
Self-avoiding walks and amenability

Geoffrey R. Grimmett
Centre for Mathematical Sciences

Cambridge University
Cambridge CB3 0WB, UK

grg@statslab.cam.ac.uk

Zhongyang Li
Department of Mathematics

University of Connecticut
Storrs, Connecticut 06269-3009, USA

zhongyang.li@uconn.edu

Submitted: Nov 2, 2016; Accepted: Nov 28, 2017; Published: XX
Mathematics Subject Classifications: 05C30, 20F65, 60K35, 82B20

Abstract

The connective constant µ(G) of an infinite transitive graph G is the exponential
growth rate of the number of self-avoiding walks from a given origin. The relati-
onship between connective constants and amenability is explored in the current
work.

Various properties of connective constants depend on the existence of so-called
‘unimodular graph height functions’, namely: (i) whether µ(G) is a local function
on certain graphs derived from G, (ii) the equality of µ(G) and the asymptotic
growth rate of bridges, and (iii) whether there exists a terminating algorithm for
approximating µ(G) to a given degree of accuracy.

In the context of amenable groups, it is proved that the Cayley graphs of infinite,
finitely generated, elementary amenable (and, more generally, virtually indicable)
groups support unimodular graph height functions, which are in addition harmonic.
In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not
elementary amenable, does not have a graph height function.

In the context of non-amenable, transitive graphs, a lower bound is presented
for the connective constant in terms of the spectral bottom of the graph. This is a
strengthening of an earlier result of the same authors. Secondly, using a percolation
inequality of Benjamini, Nachmias, and Peres, it is explained that the connective
constant of a non-amenable, transitive graph with large girth is close to that of
a regular tree. Examples are given of non-amenable groups without graph height
functions, of which one is the Higman group.

The emphasis of the work is upon the structure of Cayley graphs, rather than
upon the algebraic properties of the underlying groups. New methods are nee-
ded since a Cayley graph generally possesses automorphisms beyond those arising
through the action of the group.

Keywords: Self-avoiding walk, connective constant, Cayley graph, amenable group,
elementary amenable group, indicable group, Grigorchuk group, Higman group,

the electronic journal of combinatorics 22 (2015), #P00 1



Baumslag–Solitar group, graph height function, group height function, harmonic
function, unimodularity, spectral radius, spectral bottom.
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Part A

Background, and summary of results

1 Introduction

1.1 Background

A self-avoiding walk on a graph G = (V,E) is a path that visits no vertex more than once.
The study of the number σn of self-avoiding walks of length n from a given initial vertex
was initiated by Flory [10] and others in their work on polymerization (see [39]), and this
topic has acquired an iconic status in the mathematics and physics associated with lattice-
graphs. Hammersley and Morton [23] proved in 1954 that, if G is vertex-transitive, there
exists a constant µ = µ(G), called the connective constant of G, such that σn = µn(1+o(1))

as n → ∞. This result is important not only for its intrinsic value, but also because its
proof contained the introduction of subadditivity to the theory of interacting systems.
Subsequent work has concentrated on understanding polynomial corrections in the above
asymptotic for σn (see, for example, [3, 36]), and on finding exact values and inequalities
for connective constants (for example, [9, 20]).

There are several natural questions about connective constants whose answers depend
on whether or not the underlying graph admits a so-called ‘unimodular graph height
function’. The first of these is whether µ(G) is a continuous function of the graph G (see
[4, 16]). This so-called locality question has received serious attention also in the context
of percolation and other disordered systems (see [5, 37, 40]), and has been studied in
recent work of the current authors on general transitive graphs, [16], and also on Cayley
graphs of finitely generated groups, [19]. Secondly, when G has a unimodular graph height
function, one may define bridge self-avoiding walks on G, and show that their numbers
grow asymptotically in the same manner as σn (see [16]). The third such question is
whether there exists a terminating algorithm to approximate µ(G) within any given (non-
zero) margin of accuracy (see [16, 17]).

Roughly speaking, a graph height function on G = (V,E) is a non-constant function
h : V → Z whose increments are invariant under the action of a finite-index subgroup of
automorphisms (a formal definition may be found at Definition 3.1). It is useful to know
which transitive graphs support graph height functions.

A rich source of interesting examples of transitive graphs is provided by Cayley graphs
of finitely generated groups, as studied in [19]. It is proved there that the Cayley graphs of
finitely generated, virtually solvable groups support unimodular graph height functions,
which are in addition harmonic.

This work is directed primarily at the structure of Cayley graphs, rather than solely
that of the underlying groups. The difference lies in the fact that a Cayley graph generally
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possesses graph-automorphisms that do not arise through the action of the corresponding
group.

We are concerned here with the relationship between connective constants and amen-
ability, and we present results for both amenable and for non-amenable graphs. Since these
results are fairly distinct, we summarize them here under the two headings of amenable
groups and non-amenable graphs.

1.2 Amenable groups

This part of the current work has two principal results, one positive and the other negative.

(a) (Theorem 4.1) It is proved that every Cayley graph of an infinite, finitely generated,
elementary amenable (and, more generally, virtually indicable) group supports a
unimodular graph height function, which is in addition harmonic. This extends [19,
Thm 5.1] beyond the class of virtually solvable groups.

(b) (Theorem 5.1) It is proved that the Cayley graph of the Grigorchuk group does not
support a graph height function. Since the Grigorchuk group is amenable (but not
elementary amenable), possession of a graph height function is not a characteristic
of amenable groups. This is in contrast with work of Lee and Peres, [33], who have
studied the existence of non-constant, Hilbert space valued, equivariant harmonic
maps on amenable graphs.

1.3 Non-amenable graphs

In earlier work [18], it was shown that the connective constant µ of a transitive, simple
graph with degree ∆ satisfies

√
∆− 1 6 µ 6 ∆− 1,

and it was asked whether or not the lower bound is sharp. In the first of the following
three results, this is answered in the negative for non-amenable graphs.

(a) (Theorem 6.2) It is proved that

(∆− 1)
1
2

(1+cλ) 6 µ,

where c = c(∆) is a known constant, and λ is the spectral bottom of the simple
random walk on the graph. Kesten [31, 32] and Dodziuk [8] have shown that λ > 0
if and only if the graph is non-amenable.

