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Abstract

A graph is k-degenerate if every subgraph has minimum degree at most k. We
provide lower bounds on the size of a maximum induced 2-degenerate subgraph in a
triangle-free planar graph. We denote the size of a maximum induced 2-degenerate
subgraph of a graph G by as(G). We prove that if G is a connected triangle-free
planar graph with n vertices and m edges, then as(G) > 6"_751)”_1. By FEuler’s
Formula, this implies aa(G) > %n. We also prove that if G is a triangle-free planar
graph on n vertices with at most ng vertices of degree at most three, then as(G) >

%n — 18ns.

1 Introduction

A graph is k-degenerate if every nonempty subgraph has a vertex of degree at most k.
The degeneracy of a graph is the smallest k£ for which it is k-degenerate, and it is one
less than the coloring number. It is well-known that planar graphs are 5-degenerate and
that triangle-free planar graphs are 3-degenerate. The problem of bounding the size of an
induced subgraph of smaller degeneracy has attracted a lot of attention. In this paper we
are interested in lower bounding the size of maximum induced 2-degenerate subgraphs in
triangle-free planar graphs. In particular, we conjecture the following.

Conjecture 1.1. Every triangle-free planar graph contains an induced 2-degenerate sub-
graph on at least % of its vertices.
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Figure 1: The cube.

Conjecture 1.1, if true, would be tight for the cube, which is the unique 3-regular
triangle-free planar graph on 8 vertices (see Figure 1). For an infinite class of tight
graphs, if GG is a planar triangle-free graph whose vertex set can be partitioned into parts
each inducing a subgraph isomorphic to the cube, then G does not contain an induced
2-degenerate subgraph on more than Z|V(G)]| vertices.

Towards Conjecture 1.1, we prove the following weaker bound.

Theorem 1.2. FEvery triangle-free planar graph contains an induced 2-degenerate sub-
graph on at least % of its vertices.

We believe the argument we use can be strengthened to give a bound 2, however the

technical issues are substantial and since we do not see this as a viable way to prove
Conjecture 1.1 in full, we prefer to present the easier argument giving the bound %.

Triangle-free planar graphs have average degree less than 4, and thus they must con-
tain some vertices of degree at most three. Nevertheless, they may contain only a small
number of such vertices—there exist arbitrarily large triangle-free planar graphs of mini-
mum degree three that contain only 8 vertices of degree three. It is natural to believe that
2-degenerate induced subgraphs are harder to find in graphs with larger vertex degrees,
and thus one might wonder whether a counterexample to Conjecture 1.1 could not be
found among planar triangle-free graphs with almost all vertices of degree at least four.
This is a false intuition—such graphs are very close to being 4-regular grids, and their
regular structure makes it possible to find large 2-degenerate induced subgraphs. To sup-
port this counterargument, we prove the following approximate form of Conjecture 1.1
for graphs with small numbers of vertices of degree at most three.

Theorem 1.3. If G is a triangle-free planar graph on n vertices with ns vertices of degree
at most three, then G contains an induced 2-degenerate subgraph on at least %n — 18ng
vertices.

Theorems 1.2 and 1.3 are corollaries of more technical results.

Definition 1.4. We say a graph is difficult if it is connected, every block is either a
vertex, an edge, or isomorphic to the cube, and any two blocks isomorphic to the cube
are vertex-disjoint.
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We actually prove the following, which easily implies Theorem 1.2 since, by Euler’s
formula, a triangle-free planar graph G on at least three vertices satisfies |F(G)| <
2|V(G)| — 4.

Theorem 1.5. If G is a triangle-free planar graph on n vertices with m edges and A
difficult components, then G contains an induced 2-degenerate subgraph on at least

6n —m — A\
5

vertices.
The proof of Theorem 1.5 is the subject of Section 2.

Definition 1.6. If G is a plane graph, we let f3(G) denote the minimum size of a set of
faces such that every vertex in G of degree at most three is incident to at least one of
them.

We actually prove the following, which easily implies Theorem 1.3.

Theorem 1.7. If G is a triangle-free plane graph on n vertices, then either G is 2-
degenerate or G contains an induced 2-degenerate subgraph on at least

Tn—18(fi(C) ~ 2)

vertices.

The proof of Theorem 1.7 is the subject of Section 3.

Let us discuss some related results. To simplify notation, for a graph G we let oy (G)
denote the size of a maximum induced subgraph that is k-degenerate. Alon, Kahn, and
Seymour [4] proved in 1987 a general bound on ay(G) based on the degree sequence of G.
They derive as a corollary that if G is a graph on n vertices of average degree d > 2k, then
ar(G) = %n. Since triangle-free planar graphs have average degree at most four, this
implies that if G is triangle-free and planar then as(G) > %n Our Theorem 1.2 improves
upon this bound.

For the remainder of this section, let G be a planar graph on n vertices.

Note that a graph is O-degenerate if and only if it is an independent set. The famous
Four Color Theorem, the first proof of which was announced by Appel and Haken [5] in
1976, implies that ag(G) > $n. In the same year, Albertson [2] proved the weaker result
that ag(G) > 2n, which was improved to ag(G) = n by Cranston and Rabern [7]; the
constant factor % is the best known to date without using the Four Color Theorem. The
factor i is easily seen to be best possible by considering copies of Kj.

