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Abstract

We study the lexicographically least infinite a/b-power-free word on the alpha-
bet of non-negative integers. Frequently this word is a fixed point of a uniform
morphism, or closely related to one. For example, the lexicographically least 7/4-
power-free word is a fixed point of a 50847-uniform morphism. We identify the
structure of the lexicographically least a/b-power-free word for three infinite fami-
lies of rationals a/b as well many “sporadic” rationals that do not seem to belong
to general families. To accomplish this, we develop an automated procedure for
proving a/b-power-freeness for morphisms of a certain form, both for explicit and
symbolic rational numbers a/b. Finally, we establish a connection to words on a
finite alphabet. Namely, the lexicographically least 27/23-power-free word is in fact
a word on the finite alphabet {0, 1, 2}, and its sequence of letters is 353-automatic.

Mathematics Subject Classifications: 68R15, 11B85

1 Introduction

A major thread of the combinatorics on words literature is concerned with avoidability of
patterns. Beginning with work of Thue [8, 9, 4], a basic question has been the following.
Given a pattern, on what size alphabet does there exist an infinite word containing no
factors matching the pattern? For example, it is easy to see that squares (words of the
form ww where w is a nonempty word) are unavoidable on a binary alphabet, but Thue [8]
exhibited an infinite square-free word on a ternary alphabet.

If it is not known whether a given pattern is avoidable on a given alphabet, it is natural
to attempt to construct long finite words that avoid the pattern as follows. Choose an or-
der on the alphabet. Begin with the empty word, and then iteratively lengthen the current
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word by appending the least letter of the alphabet, or, if that letter introduces an instance
of the pattern, the next least letter, etc. If no letter extends the word, then backtrack to
the previous letter and increment it instead. If there exists an infinite word avoiding the
pattern, then this procedure eventually computes prefixes of the lexicographically least
infinite word avoiding that pattern.

Lexicographically least words avoiding patterns have become a subject of study in their
own right. An overlap is a word of the form cxcxc where c is a letter. On a binary alphabet,
the lexicographically least overlap-free word is 001001ϕ∞(1), where ϕ(0) = 01, ϕ(1) = 10
and ϕ∞(1) is the complement of the Thue–Morse word [1].

Guay-Paquet and Shallit [6] began the study of lexicographically least words avoiding
patterns on the alphabet Z>0. They gave morphisms generating the lexicographically
least words on Z>0 avoiding overlaps and avoiding squares. Since the alphabet is infinite,
prefixes of such words can be computed without backtracking.

Rowland and Shallit [7] gave a morphism description for the lexicographically least
3
2
-power-free word. A fractional power is a partial repetition, defined as follows. Let a

and b be relatively prime positive integers. If v = v0v1 · · · vl−1 is a nonempty word whose
length l is divisible by b, define

va/b := vba/bcv0v1 · · · vl·FractionalPart(a/b)−1,

where FractionalPart(a
b
) = a

b
− ba

b
c. For example, (0111)3/2 = 011101. We say that va/b

is an a
b
-power. Note that |va/b| = a

b
|v|. If a

b
> 1, then a word w is an a

b
-power if and only

if w can be written vex where e is a non-negative integer, x is a prefix of v, and |w|
|v| = a

b
.

We say that a word is a
b
-power-free if none of its factors are a

b
-powers. Avoiding 3

2
-powers,

for example, means avoiding factors xyx where |x| = |y| > 1. Avoiding 5
4
-powers means

avoiding factors xyx where 3|x| = |y| > 1. More generally, if 1 < a
b
< 2 then an a

b
-power

is a word of the form xyx where |xyx||xy| = a
b
. A bordered word is a word of the form xyx

where x is nonempty, so for 1 < a
b
< 2 one can think of an a

b
-power as a bordered word

with a prescribed relationship between |x| and |y|.
Basic terminology is as follows. If Σ is an alphabet (finite or infinite), Σ∗ denotes the

set of finite words with letters from Σ. We index letters in a finite or infinite word starting
with position 0. A morphism on an alphabet Σ is a map ϕ : Σ→ Σ∗. A morphism on Σ
extends naturally to finite and infinite words by concatenation. A morphism ϕ on Σ is
k-uniform if |ϕ(n)| = k for all n ∈ Σ. If there is a letter c ∈ Σ such that c is the first
letter of ϕ(c), then iterating ϕ gives a word ϕ∞(c) which begins with c and which is a
fixed point of ϕ.

In this paper, we show that for some rational numbers a
b
, the lexicographically least

a
b
-power-free word on Z>0 is a fixed point of a uniform morphism. For other rationals, this

word is the image, under a coding, of a fixed point of a morphism on the alphabet Z>0∪Σ
for some finite set Σ. In both cases, the morphisms ϕ|Z>0

are a
b
-power-free, meaning that if

w avoids a
b
-powers then ϕ(w) avoids a

b
-powers. By studying lexicographically least words,

we discover many a
b
-power-free morphisms, which are interesting in their own right.

The outline of the paper is as follows. In Section 2 we discuss the lexicographically
least word avoiding a

b
-powers for several explicit rationals a

b
and discuss the k-regularity
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of their sequences of letters. In Section 3 we show that, for an infinite family of rationals
in the interval 5

3
6 a

b
< 2, the lexicographically least a

b
-power-free word is a fixed point of

an a
b
-power-free (2a − b)-uniform morphism. In Section 4 we discuss automating proofs

of a
b
-power-freeness and prove similar theorems for other morphisms. In Section 5 we

establish the structure of the lexicographically least a
b
-power-free word for two additional

infinite families of rationals. Using the machinery we have built, in Section 6 we address
some sporadic words that we have not found to belong to infinite families.

The theorems in Section 4 and, in part, Sections 5 and 6, are proved by automated
symbolic case analysis. Since the morphisms are symbolic in a and b, a substantial amount
of symbolic computation is required. The Mathematica package SymbolicWords was
written to manipulate words with symbolic run lengths and perform these computations.
It can be downloaded from the web site of the second-named author1.

2 Some explicit rationals

The following word is our main object of study.

Notation. Let a and b be relatively prime positive integers such that a
b
> 1. Define wa/b

to be the lexicographically least infinite word on Z>0 avoiding a
b
-powers.

We require a
b
> 1, because if 0 < a

b
6 1 then every word of length a is an a

b
-power and

wa/b does not exist. For a
b
> 1, the word wa/b exists, since, given a prefix, appending an

integer that doesn’t occur in the prefix yields a word with no a
b
-power suffix. It is clear

that wa/b is not eventually periodic, since the periodic word xxx · · · contains the a
b
-power

xa = (xb)a/b.
In this section we examine wa/b for some explicit rational numbers a

b
. Guay-Paquet

and Shallit [6] showed that the lexicographically least square-free word on Z>0 is

w2 = ϕ∞(0) = 01020103010201040102010301020105 · · · ,

where ϕ is the 2-uniform morphism given by ϕ(n) = 0(n+1). More generally, for an integer
a > 2 we have wa = ϕ∞(0), where ϕ(n) = 0a−1(n+ 1). If we write wa = w(0)w(1) · · · so
that w(i) is the letter at position i in wa, then

w(ai+ r) =

{
0 if 0 6 r 6 a− 2

w(i) + 1 if r = a− 1.

The results in this paper can been seen as generalizations of this morphism and
recurrence to fractional powers. Many of the morphisms that will appear are of the
form ϕ(n) = u (n + d), where u is a word of length k − 1 and d ∈ Z>0. If we write
ϕ∞(0) = w(0)w(1) · · · , then the letter sequence w(i)i>0 satisfies

w(ki+ r) =

{
w(r) if 0 6 r 6 k − 2

w(i) + d if r = k − 1
(1)
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Figure 1: Prefixes of w3/2 (left), w5/3 (center), and w9/5 (right), partitioned into rows of
width k.

for all i > 0.
Consider

w3/2 = 001102 100112 001103 100113 001102 100114 001103 100112 · · · .

The first array in Figure 1 shows the first several letters of w3/2, partitioned into rows of
length 6, with the integers 0 through 6 rendered in gray levels from white to black. The
first five columns are periodic, and the last column is a “self-similar” column consisting
of the letters of w3/2, each increased by 2. The letters of w3/2 satisfy

w(6i+ r) =


w(r) if r ∈ {0, 2, 4} and i is even

1− w(r) if r ∈ {0, 2, 4} and i is odd

w(r) if r ∈ {1, 3}
w(i) + 2 if r = 5

for all i > 0, which follows from the recurrence given by Shallit and the second-named
author [7]. Moreover, w3/2 is the image under a coding of a fixed point of a 6-uniform
morphism as follows. Consider the alphabet Z>0 ∪ {0′, 1′} extended by new letters 0′

and 1′. Let ϕ be the morphism on Z>0 ∪ {0′, 1′} defined by

ϕ(n) =


0′01′10′2 if n = 0′

0′01′10′3 if n = 1′

1′00′11′(n+ 2) if n ∈ Z>0.