(b) (Theorem 7.1) Using a percolation result of Benjamini, Nachmias, and Peres [5], it
is explained that the connective constant of a non-amenable, ∆-regular graph with
large girth is close to that of the ∆-regular tree.

(c) (Theorem 8.1) It is shown that the Cayley graph of the Higman group of [27] (which
is non-amenable) does not support a graph height function. This further example of
a transitive graph without a graph height function complements the corresponding
statement above for the (amenable) Grigorchuk group.
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Relevant notation for graphs, groups, and self-avoiding walks is summarized in Section
2, and the different types of height functions are explained in Section 3. The class EG of
elementary amenable groups is described in Section 4. The Grigorchuk group is defined
in Section 5 and the non-existence of graph height functions thereon is given in Theorem
5.1. The improved lower bound for µ(G) for non-amenable G is presented at Theorem
6.2, and the remark about non-amenable graphs with large girth at Theorem 7.1. The
Higman group is discussed in Section 8. Proofs of theorems appear either immediately
after their statements, or are deferred to later self-contained sections.

2 Graphs, groups, and self-avoiding walks

2.1 Graphs

The graphs G = (V,E) in this paper are simple, in that they have neither loops nor
multiple edges. The degree deg(v) of vertex v ∈ V is the number of edges incident to v.
We write u ∼ v for neighbours u and v, ∂v for the neighbour set of v, and ∂ev (respectively,
∂eW ) for the set of edges incident to v (respectively, between W and V \W ). The graph
is locally finite if |∂v| < ∞ for v ∈ V . An edge from u to v is denoted 〈u, v〉 when
undirected, and [u, v〉 when directed from u to v. The girth of G is the infimum of the
lengths of its circuits. The infinite ∆-regular tree T∆ crops up periodically in this paper.

The automorphism group of G is denoted Aut(G). The subgroup Γ 6 Aut(G) is said
to act transitively on G if, for u, v ∈ V , there exists α ∈ Γ with α(u) = v. It acts quasi-
transitively if there exists a finite subset W ⊆ V such that, for v ∈ V , there exists α ∈ Γ
and w ∈ W such that α(v) = w. The graph G is said to be (vertex-)transitive if Aut(G)
acts transitively on V .

Let G = (V,E) be an infinite graph and H 6 Aut(G). The (H-)stabilizer Stabv
(= StabHv ) of v ∈ V is the set of γ ∈ H for which γ(v) = v. The action of H (or the group
H itself) is called unimodular if and only if

|Stabuv| = |Stabvu|, v ∈ V, u ∈ Hv. (2.1)

See [34, Chap. 8] for a discussion of unimodularity and its associations.
Let G be the set of infinite, locally finite, connected, transitive, simple graphs, and let

G ∈ G. The edge-isoperimetric constant φ = φ(G) is defined here as

φ := inf

{
|∂eW |
∆|W |

: W ⊂ V, 0 < |W | <∞
}
. (2.2)

We call G amenable if φ = 0 and non-amenable otherwise. See [34, Sect. 6] for an account
of graph amenability.

2.2 Self-avoiding walks

Let G ∈ G. We choose a vertex of G and call it the origin, denoted 1. An n-step self-
avoiding walk (SAW) on G is a walk containing n edges no vertex of which appears more
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than once. Let Σn be the set of n-step SAWs starting at 1, with cardinality σn := |Σn|.
We have in the usual way (see [23, 36]) that

σm+n 6 σmσn, (2.3)

whence the connective constant

µ = µ(G) := lim
n→∞

σ1/n
n (2.4)

exists.
A SAW is called extendable if it is the initial portion of an infinite SAW on G. (An

extendable SAW is called ‘forward extendable’ in [15].)

2.3 Groups

Let Γ be a group with generator set S satisfying |S| <∞ and 1 /∈ S, where 1 = 1Γ is the
identity element. We shall assume that S−1 = S, while noting that this was not assumed
in [19]. We write Γ = 〈S | R〉 with R a set of relators (or relations, when convenient).
Such a group is called finitely generated, and is called finitely presented if, in addition,
|R| <∞.

The Cayley graph of the presentation Γ = 〈S | R〉 is the simple graph G = G(Γ, S)
with vertex-set Γ, and an (undirected) edge 〈γ1, γ2〉 if and only if γ2 = γ1s for some s ∈ S.
Thus, our Cayley graphs are simple graphs. See [2, 34] for accounts of Cayley graphs,
and [25] of geometric group theory.

A subgroup H 6 Γ acts on G by left-multiplication, and this action is free in that
each stabilizer contains the identity only. In particular, the action of H is unimodular.

The amenability of groups was introduced by von Neumann [38]. It is standard that a
finitely generated group is amenable if and only if some (and hence every) Cayley graph
is amenable (see, for example, [42, Chap. 12A]).

3 Height functions

It was shown in [16] that graphs G ∈ G supporting so-called ‘unimodular graph height
functions’ have (at least) three properties:

(i) one may define the concept of a ‘bridge’ SAW on G, as in [24],

(ii) the exponential growth rate for counts of bridges equals the connective constant
µ(G),

(iii) there exists a terminating algorithm for determining µ(G) to within any prescribed
(strictly positive) degree of accuracy.

Several natural sub-classes of G contain only graphs that support graph height functi-
ons, and it was asked in [18] whether or not every G ∈ G supports a graph height function.
This question will be answered in the negative at Theorems 5.1 and 8.1, where it is proved
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that neither the Grigorchuk nor Higman graphs possess a graph height function. Argu-
ments for proving the non-existence of graph height functions may be found in Section
9.

We review the definitions of the two types of height functions, and introduce a third
type. Let G = (V,E) ∈ G, and let H 6 Aut(G). A function F : V → R is said to be
H-difference-invariant if

F (v)− F (w) = F (γv)− F (γw), v, w ∈ V, γ ∈ H. (3.1)

Definition 3.1 ([16]). A graph height function on G is a pair (h,H), where H 6 Aut(G)
acts quasi-transitively on G and h : V → Z, such that

(a) h(1) = 0,

(b) h is H-difference-invariant,

(c) for v ∈ V , there exist u,w ∈ ∂v such that h(u) < h(v) < h(w).

