1 (known
as short type). Also, he showed that every distance-regular digraph of long type is obtained from a
distance-regular digraph of short type by a known construction as follows:

Let Ω be a distance-regular digraph of short type and m > 1 be an integer. Now let Γ be a digraph,
where

V (Γ) = V (Ω)× {1, 2, . . . ,m}
and

E(Γ) = {(u, i)(v, j)|uv ∈ E(Ω), 1 ⩽ i, j ⩽ m}.
It is easy to see that Γ is a distance-regular digraph of long type with the same girth as Ω. As you see
in the following theorem, Damerell showed that the converse is true.

Theorem 2. ([12]) Every distance-regular digraph Γ of long type is obtained from a distance-regular
digraph Ω of short type, of the same girth, by the construction described above. Starting from a distance-
regular digraph Γ of long type, a distance-regular digraph Ω of short type is obtained by identifying all
antipodal vertices of Γ.

In [18], it is shown that for every non-trivial distance-regular digraph of short type we have λ > 0.
Therefore, the only distance-regular digraphs of short type with λ = 0 are the directed cycles. Now let Γ
be the distance-regular digraph of long type that is obtained from a distance-regular digraph Ω of short
type by the Damerell’s construction described above. Clearly the parameter λ for Γ is m times of the
same parameter for Ω. Therefore, every distance-regular digraph of long type with λ = 0 is obtained
from a directed cycle by the Damerell’s construction and thus it is a member of D. Hence D are precisely
all distance-regular digraphs that are not undirected (or equivalently g ⩾ 3) with λ = 0.
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In fact the family D of digraphs is a type of the so-called generalized cycles. A generalized t-cycle is
a digraph whose set of vertices can be partitioned into t parts that are cyclically ordered in such a way
that the vertices in one part are adjacent only to vertices in the next part.

In order to study the connectivity of digraphs, we need a new parameter related to the number of
shortest paths that was used in [15]. For a given digraph Γ with diameter D, assume that l = l(Γ),
1 ⩽ l ⩽ D, is the greatest integer such that for every two vertices u and v in V (Γ), the shortest path
from u to v is unique when ∂(u, v) ⩽ l. Moreover, there is no path of length ∂(u, v) + 1 from u to v if
∂(u, v) < l.

Lemma 3. ([1]) Let Γ be a generalized t-cycle, t ⩾ 3, with parameter l = l(Γ), diameter D and minimum
degree δ ⩾ 2. If D ⩽ 2l+ t− 3, then Γ is super vertex-connected. Moreover, Γ is super edge-connected if
D ⩽ 2l + t− 2.

Clearly each Γ ∈ D is a generalized t-cycle with t ⩾ 3, parameter l = l(Γ) ⩾ 1, diameter D = t − 1
and minimum degree δ ⩾ 2 and so by Lemma 3, Γ is super vertex-connected and super edge-connected.

The statement of the following lemma about al11 was shown in [18] for non-trivial distance-regular
digraphs of short type. The proof is not correct as stated, although the statement remains valid as we
demonstrate. Here we give an alternative way to prove this result for all distance-regular digraphs with
g ⩾ 3 and λ ̸= 0.

Lemma 4. Let Γ be a distance-regular digraph with diameter D and Γ /∈ D. Then for every 2 ⩽ l ⩽ D,
we have al11 ⩾ 1.

Proof. Note that Γ /∈ D, so we have g ⩾ 3 and λ ̸= 0. First let l = g (this case can happen only when Γ is
a distance-regular digraph of long type). Then consider a path u1u2 . . . ug+1 of minimum length between
two vertices u = u1 and v = ug+1 at distance ∂(u, v) = g. Clearly ∂(u2, v) = D − 1 = g − 1. Using the
fact that Γ is stable (which means that ∂(x, y) + ∂(y, x) = g for every two vertices x and y at distance
0 < ∂(x, y) < g) we have ∂(v, u2) = 1 and so Γ+