Let τ be the coding defined by τ(0′) = 0, τ(1′) = 1, and τ(n) = n for n ∈ Z>0; this
morphism τ will be the same throughout the paper. Then w3/2 = τ(ϕ∞(0′)).

1http://people.hofstra.edu/Eric_Rowland/packages.html#SymbolicWords as of this writing.
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The integer 6 features prominently in the structural description of w3/2, and the
sequence of letters of w3/2 is a 6-regular sequence in the sense of Allouche and Shallit [2].
For an integer k > 2, a sequence s(i)i>0 is said to be k-regular if the Z-module generated
by the set of subsequences {s(kei+ j)i>0 : e > 0 and 0 6 j 6 ke − 1} is finitely generated.
This implies that s(i) can be computed from the base-k digits of i from some finite set of
linear recurrences (such as Equation (1)) and initial conditions.

One of the main motivations of the present paper is to put the ‘6’ for w3/2 into context
by studying wa/b for a number of other rationals a

b
. We will see that wa/b is often k-regular

for some value of k. For each integer a > 2, the word wa is a-regular. To demonstrate
the variety of values that occur for b > 2, let us survey wa/b for some rationals with small
numerators and denominators. We start with some words with fairly simple structure
and progress toward more complex words.

For a
b

= 5
3

we obtain the word

w5/3 = 0000101 0000101 0000101 0000101 0000102 0000101 0000102 · · · .

Partitioning w5/3 into rows of length 7 produces the second array in Figure 1. There are 6
constant columns and one self-similar column in which the sequence reappears with every
term increased by 1. Therefore the sequence of letters seems to satisfy Equation (1) with
k = 7 and d = 1, and in fact we have the following.

Theorem 1. Let ϕ be the 7-uniform morphism defined by

ϕ(n) = 000010(n+ 1)

for all n ∈ Z>0. Then w5/3 = ϕ∞(0).

The last array in Figure 1 shows the word w9/5 partitioned into rows of length k = 13.
Again we see 12 constant columns and one self-similar column. Indeed this word is
generated by the following morphism.

Theorem 2. Let ϕ be the 13-uniform morphism defined by

ϕ(n) = 000000001000(n+ 1)

for all n ∈ Z>0. Then w9/5 = ϕ∞(0).

We prove Theorems 1 and 2 in Section 3. For a
b

= 8
5

the value of k is somewhat larger.

Figure 2: A prefix of w6/5, partitioned into rows of width k = 1001.
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Theorem 3. Let ϕ be the 733-uniform morphism defined by

ϕ(n) = 0000000100100000100100000001001100000001001000001001000000010020000

0100100100000001001000001001000001001000000010010010000000100100000

1001000001001000000010010010000000100100000100100000100100000001001

0010000000100100000100100000100100000001001001000000010010000010010

0000100100000001001001000000010010000010010000010010000000100100100

0000010010000010010000010010000000100100100000001001000001001000001

0010110000000100100000100100000001002000001001001000000010010000010

0100000100100000001001001000000010010000010010000010010000000100100

1000000010010000010010000010010000000100100100000001001000001001000

0010010001000100010001000100010001101000000010010000010010000000101

00010001000100010001000100010100000001001000001001000000010100(n + 2)

for all n ∈ Z>0. Then w8/5 = ϕ∞(0).

Among rationals with denominator 4 we come across an even longer morphism.

Theorem 4. There is a 50847-uniform morphism

ϕ(n) = 000000100100000010010000001001000011 · · · 1000000100100000010(n+ 2)

such that w7/4 = ϕ∞(0).

We do not have any intuition to explain the large value k = 50847. Indeed, to even
guess this value one must compute several hundred thousand letters of w7/4.

Let us look at a couple more rationals with denominator 5. For 6
5

the correct value
is k = 1001. However, the array obtained by partitioning w6/5 into rows of length 1001,
shown in Figure 2, does not have constant columns but columns that become constant
after 30 rows. Subsequent rows suggest a certain 1001-uniform morphism ϕ, but we must
build in the earlier rows by defining ϕ(0′) = v ϕ(0) for some word v whose first letter is 0′.
Note that ϕ is no longer uniform. We refer to the prefix v as the transient. Let τ be as
before; τ(0′) = 0 and τ(n) = n for n ∈ Z>0. Then we have the following.

Theorem 5. There exist words u, v of lengths |u| = 1001 − 1 and |v| = 29949 such that
w6/5 = τ(ϕ∞(0′)), where

ϕ(n) =

{
v ϕ(0) if n = 0′

u (n+ 3) if n ∈ Z>0.

Although we state Theorem 5 as an existence result, the words u and v can be obtained
explicitly by computing the appropriate prefix of w6/5.

The sequence of letters in w6/5 does not satisfy Equation (1) but does satisfy a modified
equation accounting for the transient. Write w6/5 = w(0)w(1) · · · . Then for all i > 0 we
have

w(1001i+ 29949 + r) =

{
w(29949 + r) if 0 6 r 6 999

w(i) + 3 if r = 1000.
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That is, the letters of w6/5 reappear as a subsequence, with every term increased by 3,
beginning at w(30949) = w(0) + 3.

For 7
5

there seems to be a similar transient, with k = 80874.

Conjecture 6. There exist words u, v of lengths |u| = 80874 − 1 and |v| = 93105 such
that w7/5 = τ(ϕ∞(0′)), where

ϕ(n) =

{
v ϕ(0) if n = 0′

u (n+ 1) if n ∈ Z>0.

For the word w4/3, partitioning into rows of length k = 56 gives k − 1 eventually
periodic columns. Unlike the previous examples, the self-similar column for w4/3 does not
contain the sequence simply transformed by adding a constant d; each 0 is increased by 1
and other integers are increased by 2.

Theorem 7. There exist words u, v of lengths |u| = 56 − 1 and |v| = 18 such that
w4/3 = τ(ϕ∞(0′)), where

ϕ(n) =


v ϕ(0) if n = 0′

u 1 if n = 0

u (n+ 2) if n ∈ Z>1.

We prove Theorems 3–5 and Theorem 7 in Section 6. In principle, Conjecture 6 can be
proved in the same manner, although the computation would take longer than we choose
to wait.

Finally, we mention a word whose structure we do not know. We have computed the
prefix of w5/4 of length 400000. When partitioned into rows of length 12 (or 6 or 24), all
but one column appears to be eventually periodic, but we have not been able to identify
self-similar structure in this last column.

With the possible exception of w5/4, the structure of each of these words is organized
around some integer k. This integer is the length of ϕ(n) for each n ∈ Z>0. We next
show that the sequence of letters in such a word forms a k-regular sequence. For the fixed
point ϕ∞(0) of a k-uniform morphism ϕ(n) = u (n + d), the k-regularity follows directly
from Equation (1).

Theorem 8. Let k > 2 and d > 0. Let u be a word on Z>0 of length k − 1. Let v be
a nonempty finite word on Z>0 ∪ {0′} whose first letter is 0′ and whose remaining letters
are integers. Let

ϕ(n) =

{
v ϕ(0) if n = 0′

u (n+ d) if n ∈ Z>0.

Then the sequence of letters in τ(ϕ∞(0′)) is a k-regular sequence.
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Proof. Let w(i) be the letter at position i in τ(ϕ∞(0′)). Let u(i) be the letter at position
i in u. We have

w(ki+ |v|+ r) =

{
u(r) if 0 6 r 6 k − 2

w(i) + d if r = k − 1
(2)

for all i > 0.
The set of sequences {w(kei+ j)i>0 : e > 0 and 0 6 j 6 ke − 1} is called the k-kernel

of w(i)i>0. We show that the Z-module generated by the k-kernel of w(i)i>0 is finitely
generated, and hence w(i)i>0 is k-regular.

First we consider sequences in the k-kernel of the form w(kei+ j)i>0 where

j = −keq + ke−1
k−1 (|v|+ k − 1)

for some integer q. Since 0 6 j < ke, we have Q − 1 < q 6 Q (and therefore q = bQc),
where

Q = ke−1
ke(k−1) (|v|+ k − 1) .

Since Q approaches the finite limit |v|+k−1
k−1 as e→∞, for sufficiently large e all the q are

the same. Moreover, e applications of Equation (2) show that w(kei+ j) = w(i− q) + ed
for all i > q. This isn’t sufficient, because we would like to show that the terms w(kei+ j)
are related for all i > 0. However, N applications of Equation (2) show that

w(kei+ j) = w
(
ke−N(i− q) + ke−N−1

k−1 (|v|+ k − 1)
)

+Nd,

provided the argument of w on the right side is non-negative. To ensure this is the case,
we solve for N and find that

N = e+
⌊
logk

(
1− q · k−1

|v|+k−1

)⌋
suffices. (Note that the argument of logk is less than 1, so N < e.) We conclude that
w(kei+ j)−Nd is independent of e. Therefore, up to addition by multiples of d, there are
only finitely many distinct sequences of the form w(kei + j)i>0, and the Z-module they
generate is finitely generated.