If additionally G is triangle-free, a classical theorem of Grétzsch [9] says that G is
3-colorable, and therefore ao(G) > %. In fact, Steinberg and Tovey [15] proved that
ap(G) = ™, and a construction of Jones [10] implies this is best possible. Dvordk and
Mnich [8] proved that there exists ¢ > 0 such that if G has girth at least five, then
OéQ(G) 2 ﬁ

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(1) (2018), #P1.62 3



Note that a graph is 1-degenerate if and only if it contains no cycles. In 1979, Albertson
and Berman [3] conjectured that every planar graph contains an induced forest on at least
half of its vertices, i.e. a1(G) > $n. The best known bound for oy (G) for planar graphs
is %n, which follows from a classic result of Borodin [6] that planar graphs are acyclically
5-colorable.

Akiyama and Watanabe [1] conjectured in 1987 that if additionally G is bipartite then
a1 (G) = %", and this may also be true if GG is only triangle-free. The best known bound
when G is bipartite is a;(G) > [#2£2], which was proved by Wan, Xie, and Yu [16]. The
best known bound when G is triangle-free is oy (G) > 3n, which was proved by Le [13] in
2016. Kelly and Liu [11] proved that if G has girth at least five, then a;(G) > 2n.

Kierstead, Oum, Qi, and Zhu [12] proved that if G is a planar graph on n vertices then
asz(G) = gn, but the proof is yet to appear. A bound for a3(G) of gn may be possible,
which is achieved by both the octahedron and the icosahedron.

In 2015, Lukot’ka, Mazék, and Zhu [14] studied a4 for planar graphs. They proved
that as(G) > En. A bound for ay(G) of n may be possible, which is achieved by the
icosahedron.

So far, bounds on «s(G) for planar graphs have not been studied. However, as
Lukot’ka, Mazdk, and Zhu [14] pointed out, it is easy to see that every planar graph
contains an induced outerplanar subgraph on at least half of its vertices. Since out-
erplanar graphs are 2-degenerate, this implies ay(G) > %n Nevertheless, a bound of
a2(G) > 3n may be possible, which is achieved by the octahedron. If G has girth at least
five, a(G) may be as large as %n, which is achieved by the dodecahedron.

2 Proof of Theorem 1.5

In this section we prove Theorem 1.5. First we prove some properties of a hypothetical
minimal counterexample (i.e., a plane triangle-free graph G with the smallest number n
of vertices such that as(G) < #=2=2 where m = |E(G)| and X is the number of difficult
components of G).

2.1 Preliminaries

Lemma 2.1. A minimal counterexample G to Theorem 1.5 is connected and has mno
difficult components.

Proof. Note that the union of induced 2-degenerate subgraphs from each component of
(G is an induced 2-degenerate subgraph of G. Thus if G is not connected, then one of its
components is a smaller counterexample, a contradiction.

Now suppose for a contradiction that GG has a difficult component. Since G is con-
nected, G is difficult. Note that G is not a single vertex, or else G is not a counterexample.
Suppose that G contains a vertex = of degree 1; in this case, note that G — x is a difficult
graph. Since G is a minimal counterexample, there exists a set S C V(G —x) that induces
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a 2-degenerate subgraph of size at least

6V(G —a)| - [E(G-—x)[ -1 6[V(G)| - [EG)| -1

1.
5 5

But then SU{z} induces a 2-degenerate subgraph in G, contradicting that G is a minimal
counterexample.

Therefore, G has minimum degree at least 2. Note that G is not a cube, or else G
is not a counterexample. Since G is difficult, we conclude that G is not 2-connected and
any end-block of GG is a cube. Let X be the vertex set of an end-block of G, and observe
that G — X is a difficult graph. Since G is a minimal counterexample, there exists a set
S C V(G — X) that induces a 2-degenerate subgraph of size at least

6IV(G =X - [BE(G=X)[ =1 _6V(G) - [E(G) -1

7.
5 )

But then for any v € X, SUX \ {v} induces a 2-degenerate subgraph in GG, contradicting
that G is a minimal counterexample. O

We will often make use of the following induction lemma.

Lemma 2.2. Let G be a minimal counterexample to Theorem 1.5, and let X C V(G). If
every induced 2-degenerate subgraph of G — X can be extended to one of G by adding A

vertices, then
N =25A—6|X|+|EG)|—|EG-X)|+1,

where X' is the number of difficult components of G — X.

Proof. Let S C V(G — X) induce a maximum 2-degenerate subgraph in G — X. Since G
is a minimal counterexample,

515 VO Z XD - IBG -1 = X 0

Note that G has no difficult components by Lemma 2.1. Since S can be extended to
induce a 2-degenerate subgraph in G' by adding A vertices of X,

Combining (1) and (2) yields X > 5A — 6| X| + |E(G)| — |E(G — X)|, which gives the
desired inequality since both sides are integers. O

Lemma 2.3. A minimal counterexample G to Theorem 1.5 has no subgraph isomorphic
to the cube that has fewer than siz edges leaving.

Proof. Let X = {vy,vq,v3,v4, U1, us, us,us} induce a cube in G where vyvov3v4v; and
uuguszuguy are 4-cycles and v; is adjacent to w; for each i € {1,2,3,4}, as in Figure 1.
Suppose for a contradiction that |E(X,V (G — X))| < 5. Let S induce a 2-degenerate
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subgraph in G — X. First, we claim that there is some vertex v € X such that SUX \ {v}
induces a 2-degenerate subgraph in G.

If v; has at least three neighbors not in X, then SU X \ {v;} induces a 2-degenerate
subgraph in G: Since G[S] is 2-degenerate, it suffices to verify that for every non-empty
X" C X\ {v1}, there exists a vertex € X’ with at most two neighbors in S U X'. Since
the cube is 3-edge-connected, there are at least three edges with one end in X’ and the
other end in X \ X’. Since there are at most five edges leaving X and at least three
of them are incident with vy, at most two such edges are incident with vertices of X'.
Consequently, >y deggixug)(7) < 3[X'| =3+ 2, and thus X' indeed contains a vertex
whose degree in G[X' U S] is less than three.

