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Abstract

Let F be a family of r-graphs. An r-graph G is called F-saturated if it does
not contain any members of F but adding any edge creates a copy of some r-graph
in F . The saturation number sat(F , n) is the minimum number of edges in an
F-saturated graph on n vertices. We prove that there exists a finite family F such
that sat(F , n)/nr−1 does not tend to a limit. This settles a question of Pikhurko.

Mathematics Subject Classifications: 05C65, 05C35

1 Introduction

An r-graph is a pair, (V (H), E(H)), of vertices and edges where the edge set E(H) is
a collection of r-element subsets of the vertex set V (H). We will let |H| = |V (H)| and
e(H) = |E(H)|. When the context is clear we will refer to r-graphs simply as graphs.

Fix an r-graph F , called a forbidden graph. An r-graph H is said to be F -saturated
if H does not contain F as a subgraph, but adding any extra edge to H creates a copy F
as a subgraph of H. We define the saturation number

sat(F, n) = min{e(H) : |H| = n and H is F -saturated}.

For 2-graphs, (i.e. graphs), Kászonyi and Tuza [?] proved that sat(F, n) = O(n). As
a result, Tuza [?] conjectured the following:

Conjecture 1 (Tuza). For every 2-graph F the limit limn→∞
sat(F,n)

n
exists.

We can generalise the notion of saturation to families of graphs. For a family F of
r-graphs (called a forbidden family), an r-graph H is called F-saturated if it does not
contain any graph in F as a subgraph, but adding any edge creates a copy of some graph
F ∈ F as a subgraph of H. We define the saturation number in the same way as before:

sat(F , n) = min{e(H) : |H| = n and H is F -saturated}.
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For a family F of 2-graphs we have sat(F , n) = O(n) [?], just as we did for single
2-graphs. However, the generalisation of Tuza’s conjecture to finite families of graphs is
not true: an example of a finite family F where sat(F , n)/n does not tend to a limit was
given by Pikhurko [?]. In this example, the graphs in F depend on some fixed constant
k. For n divisible by k, one can construct an F -saturated graph on n vertices that uses
relatively few edges. For n not divisible by k, there is no such ‘nice’ construction and an
F -saturated graph on n vertices is forced to contain many extra edges.

For a family F of r-graphs, it was shown by Pikhurko [?] that sat(F , n) = O (nr−1)
when the family contains only a finite number of graphs. This leads to the following
generalisation of Tuza’s conjecture to r-graphs, first posed by Pikhurko [?].

Conjecture 2. For every r-graph F the limit limn→∞
Sat(F,n)
nr−1 exists.

As in the 2-graph case we can further generalise this conjecture by replacing the single
r-graph F with a finite family of r-graphs F . Our main aim in this paper is to prove
that this generalised conjecture is not true – that is, for all r there exists a finite family
of r-graphs F such that sat(F , n)/nr−1 does not tend to a limit. This resolves a question
of Pikhurko (problem 7 in [?]).

Theorem ??. For all r > 2 there exists a family F of r-graphs and a constant k ∈ N
such that

sat(F , n) =

{
O(n) if k | n
Ω (nr−1) if k - n

In particular, for any l ∈ {1, 2, . . . , r − 1}, we have that sat(F ,n)
nl does not converge.

We prove Theorem ?? in Section ??. As in Pikhurko’s proof for the 2-graph case, the
idea of the proof will be to choose a constant k and to define a forbidden family F such
that when k divides n there is a ‘nice’ construction of an F -saturated graph with few
edges; and when k does not divide n, an F -saturated graph requires comparatively many
edges.

Our proof of Theorem ?? uses a family F which grows in size with r. In a variation of
the theorem, proved in Section ??, we show that we can reduce the size of the forbidden
family to be independent of r.

Theorem ??. For all r > 3 there exists a family F of four r-graphs such that sat(F ,n)
nr−1

does not converge.