Every sequence in the k-kernel that is not of the form discussed in the previous para-
graph is eventually constant, since iteratively applying Equation (2) shows that it is some
multiple of d plus a subsequence of one of k − 1 eventually constant sequences. Aside
from the multiple of d, there are only finitely many distinct sequences of this form. So
these sequences also generate a finitely generated Z-module.

The value of k for which a given sequence is k-regular is not unique; for each α > 1, a
sequence is k-regular if and only if it is kα-regular [2, Theorem 2.9]. Define an equivalence
relation ∼ on Z>2 in which k ∼ l if there exist positive integers s and t such that ks = lt.
If k ∼ l, then k and l are said to be multiplicatively dependent. Corollary 10 uses the
following bound on the growth rate of letters in wa/b and a result of Bell [3] to show that
if wa/b is k-regular then k is unique up to multiplicative dependence.
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Theorem 9. Let a, b be relatively prime positive integers such that a
b
> 1. Let w(i) be

the letter at position i in wa/b. Then w(i) = O(
√
i).

Proof. If wa/b is a word on a finite alphabet, then the conclusion clearly holds, so assume
that every n > 0 occurs in wa/b. Let in be the position of the first occurrence of n in
wa/b.

We say that a word v is a pre-a
b
-power if |v| = ma for some integer m > 1 and if there

exists an integer c such that the word obtained by changing the last letter of v to c is an
a
b
-power.

Fix n > 1. For each c with 0 6 c 6 n − 1, let mca be the length of a pre-a
b
-power

ending at position in in wa/b that prevents the letter c from occurring at position in. Since
an a

b
-power of length mca consists of repeated factors of length b

a
(mca) = mcb, the letter

c occurs at position in −mcb. It follows that m0, . . . ,mn−1 are distinct.
Let M = max(m0, . . . ,mn−1). We claim that in − in−1 >M . We consider two cases.
First suppose mn−1b >M . We have already established that n− 1 occurs at position

in −mn−1b. Since in−1 is the position of the first occurrence of n − 1, this implies that
in−1 6 in −mn−1b, so in − in−1 > mn−1b >M as claimed.

Otherwise, mn−1b < M . Since M = max(m0, . . . ,mn−1), we have M = mc for some c.
Therefore mn−1b < mc for this c, and c 6= n − 1. By definition of mc, we have that
w(in − j) = w(in − mcb − j) for 1 6 j < mc. (In fact, if b > 1 the statement holds
for 1 6 j < mc · (a mod b).) Since n − 1 occurs at position in − mn−1b, for j = mn−1b
this shows that n − 1 = w(in − mn−1b) = w(in − mcb − mn−1b). This implies that
in−1 6 in −mcb−mn−1b, so in − in−1 > mcb+mn−1b > mcb > mc = M as claimed.

Since m0, . . . ,mn−1 are distinct positive integers, it follows that in − in−1 > M > n.
It follows that in grows at least like n2, so w(i) = O(

√
i).

Corollary 10. Let a, b be relatively prime positive integers such that a
b
> 1. The values

of k for which wa/b is k-regular are equivalent modulo ∼.

Proof. Write wa/b = w(0)w(1) · · · . Bell’s generalization [3] of Cobham’s theorem implies
that if w(i)i>0 is both k-regular and l-regular, where k > 2 and l > 2 are multiplicatively
independent, then

∑
i>0w(i)xi is the power series of a rational function whose poles are

roots of unity. Therefore it suffices to show that
∑

i>0w(i)xi is not such a power series.
The coefficients of a rational power series whose poles are roots of unity are given by

an eventual quasi-polynomial, that is, de(i)i
e + · · · + d1(i)i + d0(i) where each dj(i)i>0 is

eventually periodic. The sequence w(i)i>0 is not given by an eventual quasi-polynomial
of degree e = 0 since it is not eventually periodic. Theorem 9 rules out degree each
e > 1.

Corollary 10 suggests a partial function

ρ : Q>1 → Z>2/∼

where ρ(a
b
) is the class of integers k such that wa/b is k-regular, if this class exists. If

this class does not exist, we leave ρ(a
b
) undefined. When ρ(a

b
) is defined, we will abuse
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notation and write ρ(a
b
) = k, choosing one integer k from the class. For example, ρ(a) = a

for each integer a > 2, and ρ(3
2
) = 6. Theorems 1–5 imply the values ρ(5

3
) = 7, ρ(9

5
) = 13,

ρ(8
5
) = 733, ρ(7

4
) = 50847, and ρ(6

5
) = 1001. Conjecture 6 would imply ρ(7

5
) = 80874.

The proof of Theorem 8 applies to the morphism in Theorem 7, since w(i)i>0 is the only
sequence in the 56-kernel that contains a 0 and is not eventually constant, so for the
remaining sequences we can take d = 2 to be constant; therefore ρ(4

3
) = 56. We do not

know if ρ(5
4
) is defined.

Open question. For each rational number a
b
> 1, does there exist k such that wa/b is

k-regular? In other words, is ρ(a
b
) defined?

We end this section by noting that there are two other natural notions of avoidance
for fractional powers. For each notion we may define the lexicographically least word
avoiding all words in the corresponding pattern.

Notation. Let a and b be relatively prime positive integers such that a
b
> 1.

• w>a/b is the lex. least infinite word on Z>0 avoiding p
q
-powers for all p

q
> a

b
.

• w>a/b is the lex. least infinite word on Z>0 avoiding p
q
-powers for all p

q
> a

b
.

For an integer a > 2, the structure of w>a is as follows.

Proposition 11. Let a > 2 be an integer. Then w>a = wa.

Proof. Since the language of a-powers is a subset of the language of (> a)-powers, we
have w>a > wa lexicographically. Conversely, every p

q
-power contains a bp

q
c-power, so wa

does not contain any p
q
-power with p

q
> a; since w>a is the lexicographically least such

word, it follows that wa > w>a lexicographically. Therefore w>a = wa.

If b > 2, it is possible to avoid a
b
-powers while containing a p

q
-power with p

q
> a

b
. For

example, 001102 avoids 3
2
-powers but contains squares. For this reason, w>a/b and wa/b

are not equal in general.

Proposition 12. Let a, b be relatively prime positive integers such that a
b
> 1 and b > 2.

Then w>a/b 6= wa/b.

Proof. To show that w>a/b and wa/b are unequal, we compare their prefixes. We start
with wa/b. The word 0a−1 is a

b
-power-free, because the shortest a

b
-powers have length a.

The word 0a = (0b)a/b is an a
b
-power, so the length-a prefix of wa/b is 0a−11. The word

w>a/b begins with 0da/be−1, since every p
q
-power with p

q
> a

b
has length at least p > aq

b
> a

b
.

However, 0da/be is a da
b
e-power, so w>a/b begins with 0da/be−11. Since da

b
e < a, the two

words are not equal.

Even though w>a/b 6= wa/b for b > 2, these two words are nonetheless closely related
for certain rationals. Consider

w>3/2 = 01203 10213 01204 10214 01203 10215 01204 10213 · · · .
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The words w>3/2 and w3/2 are generated by the same underlying 6-uniform morphism [7].
In particular, w>3/2(5i + 4) = w3/2(i) + 3 for all i > 0. The words w>4/3 and w4/3 also
appear to have the essentially the same self-similar column. It would be interesting to
know whether similar statements hold for other rationals.

Conjecture 13. For all i > 0 we have

w>4/3(336i+ 1666) = w4/3(56i+ 17) + 4.

On the other hand, w>a/b and wa/b need not be related, even for b = 1. Guay-Paquet
and Shallit [6] studied the overlap-free word

w>2 = 001001100100200100110010021001002001001100 · · ·

and exhibited a (non-uniform) morphism ϕ such that w>2 = ϕ∞(0). The words w>2 and
w2 appear to be unrelated. It seems likely that the structure of w>a/b is typically more
difficult to determine than wa/b.

3 The intervals a
b
> 2 and 5

3
6 a

b
< 2

It turns out that for a
b
> 2 the lexicographically least a

b
-power-free word is a word we

have already seen. For example, one computes

w5/2 = 00001 00001 00001 00001 00002 00001 00001 00001 00001 00002 · · ·

and observes that w5/2 agrees with w5 on a long prefix. In fact these two words are the
same.

Theorem 14. Let a, b be relatively prime positive integers such that a
b
> 2. Then wa/b =

wa. In particular, ρ(a
b
) = a.

Proof. We show that wa/b is a-power-free, which implies that wa 6 wa/b lexicographically,
and that wa is a

b
-power-free, which implies that wa/b 6 wa lexicographically.

Since the a-power va is an a
b
-power (vb)a/b and wa/b is a

b
-power-free, it follows imme-

diately that wa/b is a-power-free.
Suppose toward a contradiction that wa contains an a

b
-power. Let va/b (where |v| is

divisible by b) be an a
b
-power in wa of minimal length. Since a

b
> 2, v2 occurs in wa.