By symmetry, we may assume no vertex in X has more than two neighbors not in
X. If v; has two neighbors not in X, an analogous argument using the fact that the
only 3-edge-cuts in the cube are the neighborhoods of vertices shows that S U X \ {v;}
induces a 2-degenerate subgraph in G, unless each of u;, v9, and vy has a neighbor not
in X. However, in that case it is easy to verify that S U X \ {u;} induces a 2-degenerate
subgraph in G.

Hence, we may assume that each vertex of X has at most one neighbor not in X. Let
Z C X be a set of size exactly 5 containing all vertices of X with a neighbor outside
of X. If Z contains all vertices of a face of the cube, then by symmetry we can assume
that Z = {v1,v9,v3,v4,u1}, and S U X \ {vz} induces a 2-degenerate subgraph in G.
Otherwise, we have |Z N {vy,vq,v3, 04} < 3 and |Z N {uy, ug, us, us}| < 3, and since
|Z| =5, by symmetry we can assume that |Z N {vy, ve,v3,v4}| = 2 and v; € Z. However,
then SU X \ {v1} induces a 2-degenerate subgraph in G.

This confirms that every set inducing a 2-degenerate subgraph of G — X can be ex-
tended to a set inducing a 2-degenerate subgraph of G by the addition of 7 vertices. Let A’
be the number of difficult components of G — X. By Lemma 2.2, \' > |E(X, V(G — X))|.
Since G is connected, it follows that G — X consists of exactly |E(X, V(G — X))| difficult
components, each connected by exactly one edge to the cube induced by X. But then G
is a difficult graph, contradicting Lemma 2.1. n

Lemma 2.4. A minimal counterezample G to Theorem 1.5 has minimum degree at least
three.

Proof. Suppose not. Let v € V(G) be a vertex of degree at most two. Note that v has
degree at least one by Lemma 2.1. Note also that any induced 2-degenerate subgraph of
G — v can be extended to one of G by adding v. By Lemma 2.2, if G — v has X difficult
components, then X' > deg(v). But then G is a difficult graph, contradicting Lemma
2.1. O

2.2 Reducing vertices of degree three

A cycle C in a plane graph is separating if both the interior and the exterior of C' contain
at least one vertex. The main result of this subsection is the following lemma.
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Lemma 2.5. A minimal counterezample G to Theorem 1.5 contains no vertex of degree
three that is not contained in a separating cycle of length four or five.

For the remainder of this subsection, let G' be a minimal counterexample to Theorem
1.5, and suppose v € V(G) is a vertex of degree three that is not contained in a separating
cycle of length four or five. Recall that a minimal counterexample is a plane graph, so G
has a fixed embedding.

Claim 2.6. The vertex v has no neighbors of degree at least five.

Proof. Suppose for a contradiction v has a neighbor u of degree at least five, and let
X = {u,v}. Note that any induced 2-degenerate subgraph of G — X can be extended to
one of G including v. By Lemma 2.2, the number of difficult components of G — X is
positive.

Let D be a difficult component of G — X. First, suppose D contains a vertex of degree
at most one. By Lemma 2.4, this vertex is adjacent to v and v, contradicting that G
is triangle-free. Therefore D has an end-block B isomorphic to the cube. Since G is
triangle-free and planar, v has at most two neighbors in B, and u and v do not both
have two neighbors in B. Hence |E(X,V(B))| < 3, so B has at most four edges leaving,
contradicting Lemma 2.3. O

Claim 2.7. The vertex v has no neighbors of degree three.

Proof. Let uy,us, and uz be the neighbors of v, and suppose for a contradiction that wu,
has degree three.

First, let us consider the case u, has degree at least four (and thus exactly four
by Claim 2.6). Note that any induced 2-degenerate subgraph of G — {uj,us,v} can
be extended to one of G including v and u;. By Lemma 2.2, the number of difficult
components of G — {uy,uq, v} is positive.

Let D be a difficult component of G —{uy, us,v}. Note that each leaf of D is adjacent
to w1 and us and not adjacent to v by Lemma 2.4, since G is triangle-free. Now if D has at
least two leaves, then v is contained in a separating cycle of length four, a contradiction.
Note also that D is not an isolated vertex. Hence, D contains an end-block B isomorphic
to the cube. If D contains another end-block, then we can choose B among the end-blocks
isomorphic to the cube so that B has at most five edges leaving, contradicting Lemma
2.3. Therefore D is isomorphic to the cube. By Lemma 2.3, every neighbor of u, us, and
v is in D, contradicting that G is planar and triangle-free.

Therefore we may assume u, and symmetrically uz have degree three. Note that any
induced 2-degenerate subgraph of G — {uy, us, us, v} can be extended to one of G including
uy, uz, and uz. By Lemma 2.2, the number of difficult components of G — {uy, us, uz, v}
is positive.

Let D be a difficult component of G — {uy, ug, us,v}. First, suppose D is a tree. If D
is an isolated vertex, this vertex is adjacent to uy, us, and uz by Lemma 2.4, but then v is
contained in a separating cycle of length four, a contradiction. Note that D is not an edge,
or else it is contained in a triangle with one of wuy, us, or uz, by Lemma 2.4. Similarly, D
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is not a path, or else G contains a triangle or a vertex of degree at most two. Therefore D
has at least three leaves. Since G has minimum degree three and {uy, us, us, v} has only
six edges leaving, D is isomorphic to K 3. In this case, G is isomorphic to the cube, a
contradiction.