In reducing the family to a constant size we lose the large gap between the asymptotics
that we had in Theorem ??. In particular, for a choice of constant k, we still have that if
k - n then sat(F , n) = Ω (nr−1), but if k|n we only have sat(F , n) = O (nr−2) (as opposed
to the O(n) we had before).

Consider, with respect to the family given in Theorem ??, the set of integers n where
sat(F , n) is O(n). This set has low density: specifically, density 1/k where k grows with
r. A second variation of the theorem gives a forbidden family such that the the set of
integers n where sat(F , n) is O(n) has density 1/2. This is proved in Section ??.
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Theorem ??. For all r > 2 there exists a family F of r-graphs such that

sat(F , n) =

{
O(n) if n is even

Ω (nr−1) if n is odd.

We end the paper with some open problems in Section ??.

2 A Proof of the Main Theorem

Theorem 3. For all r > 2 there exists a family F of r-graphs and a constant k ∈ N such
that

sat(F , n) =

{
O(n) if k | n
Ω (nr−1) if k - n

In particular, for any l ∈ {1, 2, . . . , r − 1}, we have that sat(F ,n)
nl does not converge.

Proof. Fix any integer k > r and take F to be the family of all of the following r-graphs:

a) For each 1 6 i 6 k − 1, the graph Fi consisting of two copies of K
(r)
k intersecting in

exactly i vertices.

b) For each (x1, x2, . . . , xt) with Σxi = r and 1 6 x1 6 x2 6 . . . 6 xt 6 (r − 1), the graph

H(x1,x2,...,xt) consisting of t disjoint copies of K
(r)
k and an edge E meeting the ith copy

of K
(r)
k in xi vertices. We refer to E as the bridge edge.

An example of the family F for r = 5 and k = 7 can be seen in figure ??, where the
vertices surrounded by a dashed line represent a copy of K

(r)
k , and vertices grouped by a

solid line represent a bridge edge.

F1 F2 F3 F4 F5 F6

H(1,1,1,1,1)

H(1,1,1,2)
H(1,1,3) H(1,2,2) H(1,4) H(2,3)

Figure 1: The family F of r-graphs for r = 5 and k = 7
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First, let us deal with the case where k divides n. Take the graph consisting of n
k

disjoint copies of K
(r)
k . It is easy to see that this is F -saturated and thus

sat(F , n) 6
n

k

(
k

r

)
= O(n).

Note that in fact sat(F , n) is equal to n
k

(
k
r

)
(although we do not require this).

Now suppose that k - n and let G = (V,E) be a graph on n vertices that is F -
saturated. We will show that e(G) = Ω (nr−1). Let A be the set of all vertices of G that

are contained in a K
(r)
k , and B = V \ A be all vertices not contained in any K

(r)
k .

A B

K
(r)
k K

(r)
k K

(r)
k K

(r)
k

                                                      
m

Figure 2: The structure of the graph G

Note that the subgraph of G induced by A must consist of m disjoint copies of K
(r)
k

for some m > 0, by the choice of family F . This implies that B is not empty, since k
does not divide n. Note also that if an r-set intersecting B is not in E(G), then adding

this edge to G must create a copy of K
(r)
k – it must create some graph in F and it cannot

form a bridge between two or more K
(r)
k s by definition of B.

We make the following two claims about the number of edges in G:

Claim 3.1. G contains at least
(
mk
r−1
)
−m

(
k

r−1
)
edges consisting of r−1 vertices in A and

one vertex in B.

Claim 3.2. G contains at least
( |B|
r−1
)
k−r
r

edges.

We can use these two claims to deduce the result. One of A and B contains at least
half the vertices in G. If |A| = mk > n

2
, then using claim ?? the number of edges in G is

Ω (nr−1). If |B| > n
2
, then using claim ?? the number of edges in G is Ω (nr−1).

All that is left is to prove the two claims.