We have |va/b| > a, since a and b are relatively prime. On the other hand, the longest
zero factor of wa is 0a−1, so v contains at least one nonzero letter. The nonzero letters
of wa = w(0)w(1) · · · are w(i) for i ≡ a − 1 mod a. Since nonzero letters occur spaced
by multiples of a and v2 occurs in wa, it follows that |v| is divisible by a. Let x be the
word obtained by deleting the 0 letters of v. Then the word obtained by deleting the 0
letters of va/b is xa/b, which is also the word obtained by sampling every a letters of va/b

starting from the first nonzero letter. By Equation (1) with d = 1, the word obtained by
subtracting 1 from each letter in xa/b occurs in wa, and since |x| = |v|/a this contradicts
the minimality of v.
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In light of Theorem 14, the remainder of the paper is concerned with wa/b for 1 <
a
b
< 2. Let Q(1,2) := Q ∩ (1, 2) denote the set of rational numbers in this interval. The

following result relates the prefixes of wa/b to each other.

Proposition 15. The order on Q(1,2) ∪Z>2 induced by the lexicographic order on {wa/b :
a
b
∈ Q(1,2) ∪ Z>2} is

2 � 3

2
� 3 � 4

3
� 4 � 5

4
� 5

3
� 5 � 6

5
� 6 � 7

6
� 7

5
� 7

4
� 7 � 8

7
� 8

5
� 8 � · · · .

Proof. Let a and b be relatively prime positive integers such that a
b
∈ Q(1,2) ∪ Z>2. As in

the proof of Proposition 12, the length-a prefix of wa/b is 0a−11. Therefore the rationals
in Q(1,2) ∪ Z>2 with a given numerator form an interval in the order �. If a = 2 then
b = 1 and this prefix is followed by 02. If a > 3 and b = 1 then this prefix is followed
by 0a−11. Finally, if b > 1 then this prefix is followed by 0a−b−11, since 0a−110a−b−1 is
a
b
-power-free but 0a−110a−b contains the a

b
-power 0b−110a−b = (0b−11)a/b. This is sufficient

information to distinguish all wa/b and hence order them. In particular, a
b
� a

b′
if and

only if b > b′.

Recall our claims in Theorems 1 and 2 that w5/3 = ϕ∞(0) for the 7-uniform mor-
phism ϕ(n) = 000010(n + 1) and w9/5 = ϕ∞(0) for the 13-uniform morphism ϕ(n) =
000000001000(n + 1). These morphisms differ only in their run lengths. It is not imme-
diately obvious why 7 is the correct value of k for w5/3 and why 13 is the correct value
for w9/5. However, these values can be understood in the context of an infinite family of
morphisms that generate words wa/b.

Theorem 16. Let a, b be relatively prime positive integers such that 5
3
6 a

b
< 2 and

gcd(b, 2) = 1. Let ϕ be the (2a− b)-uniform morphism defined by

ϕ(n) = 0a−1 1 0a−b−1 (n+ 1)

for all n ∈ Z>0. Then wa/b = ϕ∞(0). In particular, ρ(a
b
) = 2a− b.

We devote the remainder of this section to a proof of Theorem 16. We will use the
following concept. A morphism ϕ is a

b
-power-free if it preserves a

b
-power-freeness; that is, if

w is a
b
-power-free then ϕ(w) is a

b
-power-free. For example, the morphism ϕ(n) = 0 (n+ 1)

is square-free [6]. Since the word 0 is a
b
-power-free, if ϕ is an a

b
-power-free morphism then

ϕ∞(0) is also a
b
-power-free. If, moreover, ϕ∞(0) is the lexicographically least a

b
-power-free

word, then wa/b = ϕ∞(0).
In the interval 1 < a

b
< 2, an a

b
-power is a word of the form (xy)a/b = xyx, where

|xy| = mb and |xyx| = ma for some m > 1. It follows that |x| = m · (a − b) and
|y| = m · (2b − a). We use this in the following proof and repeatedly throughout the
paper. Note that a

b
< 2 implies y is not the empty word.

Proof of Theorem 16. To show that ϕ is a
b
-power-free, we show that if w is a finite word

such that ϕ(w) contains an a
b
-power, then w contains an a

b
-power. Suppose that va/b is

an a
b
-power factor of ϕ(w), where |v| = mb for some m > 1.
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First consider m = 1. The word ϕ(w) is a finite concatenation of words of the form
0a−1 1 0a−b−1 (n + 1) for n > 0. We would like to survey all length-a factors of ϕ(w) and
verify that they are not a

b
-powers. To do this, it suffices to slide a window of length a

through the circular word
0a−1 1 0a−b−1 (n+ 1),

since the length of this word is 2a− b > a. There are |ϕ(n)| = 2a− b length-a factors of
0a−1 1 0a−b−1 (n+1), but we can partition them into the following five forms parameterized
by i.

length-a factor interval for i
0a−1−i 1 0i 0 6 i 6 a− b− 1

0b−1−i 1 0a−b−1 (n+ 1) 0i 0 6 i 6 2b− a− 1
0a−b−1−i 1 0a−b−1 (n+ 1) 02b−a+i 0 6 i 6 2a− 3b− 1
02b−a−1−i 1 0a−b−1 (n+ 1) 0a−b+i 0 6 i 6 2b− a− 1

0a−b−1−i (n+ 1) 0b+i 0 6 i 6 a− b− 1

Therefore each length-a factor of ϕ(w) appears in the previous table for some n > 0 and
some i in the specified range. Each a

b
-power of length a is of the form xyx where |x| = a−b

and |y| = 2b− a, so to check that no length-a factor of ϕ(w) is an a
b
-power we refine the

previous table by writing each factor as xyz with |x| = a− b, |y| = 2b−a, and |z| = a− b.

x (length a− b) y (length 2b− a) z (length a− b) interval for i
0a−b 02b−a 0a−b−1−i 1 0i 0 6 i 6 a− b− 1
0a−b 02b−a−1−i 1 0i 0a−b−1−i (n+ 1) 0i 0 6 i 6 2b− a− 1

0a−b−1−i 1 0i 02b−a 02a−3b−1−i (n+ 1) 02b−a+i 0 6 i 6 2a− 3b− 1
02b−a−1−i 1 02a−3b+i 02b−a−1−i (n+ 1) 0i 0a−b 0 6 i 6 2b− a− 1
0a−b−1−i (n+ 1) 0i 02b−a 0a−b 0 6 i 6 a− b− 1

Since n + 1 6= 0, we see that x 6= z for each factor. (When n = 0, we have x 6= z in the
third row since i 6= 2b−a+ i.) It follows that ϕ(w) contains no a

b
-power factor of length a.

Therefore m > 2. There are two cases.
First consider the possibility that x = 0m·(a−b). The longest zero factor of ϕ(w) is

0a−1, so m · (a − b) < a, which implies m < a
a−b 6 a

a−(3/5)a = 5
2
. Therefore m = 2.

The factor y has at least one nonzero letter, because x02(2b−a)x = 02a is not a factor of
ϕ(w). On the other hand, if y has at least two nonzero letters, then, since the shortest
maximal zero factor of ϕ(w) is 0a−b−1, we have 2(2b − a) = |y| > 1 + (a − b − 1) + 1,
which implies 5b > 3a + 1, but this contradicts 5

3
6 a

b
. Therefore y has exactly one

nonzero letter. Therefore xyx = 02(a−b)0i(n + 1)02(2b−a)−1−i02(a−b) for some n > 0 and
0 6 i 6 2(2b− a)− 1. But the longest zero factor of ϕ(w) is 0a−1, so 2(a− b) + i 6 a− 1
and 2(2b−a)− 1− i+ 2(a− b) 6 a− 1, which produce a contradiction when solving for i.

Now consider the case that x contains a nonzero letter. The word 0a−b−110a−b−1 is the
only nonzero word of its length that can occur in ϕ(w) at two positions that are distinct
modulo k := |ϕ(n)| = 2a − b, and extending this word in either direction determines
its position modulo k; therefore two occurrences in ϕ(w) of any nonzero word of length
> 2(a− b) have positions that are congruent modulo k. Since |x| = m · (a− b) > 2(a− b),
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the positions of the two occurrences of x in ϕ(w) are congruent modulo k. These two
positions differ by |xy| = mb, so k | mb. This implies k | m, since gcd(b, k) = 1. Therefore
k divides |xyx|. Now we shift xyx appropriately. Let j be the position of xyx in ϕ(w).
Write j = ki+ r for some 0 6 r 6 k− 1. Let x′y′z′ be the word of length |xyx| beginning
at position ki, where |x′| = |z′| = |x| and |y′| = |y|. We claim that x′ = z′. Since |x′y′z′|
begins at position ki and |xy| is divisible by k, the words x′ and z′ agree on their first
r letters. The remaining |x| − r letters of x′ are the first |x| − r letters of x, and the
remaining |x|−r letters of z′ are the first |x|−r letters of the second x. Therefore x′ = z′,
and we have found an a

b
-power x′y′x′ beginning at position ki. Since the positions of y′

and both occurrences of x′ are all divisible by k, we have x′ = ϕ(u) and y′ = ϕ(v) for
some u and v, which implies that the a

b
-power uvu is a factor of w.