A graph height function (h,H) is called unimodular if H is unimodular.

Remark 3.2. Suppose we restrict ourselves to graph height functions (h,H) such that H
is a finite-index subgroup of some given group Γ. It is then immaterial whether or not we
further require H to be normal in the definition of a graph height function. This follows by
Poincaré’s theorem (see [26, p. 48, Exercise 20]), which states that, if H is a finite-index
subgroup of Γ, there exists a subgroup H′ of H that is a finite-index normal subgroup of
Γ.

We turn to Cayley graphs of finitely generated groups. Let Γ be a finitely generated
group with presentation 〈S | R〉. As in Section 2, we assume S−1 = S and 1 /∈ S.

Definition 3.3. A group height function on Γ (or on a Cayley graph of Γ) is a function
h : Γ → Z such that h(1) = 0, h is not identically zero, and h(γ) =

∑m
i=1 h(si) for

γ = s1s2 · · · sm with si ∈ S.

A necessary and sufficient condition for the existence of a group height function is given
in [19, Thm 4.1]. In the language of group theory, this condition amounts to requiring
that the first Betti number be strictly positive. It was recalled in [19, Remark 4.2] that
(when the non-zero h(s), s ∈ S, are coprime) a group height function is simply a surjective
homomorphism from Γ to Z.

It is shown in [16, Example 4.4] that the Cayley graph of the infinite dihedral group
has a unimodular graph height function but no group height function. We introduce a
further type of height function, which may be viewed as an intermediary between a graph
height function and group height function.

Definition 3.4. For a Cayley graph G of a finitely generated group Γ, we say that the
pair (h,H) is a strong graph height function of the pair (Γ, G) if

(a) H E Γ acts on Γ by left-multiplication, and [Γ : H] <∞, and
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(b) (h,H) is a graph height function.

It is evident that a group height function h (of Γ) is a strong graph height function
of the form (h,Γ), and a strong graph height function is a graph height function. The
assumption in (a) above of the normality of H is benign, as in Remark 3.2. Since H 6 Γ,
H acts on G without fixed points and is therefore unimodular. It follows that any strong
graph height function is a unimodular graph height function.

We recall the definition of a harmonic function. A function h : V → R is called
harmonic on the graph G = (V,E) if

h(v) =
1

deg(v)

∑
u∼v

h(u), v ∈ V.

It is an exercise to show that any group height function is harmonic.

Part B

Results for amenable groups

4 Elementary amenable groups

The class EG of elementary amenable groups was introduced by Day in 1957, [7], as the
smallest class of groups that contains the set EG0 of all finite and abelian groups, and is
closed under the operations of taking subgroups, and of forming quotients, extensions, and
directed unions. Day noted that every group in EG is amenable (see also von Neumann
[38]). An important example of an amenable but not elementary amenable group was
described by Grigorchuk in 1984, [12]. Grigorchuk’s group is important in the study of
height functions, and we return to this in Section 5.

Let EFG be the set of infinite, finitely generated members of EG.

Theorem 4.1. Let Γ ∈ EFG. There exists a normal subgroup H E Γ with [Γ : H] < ∞
such that any locally finite Cayley graph G of Γ possesses a harmonic, strong graph height
function of the form (h,H).

Whereas every member of EFG has a proper, normal subgroup with finite index, it
is proved in [30] that there exist amenable simple groups. The class EFG includes all
virtually solvable groups, and thus Theorem 4.1 extends [19, Thm 5.1]. Since any finitely
generated group with polynomial growth is virtually nilpotent, [22], and hence lies in
EFG, its locally finite Cayley graphs admit harmonic graph height functions.

Theorem 4.1 is a corollary of a more general result, as follows. A group Γ is called
indicable if there exists a surjective homomorphism F : Γ→ Z, and virtually indicable if
there exists a normal subgroup H E Γ, with [Γ : H] <∞, which is indicable. (By Remark
3.2, the assumption of normality is immaterial.)
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Theorem 4.2. Let Γ be finitely generated and virtually indicable. There exists a normal
subgroup H E Γ with [Γ : H] < ∞ such that any locally finite Cayley graph G of Γ
possesses a harmonic, strong graph height function of the form (h,H).

Proof of Theorem 4.2. Let H E Γ be such that [Γ : H] <∞, and there exists a surjective
homomorphism F : H → Z. With F given thus, we may apply [19, Thm 3.5] to obtain
the result.

Proof of Theorem 4.1. This may be proved by induction using the definition of elementary
amenability, but we follow instead a much shorter route using indicability. The latter is
standard, but we include some details to aid the reader.

Let Γ ∈ EFG. By [28, Lemma 1] or [29, Lemma 1.7], Γ has normal subgroups K E
H E Γ such that [Γ : H] <∞ andH/K is free abelian with positive rank. Therefore, there
exists a surjective homomorphism F : H/K → Z. The domain of F may be extended
to H by F (h) := F (Kh), so that H is indicable, and hence Γ is virtually indicable. The
theorem now follows by Theorem 4.2.

5 The Grigorchuk group

The (first) Grigorchuk group is an infinite, finitely generated, amenable group that is not
elementary amenable. We show in Theorem 5.1 that there exists a locally finite Cayley
graph of the Grigorchuk group with no graph height function (see [16, Remark 3.3]).

Here is the definition of the group in question (see [11, 12, 13]). Let T be the rooted
binary tree with root vertex ∅. The vertex-set of T can be identified with the set of finite
strings u having entries 0, 1, where the empty string corresponds to the root ∅. Let Tu
be the subtree of all vertices with prefix u.

Let Aut(T ) be the automorphism group of T , and let a ∈ Aut(T ) be the automorphism
that, for each string u, interchanges the two vertices 0u and 1u.