Proof of Claim ??. This holds trivially if m is 0 or 1, so we may assume m > 2. Fix a set
X of r − 1 vertices in A, not all in the same copy of K

(r)
k . We will show that G contains

at least one edge containing all vertices of X together with a vertex in B. This proves
the claim since there are

(
mk
r−1
)
−m

(
k

r−1
)

such sets X.
Fix some x in B (note that B is non-empty) and suppose that the r-set X ∪ {x} is

not in E(G). Since G is F -saturated, adding X ∪ {x} as an edge must create a copy of

K
(r)
k on some vertex set K.
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Note that for y in A \X, the r-set X ∪{y} is not in E(G), as otherwise it would form
a copy of some H(x1,...,xt) in F . Thus the vertices in K \ (X ∪ {x}) cannot be in A.

Hence K \ (X ∪ {x}) is contained entirely in B, and so G contains k − r > 1 edges
that consist of all vertices of X together with a vertex in B.

Proof of Claim ??. Fix a set X of r − 1 vertices in B. We will show that X is contained
in at least k − r edges of G.

Suppose first that we have that X ∪ {y} is an edge for all y in B \X. Then X is in
|B| − |X| > k − r edges as required.

Otherwise, there exists some y in B \ X such that X ∪ {y} is not in E(G). Then

adding the edge X ∪ {y} must create a copy of K
(r)
k in G, since B contains no K

(r)
k s and

so this edge cannot be a bridge edge. Then we have that X is contained in k − r other
edges in that K

(r)
k .

Thus every (r−1)-set in B is contained in at least k−r edges. Each edge in G contains
at most r different (r − 1)-sets in B, and so the total number of edges in G is at least

(
|B|
r − 1

)
k − r

r
.

This completes the proof of Theorem ??.

Note that the size of the family F used in this proof is (r− 1) + (p(r)− 1), where p is
the partition function. We have log (p(r)) = Θ(

√
r), and so the size of the family grows

exponentially with
√
r.

3 A Forbidden Family of Constant Size

Recall that Tuza’s conjecture (and its generalisation to r-graphs) concerns a forbidden
family of just one r-graph. The size of the forbidden family in Theorem ?? grows with r,
the size of each edge. It is natural then to ask whether there exists a family of constant
size, independent of r, which has this same non-convergence property.

We will prove that there is such a family, using the family F consisting of the following
four r-graphs:

F : Two K
(r)
k s intersecting in one vertex,

H: r disjoint copies of K
(r)
k and an edge intersecting each K

(r)
k ,

I2: One K
(r)
k and an edge intersecting it in exactly two vertices, and

Ir−1: One K
(r)
k and an edge intersecting it in exactly r − 1 vertices.

An example of the family F for r = 5 and k = 15 can be seen in figure ??, where the
vertices surrounded by a dashed line represent a copy of K

(r)
k , and vertices grouped by a

solid line represent an extra edge.
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F I2 Ir−1H

Figure 3: The family F of r-graphs for r = 5 and k = 15

This family was obtained by considering the two types of graphs we had in our previous
family, and finding a smaller set of graphs that fulfil the same role for each.

The previous family contained all of the graphs H(x1,...,xt) to ensure that the graph

consisting of disjoint copies of K
(r)
k was F -saturated. In particular, this meant that when

k | n there was an F -saturated graph of size O(n). We will keep H = H(1,1,...,1) to ensure

there are no edges intersecting r different copies of K
(r)
k , and replace the other p(r) − 2

graphs by I2 and Ir−1. With this smaller family we can no longer find a graph of size
O(n) that is F -saturated, so we lose the large gap in asymptotics that we had in Theorem
??. However, we can construct (for n divisible by k) an F -saturated graph that has size
O (nr−2).

The previous family contained all of the graphs Fi to ensure that all of the copies
of K

(r)
k in an F -saturated graph must be disjoint. For k sufficiently large, these r − 1

different graphs can be replaced by the three graphs I2, Ir−1 and F = F1, which achieve
the same goal.

Theorem 4. For all r > 3 there exists a family F of four r-graphs such that sat(F ,n)
nr−1 does

not converge.