It remains to show that ϕ∞(0) is lexicographically least. We show that decrementing
any nonzero letter in ϕ∞(0) to any smaller number introduces an a

b
-power factor ending

at that position. Since ϕ(n) = 0a−110a−b−1(n+ 1), the nonzero letters occur at positions
congruent to a − 1 or k − 1 modulo k. The letter at each position congruent to a − 1
modulo k is 1, and decrementing this 1 to 0 introduces the a

b
-power 0a = (0b)a/b ending at

that position. The letter at a position congruent to a−1 modulo k is n+1 for some n > 0.
Consider the effect of decrementing n + 1 to c for some 0 6 c 6 n. If c = 0, then this
introduces the a

b
-power 0b−110a−b = (0b−11)a/b. Let c > 1, and assume that decrementing

any letter to c − 1 introduces an a
b
-power ending at this c − 1. Let ϕ(w) be a prefix of

ϕ∞(0) with last letter n+1. Then w is a prefix of ϕ∞(0) with last letter n. Decrementing
n + 1 to c produces the word ϕ(w′), where w′ is the word obtained by decrementing the
last letter of w to c − 1. By the inductive assumption, w′ contains an a

b
-power suffix;

therefore ϕ(w′) does as well.

4 a
b
-power-free morphisms

Theorem 16 establishes the structure of wa/b for an infinite family of rationals a
b
. It

turns out there are additional families of words whose structure is given by a symbolic
morphism, and there are also many words wa/b whose structure is given by a morphism
that has not been found to belong to a general family. (Additionally, as in Theorem 5,
sometimes the word wa/b is not a fixed point of a uniform morphism but is nonetheless
related to a uniform morphism.) Ideally, we would prove a single theorem that captures
all these cases. However, the structures are diverse enough that it is not clear how to
unify them. The next best thing, then, is to identify a general proof scheme so that each
individual proof may be carried out automatically. In this section we describe how to
automatically verify that a morphism is a

b
-power-free. We then apply this method to 30

symbolic morphisms.
The basic idea is that we use the special form of the morphisms to reduce the statement

that ϕ is a
b
-power-free to a finite case analysis and then develop software to carry out

the case analysis. In the case of an explicit rational number (as in Theorems 3 and 4)
this is more or less straightforward using the results below. However, for parameterized
morphisms that are symbolic in a and b (as in Theorem 16), this can require a significant
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amount of symbolic computation.

4.1 Bounding the factor length

As in the proof of Theorem 16, to show that ϕ is a
b
-power-free, we must verify that if

ϕ(w) contains an a
b
-power then w contains an a

b
-power. In this subsection we reduce this

task to the task of verifying the statement for factors of length am for only finitely many
values of m. We use the following concept, which is related to the synchronization delay
introduced by Cassaigne [5].

Definition. Let k > 2 and ` > 1. Let ϕ be a k-uniform morphism on Σ. We say that ϕ
locates words of length ` if for each word x of length ` there exists an integer j such that,
for all w ∈ Σ∗, every occurrence of the factor x in ϕ(w) begins at a position congruent to
j modulo k.

If ϕ locates words of length `, then ϕ also locates words of length ` + 1, since if
|x| = `+ 1 then the position of the length-` prefix of x is determined modulo k.

For example, one checks that the morphism ϕ(n) = 000010(n + 1), for which w5/3 =
ϕ∞(0), locates words of length 7. More generally, under mild conditions the k-uniform
morphism ϕ(n) = u (n+ d) locates words of length k.

Lemma 17. Let k > 2 and d > 0. Let u ∈ Zk−1>0 be a word of length k − 1, and let ϕ be
the k-uniform morphism defined by ϕ(n) = u (n + d). If, for all integers n > 0 and all
integers a > 2, the word u (n+ d) is not an a-power, then ϕ locates words of length k.

Proof. Write u = u(0)u(1) · · ·u(k− 2), and let w ∈ Z∗>0. Every length-k factor of ϕ(w) is
of the form

v = u(i) · · ·u(k − 2) (n+ d)u(0) · · ·u(i− 1)

for some n > 0 and 0 6 i 6 k − 1. Suppose v occurs elsewhere in ϕ(w). Then without
loss of generality we have

u (n′ + d) = u(i) · · ·u(k − 2) (n+ d)u(0) · · ·u(i− 1)

for some n′. This implies u(j) = u(j + i mod k) for each j such that 0 6 j 6 k − 2 and
0 6 (j + i mod k) 6 k − 2.

If i = 0 then n′ = n and the two occurrences of v begin at positions that are congruent
modulo k. If i 6= 0, then u(i− 1) = u((i− 1) + ti mod k) for 0 6 t 6 k

gcd(i,k)
− 2 (because

for t = k
gcd(i,k)

− 1 we have ((i − 1) + ti mod k) = k − 1 and u(k − 1) is not defined).

Letting t = k
gcd(i,k)

− 2 gives n′ + d = u(i− 1) = u(k − i− 1) = n + d. Therefore n′ = n,

and, since u (n+ d) is not an a-power, we have i = 0.

An a
b
-power (xy)a/b = xyx contains two occurrences of x, so if a morphism ϕ locates

words of some length, then the length of xy for sufficiently long a
b
-powers in ϕ(w) is

constrained to be divisible by k. In Lemma 18 and Proposition 19 we use this to bound
the length of factors of ϕ(w) that we must verify are not a

b
-powers in order to conclude

that ϕ is a
b
-power-free.
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Lemma 18. Let a, b be relatively prime positive integers such that 1 < a
b
< 2. Let k > 2

such that gcd(b, k) = 1, and let ` > 1. Let ϕ be a k-uniform morphism on a (finite or
infinite) alphabet Σ such that

• ϕ locates words of length `, and

• for all n, n′ ∈ Σ, the words ϕ(n) and ϕ(n′) differ in at most one position.

Then w contains an a
b
-power whenever ϕ(w) contains an a

b
-power (xy)a/b = xyx with

|x| > `.

The proof generalizes the case m > 2 in the proof of a
b
-power-freeness in Theorem 16.

Proof. Suppose w is a word such that ϕ(w) contains an a
b
-power (xy)a/b = xyx with

|x| > `. Let m = |xyx|/a; as before, |x| = m · (a − b) and |y| = m · (2b − a). Since
ϕ locates words of length `, ϕ also locates words of length |x|. Since xyx is a factor of
ϕ(w), this implies that k divides |xy| = mb. Since gcd(b, k) = 1, it follows that k | m,
and therefore k divides both |x| = m · (a− b) and |y| = m · (2b− a).

Let j be the position of xyx in ϕ(w). Write j = ki1 + r for some 0 6 r 6 k− 1. Then
y begins at position j+ |x| = ki2 +r and the second x begins at position j+ |xy| = ki3 +r
for some i2, i3. Since ϕ(n) and ϕ(n′) differ in at most one position, adjacent factors of
length k in ϕ(w) differ in at most one position, so we can slide a window of length |xyx|
either to the left or to the right from xyx and obtain an a

b
-power factor x′y′x′ beginning

at position ki1 or ki1 + k with |x′| = |x| and |y′| = |y|. Since the positions of y′ and both
occurrences of x′ are all divisible by k, we have x′ = ϕ(u) and y′ = ϕ(v) for some u and
v, which implies that uvu = (uv)a/b is a factor of w.

Proposition 19. Assume the hypotheses of Lemma 18. Let Imin ∈ Q such that 1 <
Imin <

a
b
, and let c > d > 0 be integers such that ` = ca− db. Let mmax := d c·Imin−d

Imin−1 e − 1.
Suppose additionally that for every a

b
-power-free word w ∈ Σ∗ the word ϕ(w) contains no

a
b
-power (xy)a/b = xyx of length ma for 1 6 m 6 mmax. Then ϕ is a

b
-power-free.

Proof. Let w ∈ Σ∗ be a
b
-power-free. Suppose toward a contradiction that ϕ(w) contains

an a
b
-power (xy)a/b = xyx. Let m = |xyx|/a; then |x| = m · (a − b). By Lemma 18,

m = |x|
a−b <

`
a−b = ca−db

a−b . Since c > d, the function t 7→ ct−d
t−1 is non-increasing for t > 1.

Therefore

m <
ca− db
a− b

=
ca
b
− d

a
b
− 1

6
c · Imin − d
Imin − 1

.

Since m is an integer, we have m 6 d c·Imin−d
Imin−1 e−1 = mmax. This contradicts an assumption,

so ϕ(w) is a
b
-power-free and hence ϕ is a

b
-power-free.