1 (u) ∩ Γ+
1 (v) ̸= ∅. This fact implies that al11 ⩾ 1. Now

let 2 ⩽ l ⩽ g − 1. Assume that w ∈ V (Γ), u ∈ Γ+
1 (w) and H is the digraph induced by Γ+

1 (w). Clearly
|H−

1 (u)| = λ and for each x ∈ H−
1 (u) we have g − 1 = ∂Γ(u, x) ⩽ ∂H(u, x), where ∂Γ(u, x) and ∂H(u, x)

are the distances from u to x in Γ and H, respectively. Now let x ∈ H−
1 (u) and P = u0u1 . . . ut be a

minimum path in H from u0 = u to ut = x. We have t ⩾ g − 1, since g − 1 = ∂Γ(u, x) ⩽ ∂H(u, x).
First assume that ∂Γ(u, ui) = ∂H(u, ui) for each 2 ⩽ i ⩽ t. Then t = g − 1 and ul ∈ Γ+

l (u) for every
2 ⩽ l ⩽ g − 1. Since w ∈ Γ−

1 (u) ∩ Γ−
1 (ul), we have Γ+

1 (u) ∩ Γ+
1 (ul) ̸= ∅, which implies that al11 ⩾ 1, this

follows from the fact that the adjacency matrix A of Γ is normal. Now let 2 ⩽ i1 ⩽ t be the minimum
number i with ∂Γ(u, ui) < ∂H(u, ui). Let Sj,k = {∂Γ(u, ui)|j ⩽ i < k} for every 0 ⩽ j < k ⩽ t+1 and S =
{∂Γ(u, ui)|0 ⩽ i ⩽ t}. Our goal is to show that {0, 1, 2, . . . , g−1} ⊆ S. Therefore, for every 2 ⩽ l ⩽ g−1,
we have Γ+

l (u) ∩ V (P ) ̸= ∅. On the other hand, for each v ∈ Γ+
l (u) ∩ V (P ) we have w ∈ Γ−

1 (u) ∩ Γ−
1 (v)

and so Γ+
1 (u) ∩ Γ+

1 (v) ̸= ∅, which implies that al11 ⩾ 1. To show that {0, 1, 2, . . . , g − 1} ⊆ S, consider
the integers i0 = 0 < i1 < i2 < · · · < im ⩽ im+1 = t with maximum m such that for each 1 ⩽ j ⩽ m, an
integer ij ∈ (ij−1, t] is the minimum number with ∂Γ(uij−1 , uij ) < ∂H(uij−1 , uij ). Clearly m ⩾ 1.

Claim 5. For each 0 ⩽ j ⩽ m, we have {0, 1, 2, . . . , ∂Γ(u, uij ) + ij+1 − ij − 1} ⊆ S0,ij+1
.

Proof. We give a proof for Claim 5 by induction on j. For each 0 ⩽ i < i1, we have ∂Γ(u, ui) =
∂H(u, ui) = i and so S0,i1 = {0, 1, 2, . . . , i1 − 1}. Hence our claim holds for j = 0. Now assume that the
statement of Claim 5 holds for an integer j = k ⩽ m − 1. We are going to show that the statement of
this claim holds for j = k + 1. That follows from the equality S0,ik+1

= S0,ik ∪ {∂Γ(u, ui)|ik ⩽ i < ik+1}
and the fact that ∂Γ(u, ui) = ∂Γ(u, uik) + ∂H(uik , ui) = ∂Γ(u, uik) + i− ik for every ik ⩽ i < ik+1.

Now using Claim 5 for j = m, we have {0, 1, 2, . . . , ∂Γ(u, uim) + t− im − 1} ⊆ S0,im+1 . On the other
hand g− 1 = ∂Γ(u, x) ⩽ ∂Γ(u, uim)+ t− im. Therefore {0, 1, 2, . . . , g− 1} ⊆ S0,im+1 ∪{∂Γ(u, x)} = S and
we are done.
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The following theorem is the main result of this section.