Proof of Theorem ??. Fix r > 3 and k > max{r + 1, 2r − 4}.
Let F be the set containing the four r-graphs F,H, I2 and Ir−1, as defined earlier.
First, we will construct an example of an F -saturated graph with O (nr−2) edges when

k divides n.

Claim 4.1. sat(F , n) = O (nr−2) when k | n.

Proof. Let G be a graph consisting of n
k

= m disjoint copies of K
(r)
k , together with all

other edges except those which:

i) intersect r of the K
(r)
k s, each in one vertex, or

ii) intersect one of the K
(r)
k s in exactly two vertices, or

iii) intersect one of the K
(r)
k s in exactly r − 1 vertices.

Clearly, adding any r-set not in E(G) to the graph G creates one of the graphs in the
family F – graphs I2, Ir−1 and H respectively.

We will show that G contains no other K
(r)
k s except for the original ones, thus proving

that G does not contain any graph in F . Suppose G did contain another K
(r)
k . Using

that k > 2r − 2, we have that one of the following three cases holds:
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• the new K
(r)
k intersects all of the original K

(r)
k s in at most one vertex, and thus it

contains an edge of type (??);

• the new K
(r)
k and one of the original K

(r)
k s intersect in between two and k− (r− 2)

vertices, and thus it contains an edge of type (??); or

• the new K
(r)
k and one of the original K

(r)
k s intersect in r − 1 or more vertices, and

thus it contains an edge of type (??).

Whichever case we are in, we have a contradiction. Thus G is F -saturated.
We now need to calculate the size of G. The number of r-sets meeting exactly t of the

K
(r)
k s is O (nt). Note that G does not contain any edges intersecting more than r − 2 of

the K
(r)
k s and thus we have e(G) = O (nr−2) and Claim ?? follows.

Now we will consider the case where k does not divide n. We want to show that
sat(F , n) = Ω (nr−1) when k - n.

Let G = (V,E) be a graph on n vertices that is F -saturated. Let A be the set of all

vertices of G that are contained in a K
(r)
k , and B = V \A be all vertices not contained in

any K
(r)
k .

The choice of family F implies that all of the copies of K
(r)
k contained in A must be

disjoint:

• F forbids two K
(r)
k s intersecting in exactly one vertex.

• I2 forbids two K
(r)
k s intersecting in at least two vertices and each containing at least

r − 2 vertices not in the intersection.

• Ir−1 forbids two K
(r)
k s intersecting in at least r − 1 vertices and each containing at

least one vertex not in the intersection.

Since k was chosen with k > 2r − 4, any two intersecting copies of K
(r)
k s fall in one of

these three categories.
Thus A consists of m disjoint copies of K

(r)
k for some m, together with some extra

edges that go between them. Since k does not divide n, we can conclude that A is not all
of V (G), or equivalently that B is non-empty.

We make the following two claims about the number of edges in G:

Claim 4.2. If m > r − 1 then G contains at least
(

m
r−1
)
kr−1 edges consisting of r − 1

vertices in A and one vertex in B.

Claim 4.3. If |B| > k − 1, then G contains
( |B|
r−1
)
k−r
r

edges.

We can use these two claims to deduce the result. One of A and B contains at least
half the vertices in G. If |A| = mk > n

2
, then using claim ?? the number of edges in G

is at least Ω (nr−1). If |B| > n
2
, then using claim ?? the number of edges in G is at least

Ω (nr−1).
All that is left is to prove the two claims.
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Proof of Claim ??. Fix r − 1 vertices v1, . . . , vr−1, each in a different copy of K
(r)
k in A.

We will show that G contains at least one edge containing all of v1, . . . vr−1 together with
a vertex in B.

If all possible such edges exist, then we are done (recall that B is non-empty).
Otherwise, there is some x in B such that the r-set {x, v1, . . . , vr−1} is not in E(G).

Adding this edge must create a graph in F , and so it must create a new copy of K
(r)
k (it

cannot be any of the ‘extra’ edges in I2, Ir−1 or H).