Given particular values of ` and a
b
, we may have several choices for c and d, and there

are many choices for Imin. But we will be applying Proposition 19 to families of morphisms
for which Imin, c, and d are fixed.
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Example. Consider the morphism

ϕ(n) = 0a−1 1 0a−b−1 (n+ 1)

in Theorem 16, for which k = 2a − b. This morphism locates words of length ` = a,
as one can verify with the assistance of the table of length-a factors of ϕ(w) in the
proof of Theorem 16. To show that ϕ is a

b
-power-free, by Proposition 19 it suffices to

verify for every a
b
-power-free w that ϕ(w) contains no a

b
-power factors of length ma for

m 6 mmax = d c·Imin−d
Imin−1 e − 1 = d1·5/3−0

5/3−1 e − 1 = d5
2
e − 1 = 2.

Under some mild conditions, it turns out that the relevant factors of ϕ(w) are suffi-
ciently short that w is necessarily a

b
-power-free. Namely, any factor of ϕ(w) of length ma

is necessarily a factor of ϕ(v) for some word v of length dma−1
k
e + 1, and the following

lemma shows that dmmaxa−1
k
e + 1 6 a − 1. Since the shortest a

b
-powers have length a,

this guarantees that v is a
b
-power-free. Therefore, in verifying the hypotheses of Propo-

sition 19, we will replace “for every a
b
-power-free word w” with “for every word w”; we

need not expend the computational effort to determine whether each w is a
b
-power-free,

since it is too short to contain an a
b
-power.

Lemma 20. Let s, t,mmax ∈ Z>0 and Imin, Imax ∈ Q such that s 6= 0 and 1 < Imin <
Imax 6 2. Let

amin := min
{
a > 1 : Imin <

a
b
< Imax for some b > 1 with gcd(b, s) = 1

}
.

Assume

mmax 6

(
s− t

Imin

)
(amin − 2).

Let a, b be relatively prime positive integers such that Imin <
a
b
< Imax and gcd(b, s) = 1.

Let k = sa− tb. Then dmmaxa−1
k
e+ 1 6 a− 1.

Proof. The condition s 6= 0 implies k 6= 0, so we can divide by k. The condition 1 <
Imin < Imax 6 2 implies amin > 3. We have

mmax 6

(
s− t

Imin

)
(amin − 2) <

(
s− t

a
b

)
(a− 2) =

k

a
(a− 2).

This now implies mmaxa
k

< a−2, which implies dmmaxa
k
e 6 a−2, and therefore dmmaxa−1

k
e+

1 6 dmmaxa
k
e+ 1 6 a− 1.

There will be no difficulty in satisfying the conditions of Lemma 20 for the morphisms
we encounter.

Example (continued). The (2a − b)-uniform morphism ϕ in Theorem 16 locates words
of length a, so s = 2, t = 1 and c = 1, d = 0. Earlier we computed mmax = 2 for this
morphism on the interval 5

3
< a

b
< 2. The smallest numerator of a rational number in the

interval 5
3
< a

b
< 2 with an odd denominator is amin = 9, so we have

(
s− t

Imin

)
(amin−2) =
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49
5
> 2 = mmax and Lemma 20 applies. To conclude that ϕ is a

b
-power-free, it remains to

verify that no factor of ϕ(w) of length a or 2a is an a
b
-power. (Note that in the proof of

Theorem 16 we only checked factors of length a by a table, suggesting the better bound
mmax = 1. But there we used a slightly different argument, treating separately the case
where x consists only of zeros, which allowed the argument for large m to apply to factors
of length 2a.)

We would like to use Proposition 19 to prove, with as much automation as possible,
that a given morphism ϕ, symbolic in a and b, is a

b
-power-free. For now we assume that

the interval restricting a
b

is also given. The main steps required are the following.

1. Identify an integer ` such that ϕ locates words of length `.

2. Verify that for every word w ∈ Σ∗ the word ϕ(w) contains no a
b
-power of length ma

with 1 6 m 6 mmax, where mmax is determined by `.

Step (1) can be accomplished simply by using Lemma 17, but to carry out the compu-
tations for morphisms of moderate size we need to obtain a smaller value for `; we return
to this in Section 4.4. Step (2) works as in the proof of Theorem 16 by listing, for each
m, all symbolic factors of length ma and verifying that none are a

b
-powers. We discuss

the details in Sections 4.2 and 4.3. At this point the reader may be interested in looking
at the theorems in Section 4.5 that we have proved with this approach.

4.2 Listing factors of a given length

In the proof of Theorem 16 we generated a table of all possible length-a factors of words
of the form ϕ(w). The idea behind the automatic generation of tables like this is that we
slide a window of some length through the infinite word

ϕ(n)ϕ(n)ϕ(n) · · ·

and stop when we reach a factor that is identical to the first. In Theorem 16, the window
was short enough relative to |ϕ(n)| that each factor contained at most one letter n + 1.
In general, this may not be the case; since we are considering arbitrary words we must
slide a window through the word

ϕ(n0)ϕ(n1)ϕ(n2) · · · .

However, it suffices to slide a window through the periodic word ϕ(n)ϕ(n) · · · , stopping
as before, and simply rename each occurrence of n in a factor to be a unique symbol ni
before performing a test on that factor (such as determining whether it is an a

b
-power).

When a
b

is an explicit rational number, ϕ(n) is a word of some explicit integer length.
In this case, sliding a window through ϕ(n)ϕ(n) · · · is trivial; we simply increment the
starting and ending positions of the window by 1 at each step.

For symbolic a
b
, we build a table as in Theorem 16, where each symbolic factor is

parameterized by i in some interval. We treat ϕ(n)ϕ(n) · · · as a queue. Suppose the
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window length is ma. To compute the prefix of ϕ(n)ϕ(n) · · · of length ma, we begin with
f = ε as the empty word and record the number ma − |f | of remaining letters to add.
Initially there are ma remaining letters. At each step, we have a block cl of l identical
letters c at the beginning of the queue, and we need to determine whether to add the
entire block or just a part of it to our factor. If ma − |f | > l, then we take the entire
block; otherwise we take the partial block cma−|f |. If we are creating a table of factors
that are further factored into subfactors of lengths m · (a− b), m · (2b−a), and m · (a− b),
then we do this procedure once for each subfactor.

To slide the window to the right, we add a parameter i to the run lengths of the current
factor. We must determine the maximum value imax such that sliding the window through
imax positions maintains factors whose run-length encodings differ from the current factor
only in their exponents. The value of imax is the minimum of the first block length in f
and the first block length in the queue (or, if we are factoring f into three subfactors,
the minimum of the first block length in each of the three subfactors as well as the first
block length in the queue). Drop i letters from the front of each subfactor, and add
those i letters onto the end of the preceding subfactor (or throw them away from the first
subfactor). This gives a factor parameterized by i for 1 6 i 6 imax (or 0 6 i 6 imax for
the first factor), which we add to the list of factors. (If an interval contains only one point
and the next interval contains more than one point, we can merge them to get an interval
0 6 i 6 imax as in the tables of Theorem 16.) Then replace i with imax in the factor, drop
imax letters from the front of the queue, and repeat.

The run lengths for the symbolic morphisms we encounter are linear combinations
of a, b, 1. Therefore to compute imax we must be able to compute the minimum of two
such expressions over an interval. For example, if 5

3
< a

b
< 2 and a, b ∈ Z>1 then

min(2a− 2b, a− 1) = 2a− 2b.
If the minimum is not equal to either of its arguments on the entire interval, then

we split the interval. For example, when we encounter min(a − b − 1,−4a + 7b) for the
interval 3

2
< a

b
< 5

3
, we solve the homogeneous equation a − b = −4a + 7b to find a

b
= 8

5

and split the interval into three subintervals 3
2
< a

b
< 8

5
, a
b

= 8
5
, and 8

5
< a

b
< 5

3
. We

continue breaking up subintervals until we can compute the symbolic factors of length ma
for a

b
in each subinterval. Later, when we compute factors of length (m + 1)a, we start

with the set of subintervals obtained for length ma. Even though the length has changed,
empirically it seems that most of the same subintervals reappear, so this saves the work
of recomputing them.

4.3 Testing inequality of symbolic words

Once we have generated all possible factors of ϕ(w) of length ma, we must verify that, for
all values of parameters that appear (n, a, b, and any interval parameters i, j), each factor
is not an a

b
-power. Since we have factored each word as xyz with |x| = |z| = m · (a− b),

it suffices to verify that x 6= z.
An example from the proof of Theorem 16 is x = 0a−b−1−i 1 0i and z = 02a−3b−1−i (n+

1) 02b−a+i. Under the assumptions n > 0 and 5
3
6 a

b
< 2, we conclude that x 6= z by
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comparing prefixes. Namely, the two words cl01 c
l2
2 · · · and cl11 c

l3
3 · · · on the letters ci are

unequal if c1 6= c2, c1 6= c3, l0 6= l1, l2 > 1, and l3 > 1.
We have not developed a decision procedure to decide if there exist parameter values

for which two symbolic words are equal. For our purposes it is sufficient to show that
pairs of symbolic words we encounter are unequal for all parameter values. We have
implemented a number of criteria under which this is true. For example, if two words
have identical prefixes (or suffixes), we can remove the common factor and recursively
test inequality of the remaining factors. If the first letters or last letters in two words are
unequal, then the words are unequal.