Theorem 6. A distance-regular digraph Γ is super edge-connected, unless it is an undirected cycle.

Proof. Assume that Γ is a distance-regular digraph with degree k and it is not an undirected cycle. Note
that g = 2 implies that Γ is an undirected graph and so we are done due to a result of Brouwer and
Haemers in [7]. Hence we may assume that g ⩾ 3. We are going to show that Γ is super edge-connected.
If k = 1, then Γ is a directed cycle and clearly any minimum edge cut is an edge. Now, assume that
k > 1. First let Γ ∈ D and Γ = C[X1, X2, . . . , Xt], where t ⩾ 3 and |Xi| = k for each 1 ⩽ i ⩽ t. In this
case Γ is a generalized t-cycle with t ⩾ 3, parameter l = l(Γ) ⩾ 1, diameter D = t − 1 and minimum
degree δ ⩾ 2 and so by Lemma 3, Γ is super edge-connected.

Now let Γ /∈ D. Suppose that F = [A,B] is a minimum edge cut of Γ. Since the set of all edges going
into (or coming out of) a single vertex is an edge cut, we have |F | ⩽ k. Set r = max{d+A(x)|x ∈ A},
where d+A(x) = |Γ+

1 (x) ∩A|. Clearly every vertex x ∈ A has at least k − r out-neighbors in B. It follows
that there are at least (k − r)|A| edges from A to B and so, we have r + 1 ⩽ |A| ⩽ k

k−r . Therefore
r ∈ {0, k − 1, k}.

If r = 0, then |A| = 1 and F = [A,B] is a set of all edges coming out of a single vertex in A and we
are done. Now suppose that r = k− 1. So |A| = k and since |F | ⩽ k, every vertex x ∈ A has exactly one
out-neighbor in B and k − 1 out-neighbors in A. This implies that g = 2 and so Γ is a distance-regular
graph, a contradiction to our assumptions. Hence we may assume that r = k.

Since we do not have an undirected edge (note that g ⩾ 3), we have

k|A| −
(
|A|
2

)
⩽ |F | ⩽ k.

Therefore |A| = 1 or |A| ⩾ 2k. If |A| = 1, then F = [A,B] is a set of all edges coming out of a single
vertex in A and there is no thing to prove. Hence we assume that |A| ⩾ 2k. Let X1 be the set of all
vertices x ∈ A, where Γ+

1 (x) ⊆ A and X2 = A−X1. Clearly |X2| ⩽ |F | ⩽ k and so |X1| ⩾ k. Similarly
assume that Y1 is the set of all vertices y ∈ B, where Γ+

1 (y) ⊆ B and Y2 = B − Y1. With the same
argument, we have |Y2| ⩽ k and Y1 ⩾ k.

Now choose two vertices x ∈ X1 and y ∈ Y1. Set l = ∂(x, y). Clearly l ⩾ 2. Since Γ /∈ D, using
Lemma 4 we have al11 ⩾ 1 and so Γ+

1 (x) ∩ Γ+
1 (y) ̸= ∅, a contradiction to the fact that Γ+

1 (x) ⊆ A and
Γ+
1 (y) ⊆ B.

3 Minimum vertex cuts of distance-regular digraphs

As we mentioned in the first section, Brouwer and Koolen in [8] showed that every distance-regular graph
of degree k > 2 is super vertex-connected. In Section 4, we will give an example (see Figure 1) that
shows that the same result is not correct for strongly regular digraphs (and so for weakly distance-regular
digraphs). We could not find such an example for distance-regular digraphs. An interesting research
problem in this direction is to deduce whether the statement of Brouwer and Koolen’s result is correct
for distance-regular digraphs. In general this problem seems to be non-trivial and here we only consider
some special cases.

Theorem 7. Let Γ be a distance-regular digraph with diameter 2. Then Γ is super vertex-connected.