Therefore we may assume D is not a tree, so D contains a block isomorphic to the
cube. Let B be a block in D isomorphic to the cube with the fewest edges leaving. If D
contains an endblock different from B, then at most five edges are leaving B, contradicting
Lemma 2.3. Therefore D is isomorphic to the cube and all six edges leaving {uy, us, ug, v}
end in D, contradicting that G is planar and triangle-free. O]

Claim 2.8. The vertex v is not contained in a cycle of length four that contains another
vertex of degree three.

Proof. Suppose for a contradiction that u; and wuy are neighbors of v with a common
neighbor w of degree three that is distinct from v, and let X = {uy, us, v, w}. By Claims
2.6 and 2.7, u; and uy have degree four. Note that any induced 2-degenerate subgraph
of G — X can be extended to one of G including X \ {u1}. By Lemma 2.2, if X’ is the
number of difficult components of G — X, then \ > 2.

Let Dy and D, be difficult components of G — X. Since there are only six edges leaving
X, we may assume without loss of generality that |E(X,V(D;))| < 3. Note that Dy is
not an isolated vertex by Lemma 2.4 since G is triangle-free. If D; contains a leaf, then
it is adjacent to either both u; and us or both v and w by Lemma 2.4. In either case, v
is contained in a separating cycle of length four, a contradiction. Therefore D; contains
an end-block isomorphic to the cube, contradicting Lemma 2.3. O]

Claim 2.9. FEvery edge incident with v is contained in a cycle of length four.

Proof. Suppose for a contradiction u is a neighbor of v such that the edge wv is not
contained in a cycle of length four. Let G’ be the graph obtained from G by contracting
the edge uv into a new vertex, say w, and observe that G’ is planar and triangle-free.

Let S C V(G') induce a maximum-size induced 2-degenerate subgraph of G'. We
claim that G contains an induced 2-degenerate subgraph on at least |S| + 1 vertices. If
w ¢ S, then SU{v} induces a 2-degenerate subgraph of G on at least |S|+ 1 vertices, as
claimed. Therefore we may assume w € S. It suffices to show S\ {w} U {u, v} induces a
2-degenerate subgraph in G. Given S’ C S\ {w} U {u,v}, we will show G[S’] contains a
vertex of degree at most two. If S’N{u,v} = @, then G[5’] equals G'[S’], which contains a
vertex of degree at most two, as desired. Therefore we may assume S’ N{u,v} # &. Note
that G'[S" U {w} \ {u,v}] contains a vertex z of degree at most two. If x # w, then since
G is triangle-free, x is not adjacent to both u and v, and thus = has degree at most two
in G[S'], as desired. So we may assume w has degree at most two in G'[S"U{w} \ {u, v}].
Now at least one of u and v has degree at most two in G[S'], as desired.

Since G is a minimal counterexample and |V (G’)| < |V(G)], we have

6V (G|~ [E@G) =X _ V(G| - [EG) =N

|51 > :
5 5

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(1) (2018), #P1.62 8



where )\ is the number of difficult components of G’. Furthermore, G contains an induced
2-degenerate subgraph on at least |S| 4 1 vertices as argued, and thus

6IV(G) — [E(G)]
5

It follows that A’ > 0. Since G’ is connected, G’ is difficult. By Lemmas 2.3 and 2.4,
G’ cannot have an endblock not containing w, and thus G’ is isomorpic to the cube. But
then either u or v has degree at most two in G, which is a contradiction. [

S| +1<

We can now prove Lemma 2.5.

Proof of Lemma 2.5. Suppose for a contradiction that GG contains such a vertex v. By
Claim 2.9, the vertex v has a neighbor u such that the edge uv is contained in two cycles
of length four. Let z; and x5 denote the other neighbors of v. Since uwv is contained
in two cycles of length four, for i € {1,2}, u and x; have a common neighbor y; that
is distinct from v. By Claims 2.6 and 2.7, u,x;, and x5 have degree four. Since v is
not contained in a separating cycle of length four, y; # 32, x1 and y, are not adjacent,
and x5 and y; are not adjacent. By Claim 2.9, y; and y, have degree at least four. Let
X = {v,u,z1,71,9y1,y2}, and note that |E(G)| — |E(G — X)| = 8 + deg(y1) + deg(ya).
Note also that any induced 2-degenerate subgraph of G — X can be extended to one of G
by adding u,v, 1, and 5. By Lemma 2.2, if X' is the number of difficult components of
G — X, N >deg(y1) + deg(ya) — 7 > 1. Let D be a difficult component of G — X such
that the number of edges between D and X is minimum. Note that if deg(y;) > 5 or
deg(y2) = 5, then |E(V(D), X)| < 5. Otherwise, |E(V (D), X)| <09.

Since G is triangle-free and v is not contained in a separating cycle of length at most
5, each vertex of D has at most two neighbors in X, and if it has two, these neighbors are
either {z1, x5} or {y1,y2}. By Claim 2.8, if z is a leaf of D, we conclude that z is adjacent
to y; and y,. By planarity, D has at most two leaves. Furthermore, if D had two leaves,
then all edges between D and X would be incident with y; and y., and by planarity and
absence of triangles, we would conclude that G contains a vertex of degree two or a cube
subgraph with at most four edges leaving, which is a contradiction. Hence, D has an
end-block B isomorphic to the cube. Label the vertices of B according to Figure 1. By
Lemma 2.3, D has at most one end-block isomorphic to the cube. Hence, either D = B,
or D has precisely two end-blocks, one of which is a leaf and one of which is B.

Suppose deg(y;) = 5 or deg(ys) = 5. Then there are at most 5 edges between X and
D. By Lemma 2.3, B # D, so D has at least two end-blocks. Therefore there are at
most 3 edges between B and X, so there are at most 4 edges leaving B, contradicting
Lemma 2.3. Hence, deg(y;) = deg(ys) = 4.