Any γ ∈ Aut(T ) may be applied in a natural way to either subtree Ti, i = 0, 1.
Given two elements γ0, γ1 ∈ Aut(T ), we define γ = (γ0, γ1) to be the automorphism on T
obtained by applying γ0 to T0 and γ1 to T1. Define automorphisms b, c, d of T recursively
as follows:

b = (a, c), c = (a, d), d = (e, b), (5.1)

where e is the identity automorphism. The Grigorchuk group is defined as the subgroup
of Aut(T ) generated by the set {a, b, c}.

Theorem 5.1. The Cayley graph G = (V,E) of the Grigorchuk group with generator set
{a, b, c} satisfies

(a) G admits no graph height function, and

(b) for H E Aut(G) with finite index, any H-difference-invariant function on V is
constant on each orbit of H.
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The proof of Theorem 5.1 is given in Section 10. In the preceding Section 9, two
approaches are developed for showing the absence of a graph height function within par-
ticular classes of Cayley graph. In the case of the Grigorchuk group, two reasons combine
to forbid graph height functions, namely, its Cayley group has no automorphisms beyond
the action of the group itself, and the group is a torsion group in that every element has
finite order.

Since the Grigorchuk group is amenable, Theorems 4.1 and 5.1 yield that: within the
class of infinite, finitely generated groups, every elementary amenable group has a graph
height function, but there exists an amenable group without a graph height function. The
Grigorchuk group is finitely generated but not finitely presented, [12, Thm 6.2]. We ask
if there exists an infinite, finitely presented, amenable group with a Cayley graph having
no graph height function.

Part C

Results for non-amenable graphs

6 Connective constants of non-amenable graphs

Let G ∈ G have degree ∆. It was proved in [18, Thm 4.1] that
√

∆− 1 6 µ(G) 6 ∆− 1.

The upper bound is achieved by the ∆-regular tree T∆. It is unknown if the lower bound
is sharp for simple graphs. This lower bound may however be improved for non-amenable
graphs, as follows.

Let P be the transition matrix of simple random walk (SRW) on G = (V,E), and let
I be the identity matrix. The spectral bottom of I − P is defined to be the largest λ with
the property that, for all f ∈ l2(V ),

〈f, (I − P )f〉 > λ〈f, f〉. (6.1)

It may be seen that λ(G) = 1−ρ(G) where ρ(G) is the spectral radius of P (see [34, Sect.
6], and [42] for an account of the spectral radius).

Remark 6.1. It is known that G is a non-amenable if and only if ρ(G) < 1, which is
equivalent to λ(G) > 0. This was proved by Kesten [31, 32] for Cayley graphs of finitely-
presented groups, and extended to general transitive graphs by Dodziuk [8] (see also the
references in [34, Sect. 6.10]).

Theorem 6.2. Let G ∈ G have degree ∆ > 3. Let P be the transition matrix of SRW on
G, and λ the spectral bottom of P . The connective constant µ(G) satisfies

µ(G) > (∆− 1)
1
2

(1+cλ), (6.2)

where c = ∆(∆− 1)/(∆− 2)2.
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The improvement in the lower bound for µ(G) is strict if and only if λ > 0, which is
to say that G is non-amenable. It is standard (see [34, Thm 6.7]) that

1
2
φ2 6 1−

√
1− φ2 6 λ 6 φ, (6.3)

where φ = φ(G) is the edge-isoperimetric constant of (2.2). By [1, Thm 3],

λ(G) 6 λ(T∆)− ∆− 2

∆(∆− 1)g+2
, (6.4)

where g is the girth of G, T∆ is the ∆-regular tree, and

λ(T∆) = 1− 2
√

∆− 1

∆
. (6.5)

Remark 6.3. The spectral bottom (and therefore the spectral radius, also) is not a conti-
nuous function of G in the usual graph metric (see [16, Sect. 5]). This follows from [41,
Thm 2.4], where it is proved that, for all pairs (k, l) with k > 2 and l > 3, there exists a
group with polynomial growth whose Cayley graph Gk,l is 2k-regular with girth exceeding
l. Since Gk,l is amenable, we have λ(Gk,l) = 0, whereas λ(T2k) is given by (6.5).

Proof of Theorem 6.2. This is achieved by a refinement of the argument used to prove
[18, Thm 4.1], and we shall make use of the notation introduced in that proof.

Let v0 = 1, and let π = (v0, v1, . . . , v2n) be an extendable 2n-step SAW of G. For
convenience, we augment π with a mid-edge incident to v0 and not lying on the edge
〈v0, v1〉. Let Eπ be the set of oriented edges [v, w〉 such that: (i) v ∈ π, v 6= v2n, and (ii)
the (non-oriented) edge 〈v, w〉 does not lie in π. Note that

|Eπ| = 2n(∆− 2). (6.6)

Each (oriented) edge in Eπ is coloured either red or blue according to the following
rule. For v ∈ π, let πv be the sub-path of π joining v0 to v. The edge [v, w〉 ∈ Eπ is
coloured red if πv ∪ [v, w〉 is not an extendable SAW, and is coloured blue otherwise. By
(6.6), the number Bπ (respectively, Rπ) of blue edges (respectively, red edges) satisfies

Bπ +Rπ = 2n(∆− 2). (6.7)

We shall make use of the following lemma.

Lemma 6.4. The number Bπ satisfies

Bπ >
n(1 + cλ)

∆− 2
− ∆− 1

2
, (6.8)

where c = ∆(∆− 1)/(∆− 2)2.

We now argue as in [18, Lemma 5.1] to deduce from Lemma 6.4 that the number of
extendable 2n-step SAWs from v0 is at least C(∆−1)n(1+cλ) where C = C(∆). Inequality
(6.2) follows as required.
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Proof of Lemma 6.4. An edge [v, w〉 ∈ Eπ is said to be finite if w lies in a finite component
of G \ π, and infinite otherwise. If [v, w〉 ∈ Eπ is red, then w is necessarily finite. Blue
edges, on the other hand, may be either finite or infinite.