Another criterion is the following. Delete all explicit 0 letters in both words. If all
remaining letters are unequal to 0 and the two new words are unequal, then the original
words are unequal. It may happen that deleting 0s does not result in words that are
unequal. For example, deleting 0s in the words

0352a−621b−i−1 1 0−51a+91b−1 (n+ 1) 0i,

0−51a+91b−j−1 (n+ 1) 0352a−621b−1 1 0j

produces 1 (n + 1) and (n + 1) 1, which are not unequal if n = 0. We may still conclude
the original words are unequal if the system of equalities of the corresponding deleted
block lengths has no solution. In this example, −51a+ 91b− 1 6= 352a− 621b− 1 on the
interval 30

17
< a

b
< 53

30
.

We use our collection of inequality criteria to verify that no symbolic factor represents
an a

b
-power, for the list of factors obtained on each subinterval by the process in Sec-

tion 4.2. Since the subintervals are open intervals, we must also verify their endpoints.
That is, when a

b
is an endpoint of a subinterval and satisfies the conditions of the theo-

rem we are trying to prove (that is, it lies in the interval and is not eliminated by a gcd
condition), then we check that the factors for this value of a

b
(which have explicit integer

run lengths) are not a
b
-powers.

4.4 Determining a locating length

The final step to automate is the identification of an integer ` such that ϕ locates words of
length `. Lemma 18 and Proposition 19 show that the length ` of words that a morphism
ϕ locates affects the length of factors we must check. Lemma 17 gives one possible length,
but often we can find a smaller length. For example, as mentioned in Section 4.1, the
(2a − b)-uniform morphism in Theorem 16 not only locates words of length 2a − b but
also locates words of length a.

Given a morphism ϕ and an interval Imin < a
b
< Imax, we determine ` as follows.

Generate all linear combinations ca − db with 10 > c > d > 0. The upper bound 10
is sufficient for all morphisms we encounter below; for a more general upper bound, one
could use s, where k = sa − tb, and then we are guaranteed to find a suitable ` under
the conditions of Lemma 17. Eliminate any linear combinations that do not satisfy the
hypothesis of Lemma 20, where mmax = d cImin−d

Imin−1 e − 1. Then sort the remaining linear
combinations by the upper bound mmax that each would imply if ϕ locates words of that
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length. Starting with the lowest potential bounds, test whether ϕ locates words of each
length until a length is found.

To determine whether ϕ locates words of a given length, use the procedure described
in Section 4.2 to compute all symbolic factors of ϕ(n)ϕ(n) · · · of the candidate length.
As before, this may involve breaking up the interval Imin <

a
b
< Imax into subintervals.

Then check whether each pair of symbolic factors is unequal using the tests described in
Section 4.3.

4.5 Symbolic a
b
-power-free morphisms

We now give 30 symbolic a
b
-power-free morphisms defined on the alphabet Z>0. With the

exception of Theorem 27, these morphisms were discovered empirically from prefixes of
words wa/b. In Section 4.6 we discuss the details. We list morphisms in order of increasing
number of nonzero letters in ϕ(n). The 30 intervals are shown in Figure 3.

All 30 theorems have the same form. Each concerns a k-uniform morphism ϕ param-
eterized by a and b with gcd(a, b) = 1. The ratio a

b
is restricted to some interval, the

lower endpoint of which is Imin, and we have k = sa − tb for some integers s, t. There is
a divisibility condition on b coming from Lemma 18, namely gcd(b, k) = 1. Since a and b
are relatively prime, gcd(b, k) = 1 is equivalent to gcd(b, s) = 1; we write the latter since
it is more explicit.

For each morphism, a
b
-power-freeness is proved completely automatically. The com-

putations are available from the web site of the second-named author2. Theorems 21 and
22 are each proved in approximately 1 second, including the time required to find `. How-
ever, longer morphisms require more time; Theorem 50 took more than 7 hours to prove
on a modern laptop (although this could be reduced by computing in parallel). Theo-
rems 21 and 31 include the lower endpoint of their intervals; a separate step establishes
each theorem at this endpoint.

The first theorem concerns the morphism in Theorem 16. We have already proven
that ϕ is a

b
-power-free, but we include it here for completeness. Previously we showed

that ϕ locates words of length a; our automatic procedure reduces this length.

Theorem 21. Let a, b be relatively prime positive integers such that 5
3
6 a

b
< 2 and

gcd(b, 2) = 1. Then the (2a− b)-uniform morphism

ϕ(n) = 0a−1 1 0a−b−1 (n+ 1),

with 2 nonzero letters, locates words of length 2a− 2b and is a
b
-power-free.

Theorem 22. Let a, b be relatively prime positive integers such that 5
4
< a

b
< 4

3
. Then

the a-uniform morphism

ϕ(n) = 05a−6b−1 1 0−2a+3b−1 1 0−2a+3b−1 (n+ 2),

with 3 nonzero letters, locates words of length 3a− 3b and is a
b
-power-free.

2http://people.hofstra.edu/Eric_Rowland/papers.html#Avoiding_fractional_powers_over_

the_natural_numbers as of this writing.
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Figure 3: A plot of the intervals in Theorems 21–50. On each interval, the rational
numbers satisfying a gcd condition support an a

b
-power-free morphism.

We have two morphisms with 4 nonzero letters.

Theorem 23. Let a, b be relatively prime positive integers such that 3
2
< a

b
< 5

3
and

gcd(b, 5) = 1. Then the (5a− 4b)-uniform morphism

ϕ(n) = 0a−1 1 0a−b−1 1 02a−2b−1 1 0a−b−1 (n+ 1),

with 4 nonzero letters, locates words of length 5a− 5b and is a
b
-power-free.

Theorem 24. Let a, b be relatively prime positive integers such that 6
5
< a

b
< 5

4
and

a
b
/∈ {11

9
, 17
14
}. Then the a-uniform morphism

ϕ(n) = 06a−7b−1 1 0−3a+4b−1 1 0−8a+10b−1 1 06a−7b−1 (n+ 1),

with 4 nonzero letters, locates words of length a and is a
b
-power-free.

For 6 nonzero letters, there are two (4a − 2b)-uniform morphisms that apply to the
same set of rationals a

b
, given in Theorems 25 and 26. The morphisms are closely related;

they are

ϕ(n) = u 1 v (n+ 1),

ϕ(n) = v 1u (n+ 1)

for two words u, v. Let us use them to illustrate some details of the algorithm. Proving
that each of these morphisms is a

b
-power-free takes the computer approximately 2 minutes;
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the interval 4
3
< a

b
< 2 is broken up into 21 subintervals during the process of Section 4.2.

Some of the endpoints of these subintervals have even denominators; we need not check
these for a

b
-powers since we assume gcd(b, 4) = 1. In checking the subinterval endpoints

with odd denominators, we find that 5
3

and 7
5

do yield a
b
-powers. For example, for the

morphism ϕ in Theorem 25, the word ϕ(n0)ϕ(n1) · · · contains (001100 ·110)5/3 = 001100 ·
110 · 001(n1 + 1)00 and

(1001000100 · (n0 + 1)00010011001000)7/5

= 1001000100 · (n0 + 1)00010011001000 · 100(n1 + 1)000100

in the case n1 = 0. Therefore we must exclude 5
3

and 7
5

in the hypotheses of these
theorems. These exceptional residues are detected by the algorithm automatically and
are not part of the input.

Theorem 25. Let a, b be relatively prime positive integers such that 4
3
< a

b
< 2 and

a
b
/∈ {5

3
, 7
5
} and gcd(b, 4) = 1. Then the (4a− 2b)-uniform morphism

ϕ(n) = 02a−2b−1 1 0−a+2b−1 1 03a−4b−1 1 0−a+2b−1 1 02a−2b−1 1 0−a+2b−1 (n+ 1),

with 6 nonzero letters, locates words of length 5a− 4b and is a
b
-power-free.

Theorem 26. Let a, b be relatively prime positive integers such that 4
3
< a

b
< 2 and

a
b
/∈ {5

3
, 7
5
} and gcd(b, 4) = 1. Then the (4a− 2b)-uniform morphism

ϕ(n) = 0−a+2b−1 1 02a−2b−1 1 0−a+2b−1 1 02a−2b−1 1 0−a+2b−1 1 03a−4b−1 (n+ 1),

with 6 nonzero letters, locates words of length 5a− 4b and is a
b
-power-free.

The following morphism was obtained by specializing Conjecture 51 and is not directly
related to any words wa/b as far as we know.

Theorem 27. Let a, b be relatively prime positive integers such that 5
4
< a

b
< 4

3
and a

b
6= 9

7

and gcd(b, 5) = 1. Then the (5a− 3b)-uniform morphism

ϕ(n) = 05a−6b−1 1 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1

03a−3b−1 1 0−6a+8b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 8 nonzero letters, locates words of length 6a− 6b and is a
b
-power-free.