By planarity, all edges between B and X are contained in one face of B. Since G
is triangle-free and v is not contained in a separating 4-cycle, there are at most 3 edges
between B and {x1,z5}. If D has a leaf, then as we observed before, the leaf is adjacent to
y1 and ys, and by planarity, all edges between B and X are incident with either {y;, o, u}
or {x1, T2, y1,y2}. By Lemma 2.3, the former is not possible, and in the latter case, there
are 3 edges between B and {x1, 23}, both y; and y» have a neighbor in B, and D consists
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of B and the leaf. However, this is not possible, since G is triangle-free. Consequently, D
is isomorphic to the cube.

Let us now consider the case that u has a neighbor in V(D). We may assume without
loss of generality that u is adjacent to v;. Since v is not in a separating cycle of length at
most five, 1 and x5 are not adjacent to v, vy, or vy. Therefore z; and x5 each have at
most one neighbor in V(D). By Lemma 2.3, one of y; and y» has two neighbors in V' (D),
and we may assume without loss of generality it is y;. Since G is planar and triangle-free,
y1 is adjacent to vy and vy4, and v3 is not adjacent to a vertex in X. Therefore z; and x5
have no neighbors in V(D), so |[E(V(D), X)| < 5, a contradiction.

Hence, we may assume u has no neighbor in V(D). By Lemma 2.3, at least two of
the vertices {z1,y1, T2, Y2} have two neighbors in V(D). Suppose x; has two neighbors in
V(D). Then y; and y, have at most one, since z; does not have a common neighbor with
y1 or yo. Therefore xo has two neighbors in V(D). Then y; and y» have no neighbors
in V(D), contradicting Lemma 2.3. Therefore we may assume by symmetry that y; and
y2 have two neighbors in V(D). Then z; and 2 have no neighbors in V(D), again
contradicting Lemma 2.3. [

2.3 Discharging
In this subsection we use discharging to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. For each v € V(G), let ch(v) = deg(v) — 4, and for each face f of
G, let ch(f) = |f| — 4. Now we redistribute the charges according to the following rules
and denote the final charge by ch,.

1. Every face f € F' sends 1 unit of charge to every vertex incident with f.

2. Afterwards, every face f' ¢ F' and every vertex v € V(G) such that d(f, f’) <9 or
d(f,v) <9 for some face f € F sends all of its charge to f.

Observe that every vertex and every face not in F' sends its charge to at most one face
of F' by Lemma 3.7. Clearly, all vertices and all faces not in F' have non-negative final
charge. By Euler’s formula the sum of the charges is —8, so there exists some face f € F
with negative charge.

By Lemma 3.8, for each k € {0,...,9}, the vertices v € V(G) such that d(f,v) =k
induce a cycle in G, say Cy. Note that after the first discharging rule is applied, f has
charge —4, and since ch,(f) < —1, at most three units of charge are sent to f according
to the second rule. Note that f receives precisely c(f, k) total charge from vertices of Cj,
and precisely g(f, k) total charge from faces between Cy and Cj1. Hence, we have

9

8
32 c(f )+ > glf k) = n(f. k)
k’'=0

k'=0
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for every k € {0,...,9}. Therefore,

9
> n(f, k) < 30.

k=0
However, this contradicts Lemma 3.9, finishing the proof. O

Let us remark that the constant 18 in the statement of Theorem 1.7 can be improved.
In particular, one could extend the case analysis of Claim 3.10 to fully describe larger
neighborhoods of the face, likely obtaining enough charge in a much smaller number of
layers than 10 needed in our argument (at the expense of making the proof somewhat
longer and harder to read).

3 Proof of Theorem 1.7

For the remainder of this section, let G be a counterexample to Theorem 1.7 such that
f3(G) is minimum, and subject to that, |V(G)| is minimum, and let F be a set of f3(G)
faces of GG such that every vertex in G of degree at most three is incident to at least one
of them.

3.1 Preliminaries

Lemma 3.1. The graph G has minimum degree three.

Proof. Suppose not. Since G is planar and triangle-free, G has minimum degree at most
three. Therefore we may assume G contains a vertex v of degree at most two. By
assumption, there is a face in F' incident with v. Therefore f3(G —v) < f3(G). Note that
G — v is not 2-degenerate or else G is. By the minimality of G, there exists S C V(G —v)
of size at least £(|V(G)| — 1) — 18(f3(G) —2) such that G[S] is 2-degenerate. Now
SU{v} induces a 2-degenerate subgraph of G on at least £|V(G)|—18 (f3(G) — 2) vertices,
contradicting that G is a counterexample. O]

Lemma 3.2. If H is a triangle-free plane graph of minimum degree at least two such that
fs(H) =1, then H has at least four vertices of degree two.

Proof. Let f' be a face of H incident to all the vertices in H of degree at most three. We use
a simple discharging argument. For each vertex v, assign initial charge ch(v) = deg(v) —4,
and for each face f, assign initial charge ch(f) = |f| — 4. Now let f’ send one unit of
charge to each vertex v of degree at most three incident with f’, and denote the final
charge ch,. By Euler’s formula, the sum of the charges is —8. However, ch.(f’) > —4,
and every other face has nonnegative final charge. Therefore the vertices have total final
charge at most —4. Every vertex of degree at least three has nonnegative final charge,
and every vertex v of degree two has final charge —1. Therefore H contains at least four
vertices of degree two, as desired. O
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Lemmas 3.1 and 3.2 imply that f3(G) > 1. A cylindrical grid is the Cartesian product
of a path and a cycle.