It was explained in the proof of [18, Thm 4.1] that there exists an injection f from
the set of red edges to the set of blue edges with the property that, if e = [v, w〉 is red,
and f(e) = [v′, w′〉, then w and w′ lie in the same component of G \ πv. Since e is finite,
so is f(e). It follows that

Bπ > Rπ +B∞π , (6.9)

where Rπ is the number of red edges, and B∞π is the number of infinite blue edges.
Let X = (Xm : m = 0, 1, 2, . . . ) be a SRW on G, and let Pv denote the law of X

started at v ∈ V . For [v, w〉 ∈ Eπ, let

β[v,w〉 = Pv
(
X1 = w, and ∀m > 0, Xm /∈ π

)
.

By [5, Lemma 2.1] with A = π,

λ 6
1

2n+ 1

 ∑
[v,w〉∈Eπ

β[v,w〉 +
∑
w

β[v2n,w〉

 . (6.10)

If [v, w〉 ∈ Eπ is finite, then β[v,w〉 = 0. By (6.10) and transitivity,

λ 6

(
B∞π + ∆− 1

2n

)
sup
w∼1

P1

(
X1 = w, and ∀m > 0, Xm 6= 1

)
. (6.11)

The last probability depends on the graph G, and it is a maximum when G is the ∆-
regular tree T∆ (since T∆ is the universal cover of G). Therefore, it is no greater than
1/∆ multiplied by the probability that a random walk on Z, which moves rightwards with
probability p = (∆− 1)/∆ and leftwards with probability q = 1− p, never visits 0 having
started at 1. By, for example, [21, Example 12.59], if w ∼ 1,

P1

(
X1 = w, and ∀m > 0, Xm 6= 1

)
6

1

∆

(
1− q

p

)
=

∆− 2

∆(∆− 1)
.

By (6.9) and (6.11),

Bπ > Rπ + 2nλ
∆(∆− 1)

∆− 2
−∆ + 1, (6.12)

and (6.8) follows by (6.7).

7 Graphs with large girth

Benjamini, Nachmias, and Peres showed in [5, Thm 1.1] that the critical probability pc(G)
of bond percolation on a ∆-regular, non-amenable graph G with large girth is close to
that of the critical probability of the ∆-regular tree T∆. Their main result implies the
following.
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Theorem 7.1. Let G ∈ G be non-amenable with degree ∆ > 3 and girth g 6 ∞. There
exists an absolute positive constant C such that[

1

∆− 1
+ C

log(1 + λ−2)

g∆

]−1

6 µ(G) 6 ∆− 1, (7.1)

where λ = λ(G) is the spectral bottom of SRW on G, as in (6.1). Equality holds in the
upper bound of (7.1) if and only if G is a tree, that is, g =∞.

Proof. The upper bound of (7.1) is from [18, Thm 4.2]. The lower bound is an immediate
consequence of [5, Thm 1.1] and the fact that µ(G) > 1/pc(G) (see, for example, [6, Thm
7] and [14, eqn (1.13)], which hold for general quasi-transitive graphs).

We recall from Remark 6.1 that λ > 0 if and only if G is non-amenable. Theorem 7.1
does not, of itself, imply that µ(·) is continuous at T∆, since λ(·) is not continuous at T∆

(in the case when ∆ is even, see Remark 6.3). For continuity at T∆, it would suffice that
λ(·) is bounded away from 0 on a neighbourhood of T∆. By (6.3), this is valid within any
class of graphs whose edge-isoperimetric constants (2.2) are bounded uniformly from 0.
See also [16, Thm 5.1].

8 The Higman group

The Higman group Γ of [27] is the infinite, finitely presented group with presentation
Γ = 〈S | R〉 where

S = {a, b, c, d, a−1, b−1, c−1, d−1},
R = {a−1ba = b2, b−1cb = c2, c−1dc = d2, d−1ad = a2}.

(8.1)

This group is interesting since it has no proper normal subgroup with finite index, and
the quotient of Γ by its maximal proper normal subgroup is an infinite, finitely generated,
simple group. By [19, Thm 4.1(b)], Γ has no group height function. The above two
reasons conspire to forbid graph height functions.

Theorem 8.1. The Cayley graph G = (V,E) of the Higman group Γ = 〈S | R〉 has no
graph height function.

A further group of Higman type is given as follows. Let S be as above, and let
Γ′ = 〈S | R′〉 be the finitely presented group with

R′ = {a−1ba = b2, b−2cb2 = c2, c−3dc3 = d2, d−4ad4 = a2}.

Note that Γ′ is infinite and non-amenable, since the subgroup generated by the set
{a, c, a−1, c−1} is a free group (as in the corresponding step for the Higman group at
[27, pp. 62–63]).

Theorem 8.2. The Cayley graph G = (V,E) of the above group Γ′ = 〈S | R′〉 has no
graph height function.
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The proofs of the above theorems are given in Sections 11 and 12, respectively.

Part D

Remaining proofs

9 Criteria for the absence of height functions

This section contains some observations relevant to proofs in Sections 10–12 of the non-
existence of graph height functions.

Let Γ = 〈S | R〉 where |S| < ∞, and let G = (V,E) be the corresponding Cayley
graph. Let Π be the group of permutations of S that preserve Γ up to isomorphism, and
write e ∈ Π for the identity. Thus, π ∈ Π acts on Γ by: for w = s1s2 · · · sm with si ∈ S,
we have π(w) = π(s1)π(s2) · · · π(sm). It follows that Π ⊆ Aut(G). For γ = g1g2 · · · gn ∈ Γ
with gi ∈ S, and π ∈ Π, we define γπ ∈ Aut(G) by γπ(w) = g1g2 · · · gnπ(w), w ∈ V .
Write ΓΠ ⊆ Aut(G) for the set of such automorphisms γπ, and note that γe operates on
G in the manner of γ with left-multiplication.

The stabilizer Stabv of v ∈ V is the set of automorphisms of G that preserve v, that
is,

Stabv = {η ∈ Aut(G) : η(v) = v}.

Proposition 9.1. Suppose Stab1 = Π.

(a) Aut(G) = ΓΠ.

(b) If M 6 Aut(G) acts quasi-transitively on G, there exists a finite-index normal
subgroup S of Γ acting quasi-transitively on G and satisfying S 6M1.

(c) If G has a graph height function, then it has a strong graph height function.