Proof. Suppose that Γ is a distance-regular digraph on n vertices with degree k and diameter D = 2.
Then the girth g of Γ is either 2 or 3. The case g = 2 implies that Γ is a strongly regular graph and
so the assertion holds by a result due to Brouwer and Mesner in [9]. Now let g = 3. Clearly Γ is a
strongly regular digraph with parameters (n, k, 0, λ, µ). Since Γ is stable, for every x ∈ V (Γ), we have
Γ+
2 (x) = Γ−

1 (x) and so |Γ+
2 (x)| = k and n = 2k + 1. One can easily see that Γ is a tournament and so

|E(⟨Γ+
1 (x)⟩)| = kλ =

k(k − 1)

2
, this implies that λ =

k − 1

2
. Therefore for each vertex x, the digraph
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⟨Γ+
1 (x)⟩ is regular with degree

k − 1

2
. The fact that Γ is a tournament implies that for each vertex x and

for each y ∈ Γ+
2 (x) we have |Γ

+
1 (y)∩Γ+

1 (x)| = k−µ (note that |Γ−
1 (y)∩Γ+

1 (x)| = µ). On the other hand,

since |Γ+
2 (x)| = k, the digraph ⟨Γ+

2 (x)⟩ is regular with degree
k − 1

2
. Therefore µ =

k + 1

2
and so Γ is a

strongly regular digraph with parameters (n, k, t, λ, µ) = (2k + 1, k, 0,
k − 1

2
,
k + 1

2
).

Suppose that S ⊆ V (Γ) is a vertex cut of Γ with minimum size that separates two non-empty sets
A and B of V (Γ), this means that V (Γ) \ S = A ∪ B and there is no edge from A to B. Without
loss of generality we may assume that |B| ⩾ |A|. Clearly |S| ⩽ k and so |A| + |B| ⩾ k + 1. Set
r := min{d+A(x)|x ∈ A} and choose x ∈ A such that it has r out-neighbors in A and k − r out-neighbors
in S. If r = 0, then S = Γ+

1 (x) and there is no-thing to prove. Hence we may assume that r ⩾ 1. Now
set S1 := Γ+

1 (x) ∩ S, S2 := S \ S1, A1 := (Γ+
1 (x) ∩ A) ∪ {x} and A2 := A \ A1. Clearly every vertex

y ∈ A has at most (k− r) out-neighbors in S. Hence by counting the number of edges coming out of the
vertices of A in Γ we have

k|A| − |A|(|A| − 1)

2
⩽ |A|(k − r),

and so |A| ⩾ 2r + 1 and |A2| ⩾ r. Moreover, |S| ⩽ k implies that |S2| ⩽ r and hence |A2| ⩾ |S2|. Since
Γ is a tournament and |E(A2, B)| = 0 (note that S is a vertex cut that separates two non-empty sets
A and B and E(A2, B) is the set of all edges from A2 to B), we have zy ∈ E(Γ) for every y ∈ A2 and

z ∈ B. On the other hand, ⟨Γ+
2 (x)⟩ is a regular digraph with degree

k − 1

2
and A2 ∪ B ⊆ Γ+

2 (x). Hence

|A2| ⩽
k − 1

2
and each vertex y ∈ A2 has exactly

k − 1

2
out-neighbors in A2 ∪ S2. Consequently, by

counting the number of edges going into the vertices of S2 in Γ+
2 (x) we have the following inequality

e = |E(A2, S2)|+ |E(⟨S2⟩)| ⩽
k − 1

2
|S2|.

On the other hand, |E(⟨S2⟩)| =
|S2|(|S2| − 1)

2
and by counting the number of edges coming out of the

vertices of A2 in Γ+
2 (x), we have

|E(A2, S2)| =
(k − 1)

2
|A2| −

|A2|(|A2| − 1|
2

.

Therefore

e =
(k − 1)

2
|A2| −

|A2|(|A2| − 1)

2
+

|S2|(|S2| − 1)

2
⩽ k − 1

2
|S2|.