Lemma 3.3. If H is a triangle-free plane graph such that fs(H) = 2, then either H has
minimum degree at most two, or H s a cylindrical grid.

Proof. Let H be a triangle-free plane graph of minimum degree three such that f3(H) = 2.
It suffices to show that H is a cylindrical grid. Let f; and fs be faces of H such that
every vertex of degree at most three is incident to either f; or f5. Again we use a simple
discharging argument. For each vertex v, assign initial charge ch(v) = deg(v) — 4, and
for each face f, assign initial charge ch(f) = |f| — 4. Now for ¢ € {1,2}, let f; send one
unit of charge to each vertex v incident to f;, and denote the final charge ch,. By Euler’s
formula, the sum of the charges is —8. However, ch.(f1),ch.(f2) = —4, and every other
face and every vertex has nonnegative final charge. It follows that ch.(f1) = ch.(f2) = —4,
and that every other face and every vertex has precisely zero final charge. Therefore the
boundaries of f; and f; are disjoint, and every vertex incident with either f; or fs has
degree three. Every other vertex has degree four, and every face that is not f; or f; has
length four. It is easy to see that the only graphs with these properties are cylindrical
grids, as desired. O

Lemma 3.4. A triangle-free cylindrical grid on n vertices contains an induced 2-degenerate
subgraph on at least %n vertices.

Proof. Let H be a triangle-free cylindrical grid on n vertices. The vertices of H can be
partitioned into k sets that induce cycles Cf, ..., C} of equal length such that for each
i€{2,...,k—1}, every vertex in C; has a unique neighbor in C;_; and in C;, ;. Let X be
any set of vertices containing precisely one vertex in Cy; for each i € {1,..., |k/2|}. Note
that H — X is an induced 2-degenerate subgraph on at least %n vertices, as desired. [

By Lemmas 3.3 and 3.4, we have f3(G) > 2.

Definition 3.5. We say a subset of the plane is G-normal if it intersects G only in
vertices. If f and f' are faces of G, we define d(f, f') to be the smallest number of
vertices contained in a G-normal curve with one end in f and the other end in f’. If f is
a face of G and v is a vertex of G, we define d(f,v) to be the minimum of d(f, f’) over
all faces f’ incident with v.

Lemma 3.6. Let P be a G-normal connected subset of the plane that intersects a face in
F orits boundary. Let X be the set of vertices of G contained in P. Suppose that H, and
Hy are disjoint induced subgraphs of G — X such that G — X = Hy U Hy. If f3(Hy) > 2
and f3(Hy) = 2, then | X| > 21.

Proof. Note that there is a face of G — X containing P in its interior, and any vertex of
G — X of degree at most three that has degree at least four in G is incident with this face.
Therefore f3(Hy)+ f3(Hs2) < f3(G)+1. By the minimality of G, for each i € {1,2}, there
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exists S; C V(H;) of size at least £|V (H;)|—18(f3(H;)—2) such that G[S;] is 2-degenerate.
But G[S; U 5] is 2-degenerate, and

7
51U 8| > 2 (IV(G) = |X]) = 18(fs(H1) + f5(H2) — 4)
7 7
> §|V(G)| — 18(f3(G) — 2) — §]X| + 18.
Since G is a counterexample, £|X| > 18, so |X| > 21, as desired. O

Note that Lemma 3.6 together with Lemmas 3.1 and 3.2 imply that GG is connected.
Lemma 3.7. All distinct faces f, f' € F satisfy d(f, f') > 21.

Proof. Suppose not. Then there is a set X of at most 20 vertices such that f and f" are
contained in the same face of G — X. Therefore f3(G — X) < f3(G) — 1.

Let n = |[V(G)|. Recall that f35(G) > 3, and thus n > 20, as otherwise the empty
subgraph satisfies the requirements of Theorem 1.7. Note that G — X is not 2-degenerate
or else G — X is an induced 2-degenerate subgraph on at least n—20 > In—18(f;(G)—2)
vertices, contradicting that GG is a counterexample. So by the minimality of G, there
exists S C V(G — X) of size at least Z(|V(G)| — |X|) =18 (f3(G— X) —2) > L|V(G)| —
18 (f3(G) — 2) such that G[S] is 2-degenerate, contradicting that G is a counterexample.

O

Lemma 3.8. For each f € F and k € {0,...,9}, if Cr = {v € V(G) : d(f,v) =k}, then
Cy induces a cycle in G. Furthermore, every vertex in Cy has at most one neighbor u
satisfying d(f,u) < k.

Proof. We assume without loss of generality that f is the outer face of G. We use induction
on k. In the base case, Cj is the set of vertices incident with f. We prove this case as a
special case of the inductive step.

By induction, we assume that for each k' < k, C} induces a cycle in G and each vertex
Cy has at most one neighbor in Cy 1. Let H = G — UZ,_:IO C)r. Note that C}, is the set
of vertices incident with the outer face of H. By Lemma 3.7, if £ > 0 then every vertex
of C} has degree at least four in G.

First we show that every v € C) has at most one neighbor in Cj_;. Here the base case
is trivial, so we may assume k& > 0. Suppose for a contradiction that a vertex v € ('}, has
two neighbors v; and vy in Cy_;. Let P and P, be the two paths in the cycle G[Cy_4]
with ends v; and vy. Since G is triangle-free, P, and P, have length at least two. For
i € {1,2}, note that the subgraph of G drawn in the closure of the interior of the cycle
P; + v1vvy has minimum degree at least two and at most three vertices (vy, v, and vy) of
degree two. Therefore by Lemma 3.2, it contains a face f; € F.