Consider this new K
(r)
k . Suppose for a contradiction it contains some vertex y in

A \ {v1 . . . vr−1}. If y is in the same original K
(r)
k as one of the vis then the edge

{y, v1, . . . vr−1} creates a copy of I2. If y is not in the same original K
(r)
k as any of

the vis then the edge {y, v1, . . . vr−1} creates a copy of H. Thus {y, v1, . . . vr−1} is not in
E(G), and we have a contradiction.

Thus the other vertices of this new K
(r)
k are in B, and G contains k − r > 1 edges

containing all of v1, . . . vr−1 together with a vertex in B.

Proof of Claim ??. Fix a set X of r − 1 vertices in B. We will show that X is contained
in at least k − r edges in G.

Suppose first that X∪{y} is an edge for all y in B \X. Then X is in |B|−|X| > k−r
edges as required.

Otherwise, there exists some y in B \X such that X ∪ {y} is not in E(G). Note that

adding the edge X ∪ {y} must create some graph in F . It must thus create a K
(r)
k , since

B contains no K
(r)
k s and so it cannot be the ‘extra’ edge in I2, Ir−1 or H. Then we have

that X is contained in k − r other edges in that K
(r)
k .

Thus every r−1 set in B is contained in at least k− r edges. Each edge in G contains
at most r different (r − 1)-sets in B, and so the total number of edges in G is at least

(
|B|
r − 1

)
k − r

r
.

This completes the proof of Theorem ??.

4 Obtaining an Small Saturation Number on a Denser Set

In both Theorem ?? and Theorem ??, the saturation number is asymptotically small
(O (nr−2)) when n is divisible by k and asymptotically large (Θ (nr−1)) for all other values
of n. Since k is at least as big as r, this means that the set of values where the saturation
number is asymptotically small has low density – less than 1/r. It is natural to ask
whether it is possible to have a forbidden family where the saturation number has different
asymptotics for complementary subsets of the naturals of equal density. For example,
could we ensure sat(F , n) is asymptotically small on even numbers and asymptotically
large on odd numbers?

It turns out that it is possible. The proof will use a family similar to the one in
Theorem ??. However, rather than just using K

(r)
k as a base graph, we will take two base
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graphs of different even orders. The family will contain all possible intersections of the
two base graphs, and all graphs consisting of disjoint unions of copies of the base graphs
together with a bridge edge.

For large even n there is an F -saturated graph on n vertices that uses few edges;
namely taking disjoint copies of the base graphs. However, for odd n we will need to use
many more edges.

A first attempt at choosing the two base graphs might be to take K
(r)
k and K

(r)
k+2 for

some even k. However, K
(r)
k+2 contains two K

(r)
k s intersecting in k − 2 vertices, which is

a graph we would want to include in our forbidden family. This is a problem, as if that
graph was forbidden, all copies of K

(r)
k+2 would be forbidden too.

Instead, we will take K
(r)
k and any graph on k + 2 vertices which has certain helpful

properties: one of which is that it contains only one copy of K
(r)
k .

Theorem 5. For all r > 2 there exists a family F of r-graphs such that

sat(F , n) =

{
O(n) if n is even

Ω (nr−1) if n is odd.

Proof. Fix any even integer k > r + 1. Let K = K
(r)
k and let L be an r-graph which

satisfies the following properties:

• L has k + 2 vertices;

• Every vertex of L is contained in at least one edge;

• L contains exactly one copy of K
(r)
k ; and

• For any edge e of L and any (r − 1)-sized subset s of the edge e, there is another
edge e′ in L such that e ∩ e′ = s.

One such L consists of a K
(r)
k and two K

(r)
k−1s with a common intersection of k−2 vertices.

It is easy to see that this has the required properties.
We call K and L the base graphs. An example of the these two graphs for k = 18

can be seen in figure ??, where if a set of vertices is surrounded by a dashed line then all
edges contained in that set exist.