Proof. Assume Stab1 = Π.
(a) Let η ∈ Aut(G), and write γ = η(1). Then γ−1η ∈ Stab1, which is to say that

γ−1η = π ∈ Π, and thus η = γπ ∈ ΓΠ so that Aut(G) = ΓΠ. Note for future use that

[Aut(G) : Γ] = |Π| <∞.

(b) Let M 6 Aut(G) act quasi-transitively on G, and let {Mγ1,Mγ2, . . . ,Mγk} be
the (finite) set of orbits of M, with γ1 := 1 and each γi ∈ Γ. Since Π = Stab1, each
member of Πγi is equidistant from 1, whence |Πγi| <∞ for all i. We write

Πγi = {γi,1, . . . , γi,ji}

where ji <∞.
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Let N = Mγ1 (=M1). Since, by part (a), M 6 ΓΠ, and Π = Stab1, we have that
N 6 Γ. Moreover,

Γ = N ∪

 ⋃
16j6ji,
16i6k

Nγi,j

 ,

whence N is a finite-index subgroup of Γ acting quasi-transitively on G. By Poincaré’s
theorem for subgroups (see Remark 3.2), there exists a finite-index normal subgroup S of
Γ acting quasi-transitively on G, with S 6 N .

(c) Let (h,H) be a graph height function of G. Since H 6 Aut(G) acts quasi-
transitively, by part (b), there exists S 6 H1 that is a finite-index normal subgroup
of Γ. Since S 6 H1, h is S-difference invariant, whence (h,S) is a strong graph height
function.

Corollary 9.2. Let Γ = 〈S | R〉 have Cayley graph G satisfying Stab1 = Π.

(a) If Γ has no proper, normal subgroup with finite index, any graph height function of
G is also a group height function of Γ.

(b) If Γ is a torsion group, then G has no graph height function.

Consider, in contrast, the infinite dihedral group 〈s1, s2 | s2
1, s

2
2〉 (see, for example, [19,

Example 4.4]). It satisfies Stab1 = Π, it is not a torsion group, it has no group height
function, but its Cayley graph has a graph height function.

Proof. (a) Let (h,M) be a graph height function of G. If Γ satisfies the given condition
then, by Proposition 9.1(b), (h,Γ) is a graph height function and hence a group height
function.

(b) If G has a graph height function, by Proposition 9.1(c), G has a strong graph
height function (h,S). Assume every element of Γ has finite order. For γ ∈ S with
γn = 1, we have that h(γn) = nh(γ) = 0, whence h ≡ 0 on S.

For γ ∈ Γ, find αγ such that γ ∈ αγS. Since h is S-difference-invariant, there exists
ν ∈ S such that

h(γ) = h(αγ) + h(ν) = h(αγ). (9.1)

Now [Γ : S] < ∞, so we may consider only finitely many choices for αγ. Therefore,
h takes only finitely many values, in contradiction of the assumption that it is a graph
height function.

10 Proof of Theorem 5.1

The main step is to show that
Stab1 = {e}, (10.1)

where e is the identity of Aut(G). Once this is shown, claim (a) follows from Corollary
9.2(b) and the fact that every element of the Grigorchuk group has finite order, [25]. It
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therefore suffices for (a) to show (10.1), and to this end we study the structure of the
Cayley graph G = (V,E).

It was shown in [35] (see also [13, eqn (4.7)]) that Γ = 〈S | R〉 where S = {a, b, c, d},
R is the following set of relations

1 = a2 = b2 = c2 = d2 = bcd (10.2)

= σk((ad)4) = σk((adacac)4), k = 0, 1, 2, . . . ,

and σ is the substitution

σ :


a 7→ aca,

b 7→ d,

c 7→ b,

d 7→ c.

It follows that the following, written in terms of the reduced generator set {a, b, c} after
elimination of d, are valid relations:

1 = a2 = b2 = c2 = (bc)2 = (abc)4 = (ac)8 = (abcacac)4 = (acab)8 = (ab)16, (10.3)

(see also [13, Sect. 1]). Note the asymmetry between b and c in that ab (respectively, ac)
has order 16 (respectively, 8).

Let
Vn = {v ∈ Γ : dist(v,1) = n},

where dist denotes graph-distance on G. Since G is locally finite, |Vn| <∞. For η ∈ Stab1,
η restricted to Vn is a permutation of Vn. As illustrated in Figure 10.1,

V0 = {1}, V1 = {a, b, c}, V2 = {ab, ac, ba, bc = cb, ca}.

1

a b c

ab ac ba bc = cb ca

Figure 10.1: The subgraph of G on V0 ∪ V1 ∪ V2.

Let η ∈ Stab1, so that η(a) ∈ V1. Since the shortest cycles using the edges 〈1, b〉
and 〈1, c〉 have length 4, and using 〈1, a〉 greater than 4 (see Figure 10.1), we have that
η(a) = a. By a similar argument, we obtain that, for n > 1,

η(va) = η(v)a, v ∈ Vn, va ∈ Vn+1, (10.4)
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which we express by saying that η maps a-type edges to a-type edges.
We show next that

η(vc) = η(v)c, v ∈ V, η ∈ Stab1, (10.5)

which is to say that η maps c-type edges to c-type edges. By (10.4)–(10.5), η ∈ Stab1

maps b-type edges to b-type edges also, whence η = e as required. It remains to prove
(10.5).

Assume, in contradiction of (10.5), that there exists v ∈ V , η ∈ Stab1 such that
η(vc) = η(v)b. Since ac has order 8, we have that (ca)8 = 1. Let C be the directed
cycle corresponding to the word v(ca)8; thus, C includes the edge [v, vc〉. Then η(C) is
a cycle of length 16 including the edge [η(v), η(v)b〉. Since C contains exactly 8 a-type
edges at alternating positions, by (10.4), so does η(C). Therefore, η(C) has the form
η(v)ba

∏8
i=2(xia), where xi ∈ {b, c} for i = 2, 3, . . . , 8. In particular,

ba

8∏
i=2

(xia) = 1, xi ∈ {b, c}, i = 2, 3, . . . , 8. (10.6)

The word problem of the Grigorchuk group is solvable (see [12] and [13, Sect. 4]), in
that there exists an algorithm to determine whether or not w = 1 for any given word
w ∈ {a, b, c}∗ (where S∗ denotes the set of finite ordered sequences of elements of S).
By applying this algorithm (see below), we deduce that (10.6) has no solution. Equation
(10.5) follows, and the proof of part (a) is complete.