For i € {1,2}, there exists a simple G-normal curve A; from v; to f containing exactly
one vertex from C} for each k' < k. Let X consist of the vertices on A; and A, together
with v, and note that | X| < 19. Let G — X = H; U H,, where f; is a face of Hy and f5 is
a face of Hy—mneither f; nor f, is incident with a vertex of X by Lemma 3.7, and for the
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same reason the vertices in H; incident with f; have degree at least three for i € {1,2}.
By Lemma 3.2, for ¢ € {1,2} we have either f5(H;) > 2 or H; contains vertices of degree
at most two. In the latter case, the vertices of degree at most two in H; are incident with
the outer face, and thus f5(H;) > 2. This contradicts Lemma 3.6. Therefore every vertex
of C} has at most one neighbor in Cy_, as claimed. Note that this implies every vertex
of C} has degree at least three in H.

Now we claim that H is connected and C does not contain a cut-vertex of H. Suppose
not. Then H contains at least two end-blocks B; and By. Note that B; and By have
minimum degree at least two and at most one vertex of degree two. Therefore by Lemma
3.2, f3(B1), f3(Bs) = 2. But there is a connected G-normal subset of the plane intersecting
GG in a set of vertices X containing only one vertex of H and at most two vertices from
each Cy for K < k such that B; — X and By — X are in different components of G — X.
Note that | X| < 19. By Lemma 3.7, f3(B; — X), f3(B2 — X) > 2, contradicting Lemma
3.6. Hence H is connected, and C}, does not contain a cut-vertex of H, as claimed.

Since C}% does not contain a cut-vertex of H, the outer face of H is bounded by a
cycle, say C'. Now if C}; does not induce a cycle in GG, then there is a chord of C, say uwv.
Let P; and P, be paths in C' with ends at w and v such that C = P, U P,. For i € {1,2},
let H; be the graph induced by G on the vertices in P; Uwuv and its interior. Since H; has
minimum degree two and at most two vertices of degree two, by Lemma 3.2, f3(H;) > 2.
But there is a connected G-normal subset of the plane containing u, v, and intersecting G
in a set of vertices X containing at most two vertices from each C} for k¥’ < k. Note that
| X| <20. By Lemma 3.7, f3(Hy — X), fs(H2 — X) > 2, contradicting Lemma 3.6. O

Consider a face f € F and for k € {0,...,9}, let Cy be the cycle induced by {v €
V(GQ) : d(f,v) = k} according to Lemma 3.8. For k € {0,...,8} and v € V(C}), let
n(v) denote the number of neighbors of v in Cyy1 (note that n(v) > 1) and n(f, k) =
> vev(cy) (n(v) —1). Let g(f, k) be the sum of [f'| —4 over all faces f’ such that d(f, /') =
k+1, i.e., the faces between cycles Cy and Cyy;1. Let by = 3 if £ = 0 and b, = 4 otherwise,
and let c(f, k) = >° cy(c,)(deg(v) — b). Let us also define n(f,—1) = g(f,—1) = 0.
Observe that

and
n(fak) :n<f7k_ 1) +g(f7k_ 1) +C(fak)
Consequently,
k k-1
n(fk) = clf,K)+>_ glf. k).
k'=0 k'=0

The following lemma will be crucial.

Lemma 3.9. For every f € F,

8> n(f k) > 249.

9
k=0
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9(f,0)=1 of,1)=1
Figure 2: n(f,1) = 1, when |f| = 4.

First we need the following claims.
Claim 3.10. Every face f € F satisfies n(f,1) > 2.

Proof. Suppose that n(f,1) < 1. For k € {0,1}, let Cy denote the cycle induced by
{v e V(G) : d(f,v) = k} according to Lemma 3.8. If n(f, 1) = 0, then ¢(f,0) = ¢(f,1) =0
and ¢g(f,0) =0, i.e., H = G[V(Cy U C})] is a cylindrical grid and all vertices of C have
degree 4 in G. In this case, let v be an arbitrary vertex of C;. If n(f,1) = 1, then
c(f,0)+g(f,0) +c(f,1) =1, so one of the following holds (see Figure 2):

e ¢(f,0) =1, so there is a vertex v' € V(Cp) of degree four and a vertex v"” € V(C)
of degree two in H; we let v be any vertex of C; that is not v” and is not adjacent
to v’. Note that every vertex of V(Cjy) \ {v'} has degree three, and every vertex of
C has degree four in G. Or,

e g(f,0) =1, so there is a face of H of length five incident with a vertex v' € V(C})
of degree two in H; we let v be any vertex of C; other than v’. Note that every
vertex of Cy has degree three and every vertex of C; has degree four in GG. Or,

e ¢(f,1) =1, s0 H is a cylindrical grid and exactly one vertex of C; has degree five;
we let v be this vertex.

Let X = V(C1UC%). Note that f3(G—X) < f3(G), and by the minimality of G, there
exists S € V(G — X) inducing a 2-degenerate subgraph such that [S| > Z|V(G — X)| —
18 (f3(G — X) —2) = Z|V(G)|-18(f3(G) — 2)—(|X|—1). But then SU(X\{v}) induces a
2-degenerate subgraph of G, contradicting the assumption that G is a counterexample. [

Claim 3.11. Let f € F and for k € {0,...,9}, let Cy be the cycle induced by {v € V(G) :
d(f,v) = k} according to Lemma 3.8. Then

|CoU...UCy| > 184.

Proof. Claim 3.10 implies that n(f, k) > 2 for k € {1,...,9}, and thus |Cyy1| = |Ck| + 4
for k € {1,...,8}. Since G is triangle-free, we have |Cy| > 4, and we conclude that

|ICoU...UCy| 2 10|Co| +4(1+2+...4+8) > 184. O
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Now we can prove Lemma 3.9.