Take F to be the family containing all of the following r-graphs:

a) Every graph comprising t disjoint graphs H1, H2, . . . Ht (for 2 6 t 6 r) where each Hi

is a base graph, together with an edge E meeting each Hi in xi > 1 vertices such that∑t
i=1 xi = r. We call E a bridge edge.

b) Every graph comprising two base graphs on vertex sets V1 and V2 with non-empty
intersection and neither contained in the other – that is, V1 ∩ V2, V1 \ V2 and V2 \ V1

all non-empty.

c) Every graph comprising L plus a single extra edge on the same vertex set.
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K L

Figure 4: The two graphs under consideration for k = 14.

First, let us deal with the case where n is even. For all n sufficiently large, (in

particular, at least k(k−2)
2

), we can write n as a sum ak + b(k + 2) for some a, b ∈ N.
Take G to be a graph on n vertices consisting of a disjoint copies of K and b disjoint

copies of L. It is clear that adding any edge will create a graph in the family F : adding a
missing edge between base graphs creates a graph of type (a), and adding a missing edge
within a copy of L creates a graph of type (c). Thus

sat(F , n) 6 e(G) 6 a

(
k

r

)
+ b

(
k + 2

r

)

6 (ak + b(k + 2))
1

r

(
k + 1

r − 1

)

= O(n)

Now suppose that n is odd and let G = (V,E) be a graph on n vertices that is
F -saturated.

Let A be the set of all vertices of G that are contained in a copy of one of the base
graphs, and B = V \ A be all vertices not contained in any copy of a base graph.

Note that the subgraph induced on A must consist of disjoint copies of the two base
graphs, by the choice of family F . This implies that B is not empty, since n is odd and
both base graphs have an even number of vertices.

Let X be an r-set meeting B that is not in E(G). Adding the edge X to G must create

some graph in F . The edge X cannot form a bridge between two K
(r)
k s by definition of

B, and it also cannot add an extra edge to an existing copy of L for the same reason.
Thus adding such an edge must create a copy of one of the base graphs, K or L.

We make the following two claims about the number of edges in G:

Claim 5.1. G contains at least ( |A|
k+2

r − 1

)

edges consisting of r − 1 vertices in A and one vertex in B.

Claim 5.2. If |B| > k − 1 then G contains at least
( |B|
r−1
)
k−r
r

edges.
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We can use these two claims to deduce the result. One of A and B contains at least
half the vertices in G. If |A| > n

2
, then using claim ?? the number of edges in G is at

least Ω (nr−1). If |B| > n
2
, then using claim ?? the number of edges in G is Ω (nr−1).

All that is left is to prove the two claims.

Proof of Claim ??. Fix r− 1 vertices v1, . . . , vr−1, each in a different base graph in A (of

which there are at least |A|
k+2

). We will show that G contains at least one edge containing
all of v1, . . . vr−1 together with a vertex in B. Then the number of edges between A and
B is at least the desired amount.

If all possible such edges exist, then we are done (recall that B is non-empty).
Otherwise, there is some x in B such that the r-set {x, v1, . . . , vr−1} is a missing edge.

Adding this edge must create one of the graphs in F . It cannot be a bridge edge as B
contains no copies of L. It also cannot be the extra edge in a copy of ‘L plus an edge’,
as no vertex in B is contained in a copy of L. Thus adding the edge must create a new
copy of one of the base graphs, K

(r)
k or L.

The other vertices of this new base graph cannot be in A: if y is in A \ {v1 . . . vr−1},
then {y, v1, . . . vr−1} is a non-edge, otherwise it serves as a bridge edge and G contains a
graph of type (a) in the family F .

So the other vertices of this new base graph are all in B. We then have that there is at
least one edge containing all of v1, . . . vr−1 together with a vertex in B: this is obviously

true if the base graph was K
(r)
k , and true by the properties insisted upon earlier if the

base graph was L.

Proof of Claim ??. To apply a similar proof to before, we first want to show that if Y
is an r-set in B that is not in E(G), then adding Y to G creates a new copy of K

(r)
k .