Since f(t) =
(k − 1)

2
t− t(t− 1)

2
is an increasing function when t < k/2, the fact |S2| ⩽ r ⩽ |A2| ⩽

k − 1

2

implies that
k − 1

2
|S2| ⩽ e. Therefore e =

k − 1

2
|S2| and so |S2| = |A2| = r, |S| = k and |B| = k − 2r.

We know that the set of all vertices at distance 2 from x is Γ+
2 (x) = A2∪S2∪B and the digraph induced

by these vertices is
k − 1

2
-regular. This fact implies that in the digraph ⟨B⟩ (the digraph induced by the

vertices in B), each vertex has in-degree at least (k−2r−1)/2. Since otherwise, if there is a vertex z ∈ B
with in-degree less than (k − 2r − 1)/2 in ⟨B⟩, then

k − 1

2
= d−

Γ+
2 (x)

(z) ⩽ |S2|+ d−B(z) < r +
k − 2r − 1

2
,

a contradiction. Now since Γ is a tournament, one can easily see that the digraph ⟨B⟩ is k−2r−1
2 -regular

and for every y ∈ S2 and z ∈ B, yz is an edge of Γ. Therefore, for a vertex y ∈ S2 with maximum
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out-degree in the digraph ⟨S2⟩, we have

k − 1

2
= d+

Γ+
2 (x)

(y) ⩾ |S2| − 1

2
+ |B| = r − 1

2
+ k − 2r.

Hence k ⩽ 3r and so r ⩾ |B| ⩾ |A| ⩾ 2r + 1, a contradiction to the fact that r ⩾ 1.

Now, we focus on another special case when the degree is at most 3.

Theorem 8. Assume that Γ is a distance-regular digraph with degree k ⩽ 3 and Γ is not an undirected
cycle. Then Γ is super vertex-connected.

Proof. The case D = 2 follows from Theorem 7. Also the case g = 2 implies that Γ is a distance-regular
graph and so the assertion holds due to a result of Brouwer and Koolen in [8]. Now assume that D, g ⩾ 3.
For each vertex x, one can easily see that the digraph induced by Γ+

1 (x) is λ-regular and so λ ⩽ k−1
2 ⩽ 1.

Hence λ = 0, 1. First suppose that λ = 0. Then Γ ∈ D is a generalized t-cycle with t ⩾ 3 (note that
D, g ⩾ 3) and hence by Lemma 3, Γ is super vertex-connected. So we may assume the case λ = 1. In
this case we have k = 3. Consider two vertices u and v in Γ+

1 (x) for some vertex x. The normality of
the adjacency matrix of Γ implies that the number of vertices coming out of the vertices u and v is equal
to the number of vertices going into that vertices. This implies that µ ⩾ 2. Since µ ⩽ k = 3, we have

µ = 2, 3. The case µ = 2 implies that |Γ+
2 (x)| =

k(k−λ)
µ = 3. Now since λ = 1, the digraph ⟨Γ+

1 (x)⟩ for
each vertex x is a directed triangle. This implies that for each vertex x, the digraph ⟨Γ+

2 (x)⟩ is a directed
triangle and D = 2, which is not true based on our assumptions. Therefore, µ = 3 and so the fact that
the digraph ⟨Γ+

1 (x)⟩ is a directed triangle for each vertex x implies that |Γ+
2 (x)| = 2. Hence for each

vertex x, there are at most two directed path of length 2 from y to z for every y ∈ Γ+
1 (x) and z ∈ Γ+

3 (x),
which is a contradiction to µ = 3.

As we mentioned in Section 2, using Lemma 3, each Γ ∈ D is super vertex-connected. Therefore
except the undirected cycles, each distance-regular digraph with λ = 0 is super vertex-connected. Based
on the obtained result in this section we pose the following conjecture.

Conjecture 9. Every distance-regular digraph is super vertex-connected, unless it is an undirected cycle.

Now we summarize all the results in this section in the following corollary.

Corollary 10. Conjecture 9 holds for distance-regular digraphs with D = 2, k ⩽ 3 or λ = 0.