Proof of Lemma 3.9. For k € {0,...,9}, let Cy denote the cycle induced by {v € V(G) :
d(f,v) = k} according to Lemma 3.8. Let X = (J,_,V(Cy). By Claim 3.11, |X| > 184.
For k > 1, let Ry be a smallest subset of V(C}) such that }° o5, (R(v) — 1) < 1.
By Claim 3.10 and the monotonicity of n(f, k), we have n(f, k) > 2, and thus Ry is
non-empty. Note that |Ry| < n(f, k) — 1. For k =0, let Ry be defined in the same way if
n(f,0) > 2, and let Ry consist of an arbitrary vertex of Cy otherwise. Let R = UZ:O Ry.

By Lemma 3.7, we have f3(G — X) < f3(G), and by the minimality of G, there
exists S C V(G — X) inducing a 2-degenerate subgraph such that |S| > Z|V(G — X)| —
18(f3(G—X)—2) > I|V(G)| — 18(f3(G) —2) — £|X|. We claim that S U (X \ R)
induces a 2-degenerate subgraph of (. Indeed, it suffices to show that for every non-
empty X' C X \ R, the graph G[S U X’| has a vertex of degree two. Let k be the
minimum index such that X’ N V(Cy) # @. Note that by the choice of Ry, Cx[X'] — Ry
is a union of paths containing at most one vertex with more than one neighbor in Cj,q,
and if there is such a vertex, it has exactly two neighbors in C;. Consequently, one of
the endvertices of these paths has degree at most two in G[S U X].

Since G is a counterexample, we conclude that |X \ R| < I|X|, and thus 8|R| — 1 >

| X| > 184. Since |R| < 2+ Y i_o(n(f, k) — 1) < =8+ S°)_, n(f, k), the inequality

9

8 “n(f. k) =249

k=0

follows. O

3.2 Discharging

In this section, we use discharging to prove the following.

Lemma 3.12. FEvery triangle-free plane graph with minimum degree three contains a
vertex of degree three that is not contained in a separating cycle of length four or five.

For the remainder of this subsection, suppose G is a counterexample to Lemma 3.12.
We assume G is connected, or else we consider a component of G. Since G is planar and
triangle-free, it contains a vertex of degree at most three, and thus GG contains a separating
cycle of length at most five. We choose a separating cycle C' of length at most five in G
so that the interior of C' contains the minimum number of vertices, and we let H be the
subgraph of GG induced by the vertices in C' and its interior. Note that C' has no chords
since G is triangle-free. By the choice of C', we have the following.

Claim 3.13. The only separating cycle of G of length at most five belonging to H is C.

Now we need the following claim about vertices of degree three in the interior of H
(see Figure 3).
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Figure 3: A vertex v € V(H) \ V(C) of degree three.

Claim 3.14. If some vertez v € V(H) \ V(C) has degree three, then |V (C)| =5, and v
has precisely one neighbor in V(C') and is incident to a face of length five whose boundary
intersects C' in a subpath with three vertices.

Proof. Suppose v € V(H) \ V(C) has degree three. Since G is a counterexample, v is
contained in a separating cycle C’ in G of length four or five. By Claim 3.13, C’ is not
contained in H, and since C' is chordless, C’ contains a vertex not in V' (H). Since C’ has
length at most five, v has at least one neighbor in V(C). By Claim 3.13, v has at most
one neighbor in V(C'). Hence v has precisely one neighbor in V/(C), as desired. Note
that V/(C) N V(C’) is a pair of nonadjacent vertices, or else G' contains a triangle. If v is
not incident to a face of length five containing three vertices of C, or if |V (C)| = 4, then
H contains a separating cycle of length at most five containing v, contradicting Claim
3.13. [

Proof of Lemma 3.12. For each v € V(H) \ V(C), let ch(v) = deg(v) — 4, for each v €
V(C), let ch(v) = deg(v) — 2, and for each face f, let ch(f) = |f| — 4. Note that by
Euler’s formula, if F'(H) denotes the set of faces of H,

Y ch(v)+ Y ch(f) = 4(EH)| ~|V(H)| — [F(H)]) +2|V(C)| = =8 +2[V(C)].

veV (H) fEF(H)

Now we redistribute the charges in the following way, and we denote the final charge ch,.
For each v € V/(C), if u € V(H) \ V(C) has degree three and is adjacent to v, let v send
one unit of charge to u. Note that by Claim 3.14, for each v € V(H), ch.(v) > 0. Note
also that for each f € F(H), ch.(f) > 0. The sum of charges is unchanged, i.e., it is
-84 2|V (C)].

First, suppose |V (C)| = 4, and thus the sum of the charges is 0. Note that every vertex
and face has precisely zero final charge, so every face has length precisely four. By Claim
3.14, every vertex v € V(H) \ V(C) has degree precisely four. Therefore every vertex in
C has degree precisely two. Since C' is separating, GG is not connected, a contradiction.

Therefore we may assume |V(C')| = 5, so the sum of the charges is 2. Note that the
outer face f has final charge ch,(f) = 1. Since G has an even number of odd-length
faces, it follows that G has another face f’ of length 5 and final charge 1, and all other
faces and vertices have zero final charge. In particular, all faces of H distinct from f
and f" have length 4 and each vertex in V(C') is adjacent only to vertices of degree three
in V(H)\ V(C). Using Claim 3.14, we conclude there are more than two vertices of
V(H) \ V(C) with a neighbor in C' and at least two faces of length at least five in the
interior of C', a contradiction. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(1) (2018), #P1.62 17



Now the proof of Theorem 1.5 follows easily from Lemmas 2.4, 2.5, and 3.12.
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