Finally, here is a short amplification of the analysis of (10.6), using the notation
of [13, Fig. 4.1]. The word in (10.6) has the form b(ay1a)z1(ay2a)z2(ay3a)z3(ay4a),
where yi, zj ∈ {b, c}. By (5.1), the effect of such a word on the right sub-tree T1 is
w1 := ca(c/d)a(c/d)a(c/d)a, where each term of the form (y/z) is to be interpreted
as ‘either y or z’. The effect of w1 on the left sub-tree T10 of T1 is (after reduction)
w10 := (d/b)(a/e)(d/b)a. If there is an odd number of appearances of a in w10, then w10

is not the identity, and thus we may restrict ourselves to the case w10 := (d/b)a(d/b)a.
The claim follows either by observation or by a further application of the algorithm.

Part (b) holds as follows. Suppose there exists H E Aut(G) (with finite index),
γ ∈ Aut(G), and a non-constant H-difference-invariant function F : γH → Z. Since
Aut(G) = Γ by (10.1) and Proposition 9.1(a), and Γ is amenable, H is amenable and
hence unimodular. By [19, Thm 3.4] and the subsequent comment, G has a graph height
function, in contradiction of part (a).

11 Proof of Theorem 8.1

We shall prove three statements:

(i) Γ has no group height function,

(ii) Π is the cyclic group generated by the permutation (abcd), with the convention that
η(x−1) = η(x)−1, for η ∈ Π, x ∈ {a, b, c, d},
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(iii) Stab1 = Π.

It is proved in [27] that the Higman group has no proper, finite-index, normal subgroup,
and the result follows from the above statements by Corollary 9.2(a).

Proof of (i). The absence of a group height function is immediate by [19, Example
6.3].

Proof of (ii). Evidently, Π contains the given cyclic group, and we turn to the converse.
Since elements of Π preserve Γ up to isomorphism,

η(x−1) = η(x)−1, x ∈ S. (11.1)

We next rule out the possibility that η(x) = y−1 for some x, y ∈ {a, b, c, d}. Suppose,
for illustration, that η(a) = b−1. By (11.1), the relation a−1ba = b2 becomes bβb−1 = β2

where β = η(b). The Higman group has no such relation with β ∈ S. In summary,

η(x) ∈ {a, b, c, d}, η(x−1) = η(x)−1, x ∈ {a, b, c, d}. (11.2)

The shortest cycles containing the edge 〈1, a〉, modulo rotation and reversal, arise from
the relations ab2a−1b−1 = 1 and ada−2d−1 = 1 (see Figure 11.2). The first uses a±1 twice
and b±1 thrice, and the second uses a±1 thrice and d±1 twice. Let η ∈ Π, and suppose for
illustration that η(a) = b (the same argument is valid for any η(x), x ∈ {a, b, c, d}). By
considering the cycles starting 〈1, b〉, 〈1, c〉, 〈1, d〉, and using (11.2), we deduce that

η(b) = c, η(c) = d, η(d) = a,

and the claim is proved.

x

y

1

x−1

x−1y

y2

Figure 11.1: Part of the Cayley graph of the Baumslag–Solitar group BS(x, y).

Proof of (iii). We begin with some observations concerning the Baumslag–Solitar (BS)
group BS(x, y) with presentation 〈x, y, x−1, y−1 | x−1yx = y2〉, of which the Cayley graph
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is sketched in Figure 11.1. Edges of the form 〈γ, γx±1〉 have type x, and of the form
〈γ, γy±1〉 type y. By inspection, the shortest cycles have length 5 (see Figure 11.2), and,
for γ ∈ BS(x, y),

for p, q = ±1, the edges 〈γ, γxp〉 and 〈γ, γyq〉 lie in a common 5-cycle, (11.3)

the third edge of any directed 5-cycle beginning [γ, γx〉 has type y, (11.4)

the third edge of any directed 5-cycle beginning [γ, γx−1〉 has type x, (11.5)

every 5-cycle contains two consecutive edges of type y, and not of type x, (11.6)

a type x (respectively, type y) edge lies in 2 (respectively, 3) 5-cycles. (11.7)

1x−1
x

y2x−1y

y−2

x

y

Figure 11.2: Part of one ‘sheet’ of the Cayley graph of BS(x, y).

Returning to the Higman group, for convenience, we relabel the vector (a, b, c, d) as
(s0, s1, s2, s3), with addition and subtraction of indices modulo 4. Let G be the Cayley
graph of the Higman group Γ = 〈S | R〉, rooted at 1. An edge of G is said to be of type si
if it has the form 〈γ, γs±1

i 〉 with γ ∈ Γ. We explain next how to obtain information about
the types of the edges of G, by examination of G only, and without further information
about the vertex-labellings as elements of Γ.

We consider first the set ∂e1 of edges of G incident to 1. Let e1 = 〈1, v〉, t ∈ {0, 1, 2, 3},
and p ∈ {−1, 1}. Assume that

v = spt , (11.8)

so that, in particular, e1 has type st. By (11.3), for j = ±1, e1 lies in a 5-cycle of
BS(st−1, st) (respectively, BS(st, st+1)) containing 〈1, sjt−1〉 (respectively, 〈1, sjt+1〉). On
the other hand, by consideration of the relator set R, e1 lies in no 5-cycle including
an edge of type st+2. Therefore, the edges of the form 〈1, s±1

t+2〉 may be identified by
examination of G, and we denote these as g1, g2. There is exactly one further edge of
∂e1 that lies in no 5-cycle containing either g1 or g2, and we denote this edge as e2. In
summary,

{e1, e2} =
{
〈1, s−1

t 〉, 〈1, st〉
}
, {g1, g2} =

{
〈1, s−1

t+2〉, 〈1, st+2〉
}
.
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Having identified the edges of ∂e1 with types st and st+2, we move to the other endpoint
v = spt of e1, and apply the same argument. Let e1, e′1 be the two type-st edges incident
to v.