4 Strongly regular digraphs

We know that strongly regular graphs are precisely distance regular graphs with diameter 2 and the only
strongly regular graph with degree 2 is the pentagon graph. Hence the known results about the minimum
cuts of distance regular graphs (that we mentioned in Section 1) imply that each strongly regular graph
is super edge-connected as well as super vertex-connected. Here we are going to look at the same problem
for directed case. In fact we will use a result in [15] to see that each strongly regular digraph Γ is super
edge-connected unless Γ is either an undirected cycle or the strongly regular digraph with parameters
(n, k, t, λ, µ) = (6, 2, 1, 0, 1). Moreover, we will give an example of strongly regular digraphs with degree
3 that is not super vertex-connected. This example shows that the statement of Conjecture 9 does not
occur for strongly regular digraphs.

Lemma 11. ([15]) Let Γ be a digraph with no loop, minimum degree δ ⩾ 3, parameter l = l(Γ) and
diameter D. If D ⩽ 2l, then Γ is super edge-connected. Moreover, Γ is super vertex-connected when
D ⩽ 2l − 2.
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Using Lemma 11, each strongly regular digraph Γ with degree k ⩾ 3 is super edge-connected. Hence in
order to study the super edge-connectivity of strongly regular digraphs we only focus on those with degree
k = 1, 2. The only non-trivial strongly regular digraph with degree k ⩽ 2 is the strongly regular digraph
with parameters (n, k, t, λ, µ) = (6, 2, 1, 0, 1) and this digraph is not super edge-connected. Therefore we
can characterize all strongly regular digraphs that are super edge-connected as follows.

Theorem 12. The edge connectivity of a strongly regular digraph Γ equals its degree. Moreover, a strongly
regular digraph Γ is super edge-connected, unless Γ is either an undirected cycle with four or five vertices
or the strongly regular digraph with parameters (n, k, t, λ, µ) = (6, 2, 1, 0, 1).

As we know, each strongly regular graph is super vertex-connected. The digraph shown in Figure 1
shows that the same result is not correct for strongly regular digraphs (and so for weakly distance-regular
digraphs). As you see in Figure 1, this digraph is a strongly regular digraph with parameters (8, 3, 2, 1, 1)
and vertex cut U = {u1, u4} of size 2 (less than its degree).

Figure 1: A strongly regular digraph with parameters (8, 3, 2, 1, 1).

5 Concluding remarks and an open problem

The concept of weakly distance-regular digraphs is an extension of two concepts: distance-regular digraphs
and strongly regular digraphs. Based on the above results, the investigation to the minimum edge cuts in
weakly distance-regular digraphs is an interesting problem. In general, undirected cycles are the weakly
distance-regular digraphs that are not super edge-connected. As we mentioned in Sections 4 besides
two small undirected cycles, the strongly regular digraph with parameters (n, k, t, λ, µ) = (6, 2, 1, 0, 1)
is a nice exception in strongly regular digraphs that is not super edge-connected. Therefore, besides
undirected cycles it is natural to think about the family of infinite weakly distance-regular digraphs,
each has a minimum edge cut that is not the set of all edges going into (or coming out of) a single
vertex. Here we show that such a family exists. In fact, for every positive integer n, we construct a
2-regular weakly distance-regular digraph Γn with 2n vertices, diameter D = [n/2] + 1 such that Γn is
not super edge-connected. To do this, add the edges viui and uivi for 1 ⩽ i ⩽ n to two disjoint directed
cycles C1 = v1v2v3 . . . vn−1vnv1 and C2 = u1unun−1 . . . u3u2u1, to get a 2-regular weakly distance-regular
digraph Γn with the desired properties. Now, based on the previous results and the above discussion we
pose the following conjecture about weakly distance-regular digraphs:

Conjecture 13. For every weakly distance-regular digraph Γ with degree k, the edge connectivity equals
k. Moreover, Γ is super edge-connected if k > 2.
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