Suppose for contradiction this is not the case.
Adding Y must create a graph in the family F , so Y must create one of:

• a graph of type (a) in F ;

• a copy of the graph L; or

• a copy of the graph L plus an edge.

However, no vertex in B is in a copy of one of the base graphs. This implies both that Y
cannot be a bridge edge between copies of the base graph and also that Y cannot be an
extra edge added to copy of L. Thus we must have that Y creates a copy of L.

Note that L contains a copy of K
(r)
k . Since Y does not create a K

(r)
k , this K

(r)
k must

already exist. However, then Y must intersect this K
(r)
k in r − 2 vertices, contradicting

that no vertex in B is contained within a copy of K
(r)
k .

Now, fix a set X of r − 1 vertices in B. We will show that X is contained in at least
k − r edges in G.

Suppose first that X∪{y} is an edge for all y in B \X. Then X is in |B|−|X| > k−r
edges as required.
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Otherwise, there exists some y in B \X such that X ∪ {y} is not in E(G). Note that

adding the edge X ∪ {y} must create some graph in F . It must thus create a K
(r)
k , since

B contains no K
(r)
k s and so it cannot be the ‘extra’ edge in I2, Ir−1 or H. Then we have

that X is contained in k − r other edges in that K
(r)
k .

Thus every r−1 set in B is contained in at least k− r edges. Each edge in G contains
at most r different (r − 1)-sets in B, and so the total number of edges in G is at least

(
|B|
r − 1

)
k − r

r
.

This completes the proof of ??.

5 Some Open Problems

The main questions still left unanswered are the two conjectures in Section 1; that is,
Tuza’s conjecture and its generalisation to r-graphs. There are some subsidiary questions
that may help with progress towards that goal: the first towards a counterexample and
the second towards a proof.

In Theorem ??, we defined H to be the graph consisting of r disjoint copies of K
(r)
k

and an edge intersecting each K
(r)
k . This seems somehow to be the key graph in ensuring

a nice construction when k divides n. Perhaps, then, this would be a good target for a
counterexample to Tuza’s conjecture:

Question 6. If H is as above, does Sat(H,n)
nr−1 tend to a limit as n tends to infinity?

In the case r = 2, the answer to Question ?? is affirmative. Write n = mk + c where
0 6 c < k and let G be the graph on n vertices consisting of m − 1 disjoint Kks and
one Kk+c. This graph G is certainly H-saturated and has k−1

2
n + O(1) edges. One can

show that in a minimal H-saturated graph every vertex must have degree at least k − 1.
The argument is similar to one by Pikhurko (example 4, [?]); we omit the details. These
together imply that Sat(H,n) =

(
k−1
2

+ o(1)
)
n.

For r > 2, however, a similar construction does not easily work. Let G be a collection
of disjoint K

(r)
k s. Any r-set not in E(G) that meets some K

(r)
k in two or more vertices

could be added to G without creating a copy of H. However, if we add several such edges
to G then we possibly create other copies of K

(r)
k intersecting the original ones, making it

difficult to be sure there are no copies of H. Thus it is not clear what a minimal saturated
graph would look like even when n is divisible by k.

In going from a forbidden family of size that grows with r in Theorem ?? to a family
of constant size in Theorem ??, we lost the large gap in the asymptotics for sat(F , n).
That is, in the case when n is divisible by k, the construction of a saturated graph with
few edges went from having Θ(n) edges to having Θ (nr−2) edges. Is it possible to retain
the large difference in asymptotics and still decrease the size of the family? This seems
difficult, especially if we try to reduce the family to a single graph.
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Question 7. Let F be an r-graph. Can Sat(F, n) be O(n) for some infinite sequence of
values of n and Ω(nr−1) for some other infinite sequence?

If Tuza’s conjecture is true, it would imply that the answer to Question ?? is ‘no’.
However, it may be easier to provide a negative answer to Question ?? than to prove
Tuza’s conjecture directly, and an answer might help provide ideas towards a full proof.
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