We turn next to the remaining four edges of ∂e1. Let k be such an edge, and consider
the property: k lies in a 5-cycle of G containing both e1 and e′1. By (11.6) and examination
of the Cayley graphs of the four groups BS(si, si+1), 0 6 i < 4, we see that k has this
property if it has type t− 1, and not if it has type t+ 1. Thus we may identify the types
of the four remaining edges of ∂e1, which we write as

{f1, f2} =
{
〈1, s−1

t+1〉, 〈1, st+1〉
}
, {h1, h2} =

{
〈1, s−1

t+3〉, 〈1, st+3〉
}
.

Having determined the types of edges in ∂e1 (relative to the type t of the initial edge
e1), we move to an endpoint of such an edge other than 1, and apply the same argument.
By iteration, we deduce the types of all edges of G. Let T (k) denote the type of edge k.
It follows from the above that

T (k)− T (e1) is independent of t = T (e1), (11.9)

with arithmetic on indices, modulo 4.
We explain next how to identify the value of p = p(v) in (11.8) from the graphical

structure of G. Let Si be the subgraph of G containing all edges with type either si
or si+1, so that each component of Si is isomorphic to the Cayley graph of BS(si, si+1).
By (11.4)–(11.5), every directed 5-cycle of BS(st, st+1) starting with the edge [1, st〉 has
third edge with type st+1, whereas every directed 5-cycle starting with [1, s−1

t 〉 has third
edge with type st. We examine St to determine which of these two cases holds, and the
outcome determines the value of p = p(v).

The above argument is applied to each directed edge [γ, γs±1
i 〉 of G, and the power of

si is thus determined from the graphical structure of G.
Let η ∈ Stab1. By (11.9), the effect of η is to change the edge-types by

T (k) 7→ T (k) + T (η(e1))− t.

Now, η(v) is adjacent to 1 and, by the above, once η(v) is known, the action of η on the
rest of G is determined. Since η ∈ Aut(G), η(v) may be any neighbour w of 1 with the
property that p(w) = p(v). There are exactly four such neighbours (including v) and we
deduce from (11.9) that η lies in the cyclic group generated by the permutation (s0s1s2s3).

12 Proof of Theorem 8.2

We shall prove three statements:

(i) Γ has no group height function,

(ii) Stab1 = Π where Π = {e},
(iii) Γ has no proper normal subgroup with finite index.
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The result follows from these statements by Corollary 9.2(a), and we turn to their proofs.
Proof of (i). The absence of a group height function is immediate by [19, Thm 4.1(b)].
Proof of (ii). Let η ∈ Stab1 and γ ∈ Γ. We consider the action of η on directed edges

of G. By inspection of the set R′ of relations, an edge of the type 〈γ, γx〉 lies in shortest
cycles of length 

5, 8 if x = a±1,

5, 7 if x = b±1,

7, 8 if x = c±1,

9, 11 if x = d±1.

Since the four combinations are distinct, it must be that

η([γ, γx〉) = [γ′, γ′x±1〉, γ ∈ Γ, x ∈ S, (12.1)

where γ′ = η(γ). We show next that

η([γ, γx〉) 6= [γ′, γ′x−1〉, γ ∈ Γ, x ∈ S, (12.2)

which combines with (12.1) to imply η = e as required.
It suffices to consider the case x = a in (12.2), since a similar proof holds in the

other cases. Suppose η([γ, γa〉) = [γ′, γ′a−1〉, and consider the cycle corresponding to
γab−2a−1b−1, that is (γ, γa, γab−1, γab−2, γab−2a−1, γab−2a−1b−1 = γ). By (12.1), this is
mapped under η to the cycle corresponding to γ′a−1b±2a±1b±1. By examining the relation
set R′, the only cycles beginning γ′a−1b±1 with length not exceeding 5 are γ′a−1bab−2 and
γ′a−1b−1ab2, in contradiction of the above (since the third step of these two cycles is a
rather than the required b±1).

Proof of (iii). Suppose N is a proper normal subgroup of Γ with finite index. The
quotient group Γ/N is non-trivial and finite with generators s = sN , s ∈ S, satisfying

a−1ba = b
2
, b

−2
cb

2
= c2,

c−3dc3 = d
2
, d

−4
ad

4
= a2.

(12.3)

Since Γ/N is finite, each s has finite order, denoted ord(s). It follows from (12.3) that

ord(s) > 1, s = a, b, c, d. (12.4)

To see this, suppose for illustration that ord(c) = 1, so that c = 1. By the third equation
of (12.3), ord(d) = 1, so that d = 1, and similarly for a and b, implying that Γ/N is
trivial, a contradiction.

By induction, for n > 1,

a−nban = b
2n

, b
−2n

cb
2n

= c2n ,

c−3ndc3n = d
2n

, d
−4n

ad
4n

= a2n ,
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whence, by setting n = ord(a), etc,

ord(b)
∣∣ (2ord(a) − 1), ord(c)

∣∣ (2ord(b) − 1),

ord(d)
∣∣ (2ord(c) − 1), ord(a)

∣∣ (2ord(d) − 1),
(12.5)

where u | v means that v is a multiple of u. We shall deduce a contradiction from (12.4)
and (12.5). This is done as in [27], of which we reproduce the proof for completeness.

Let p be the least prime factor of the four integers ord(s), s ∈ {a, b, c, d}. By (12.4),
p > 1. Suppose that p | ord(a) (with a similar argument if p | ord(s) for some other

parameter s). Then p | 2ord(d) − 1 by (12.5), and in particular p is odd and therefore
coprime with 2. Let r be the multiplicative order of 2 mod p, that is, the least positive
integer r such that p | 2r − 1. In particular, r > 1, so that r has a prime factor q. By
Fermat’s little theorem, r | p− 1 so that q < p. Furthermore, r | ord(d) so that q | ord(d),
in contradiction of the minimality of p. We deduce that Γ has no proper, normal subgroup
with finite index.
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