Theorem 28. Let a, b be relatively prime positive integers such that 6
5
< a

b
< 5

4
and

a
b
/∈ {11

9
, 16
13
, 17
14
, 23
19
} and gcd(b, 11) = 1. Then the (11a− 10b)-uniform morphism

ϕ(n) = 0−2a+3b−1 1 03a−3b−1 1 0a−b−1 1 0−3a+4b−1 1 05a−6b−1 1

0a−b−1 1 02a−2b−1 1 0a−b−1 1 02a−2b−1 1 0a−b−1 (n+ 1),

with 10 nonzero letters, locates words of length 7a− 7b and is a
b
-power-free.
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Theorem 29. Let a, b be relatively prime positive integers such that 7
6
< a

b
< 6

5
and

a
b
6= 13

11
and gcd(b, 7) = 1. Then the (7a− 5b)-uniform morphism

ϕ(n) = 07a−8b−1 1 0−4a+5b−1 1 06a−7b−1 1 02a−2b−1 1 0a−b−1 1 0−4a+5b−1 1

02a−2b−1 1 03a−3b−1 1 0−4a+5b−1 1 0−4a+5b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 12 nonzero letters, locates words of length 5a− 3b and is a
b
-power-free.

Theorem 30. Let a, b be relatively prime positive integers such that 6
5
< a

b
< 5

4
and

gcd(b, 7) = 1. Then the (7a− 4b)-uniform morphism

ϕ(n) = 0a−b−1 1 0−3a+4b−1 1 04a−4b−1 1 0−3a+4b−1 1 05a−6b−1 1 0a−b−1 1 0a−b−1 1

0−3a+4b−1 1 02a−2b−1 2 02a−2b−1 1 0−3a+4b−1 1 02a−2b−1 1 0a−b−1 (n+ 2),

with 13 nonzero letters, locates words of length 5a− 5b and is a
b
-power-free.

Theorem 31. Let a, b be relatively prime positive integers such that 9
7
6 a

b
< 4

3
and

gcd(b, 8) = 1. Then the (8a− 4b)-uniform morphism

ϕ(n) = 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1 0a−b−1 2 02a−2b−1 1 0−a+2b−1 1 0a−b−1 2

0a−b−1 1 0a−b−1 1 0b−1 2 0a−b−1 1 0a−b−1 1 0a−b−1 1 0−a+2b−1 (n+ 2),

with 14 nonzero letters, locates words of length a and is a
b
-power-free.

Theorem 32. Let a, b be relatively prime positive integers such that 11
8
< a

b
< 3

2
and

a
b
/∈ {7

5
, 10

7
} and gcd(b, 6) = 1. Then the (6a− b)-uniform morphism

ϕ(n) = 0a−b−1 1 0−6a+9b−1 1 08a−11b−1 1 0−a+2b−1 1 02a−2b−1 1

0−a+2b−1 1 0−6a+9b−1 1 0a−b−1 1 06a−8b−1 1 0−4a+6b−1 1

0−a+2b−1 1 02a−2b−1 1 0−a+2b−1 1 06a−8b−1 (n+ 1),

with 14 nonzero letters, locates words of length 6a− b and is a
b
-power-free.

Theorem 33. Let a, b be relatively prime positive integers such that 7
5
< a

b
< 10

7
and

gcd(b, 6) = 1. Then the (6a− b)-uniform morphism

ϕ(n) = 0a−b−1 1 0−23a+33b−1 1 025a−35b−1 1 0−a+2b−1 1 02a−2b−1 1

0−a+2b−1 1 0−23a+33b−1 1 0a−b−1 1 023a−32b−1 1 0−21a+30b−1 1

0−a+2b−1 1 02a−2b−1 1 0−a+2b−1 1 023a−32b−1 (n+ 1),

with 14 nonzero letters, locates words of length 2a and is a
b
-power-free.

Theorems 32 and 33 contain a new obstacle, which is that their morphisms do not
satisfy the conditions of Lemma 17 on the given intervals. Namely, for the morphism
ϕ in Theorem 32, if a

b
= 17

12
then the word ϕ(0) is a square, and therefore ϕ does not
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locate words of any length `. This rational does not satisfy gcd(b, 6) = 1, so it is excluded
by the hypotheses, but the algorithm for finding ` does not take this into account. In
practice, when the algorithm is unable to find a suitable `, we perform a separate search
for obstructions, which reveals the square for a

b
= 17

12
. (This separate search could also

be performed preemptively, but it is not exhaustive since we only check rationals with
small denominators.) Adding the assumption a

b
6= 17

12
as input then effectively causes 17

12
to

become an interior endpoint, splitting the interval into the two subintervals 11
8
< a

b
< 17

12

and 17
12
< a

b
< 3

2
.

Similarly, the morphism in Theorem 33 produces a square ϕ(0) for a
b

= 65
46

; again this
rational does not satisfy the gcd condition but must be taken into account to find `. For
some morphisms (namely, those in Theorems 38, 43, 46, 48, and 50) there exists rationals
for which ϕ(0) is a perfect power but that are not excluded by the gcd condition. These
rationals must be added to the hypotheses, and this is the second reason why there might
be exceptional rationals in an interval.

Theorem 34. Let a, b be relatively prime positive integers such that 9
8
< a

b
< 8

7
and

gcd(b, 9) = 1. Then the (9a− 7b)-uniform morphism

ϕ(n) = 09a−10b−1 1 0−6a+7b−1 1 08a−9b−1 1 0−6a+7b−1 1 08a−9b−1 1 02a−2b−1 1

0a−b−1 1 0−6a+7b−1 1 02a−2b−1 1 02a−2b−1 1 03a−3b−1 1 0−6a+7b−1 1

02a−2b−1 1 0−6a+7b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 16 nonzero letters, locates words of length 7a− 7b and is a
b
-power-free.

Theorem 35. Let a, b be relatively prime positive integers such that 10
9
< a

b
< 9

8
and

a
b
6= 19

17
and gcd(b, 10) = 1. Then the (10a− 8b)-uniform morphism

ϕ(n) = 010a−11b−1 1 0−7a+8b−1 1 09a−10b−1 1 02a−2b−1 1 0a−b−1 1 02a−2b−1 1

0a−b−1 1 0−7a+8b−1 1 02a−2b−1 1 03a−3b−1 1 03a−3b−1 1 0−7a+8b−1 1

0−7a+8b−1 1 0a−b−1 1 0a−b−1 1 010a−11b−1 1 0−8a+9b−1 1 0a−b−1 (n+ 1),

with 18 nonzero letters, locates words of length 6a− 5b and is a
b
-power-free.

Theorem 36. Let a, b be relatively prime positive integers such that 11
10
< a

b
< 10

9
and

a
b
6= 21

19
and gcd(b, 11) = 1. Then the (11a− 9b)-uniform morphism

ϕ(n) = 011a−12b−1 1 0−8a+9b−1 1 010a−11b−1 1 0−8a+9b−1 1 010a−11b−1 1

0−8a+9b−1 1 010a−11b−1 1 02a−2b−1 1 0a−b−1 1 0−8a+9b−1 1

02a−2b−1 1 02a−2b−1 1 02a−2b−1 1 03a−3b−1 1 0−8a+9b−1 1

02a−2b−1 1 02a−2b−1 1 0−8a+9b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 20 nonzero letters, locates words of length 4a− 3b and is a
b
-power-free.
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Theorem 37. Let a, b be relatively prime positive integers such that 13
12
< a

b
< 12

11
and

a
b
6= 25

23
and gcd(b, 13) = 1. Then the (13a− 11b)-uniform morphism

ϕ(n) = 013a−14b−1 1 0−10a+11b−1 1 012a−13b−1 1 0−10a+11b−1 1 012a−13b−1 1 0−10a+11b−1 1

012a−13b−1 1 0−10a+11b−1 1 012a−13b−1 1 02a−2b−1 1 0a−b−1 1 0−10a+11b−1 1

02a−2b−1 1 02a−2b−1 1 02a−2b−1 1 02a−2b−1 1 03a−3b−1 1 0−10a+11b−1 1

02a−2b−1 1 02a−2b−1 1 02a−2b−1 1 0−10a+11b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 24 nonzero letters, locates words of length 4a− 3b and is a
b
-power-free.

Theorem 38. Let a, b be relatively prime positive integers such that 7
6
< a

b
< 6

5
and

a
b
/∈ {13

11
, 20
17
} and gcd(b, 9) = 1. Then the (9a− 4b)-uniform morphism

ϕ(n) = 07a−8b−1 1 02a−2b−1 1 0−10a+12b−1 1 02a−2b−1 1 07a−8b−1 1 02a−2b−1 1

0−10a+12b−1 1 02a−2b−1 1 07a−8b−1 1 0−5a+6b−1 1 07a−8b−1 1 0−10a+12b−1 1

012a−14b−1 1 0−10a+12b−1 1 02a−2b−1 1 07a−8b−1 1 02a−2b−1 1 0−10a+12b−1 1

02a−2b−1 1 07a−8b−1 1 02a−2b−1 1 0−10a+12b−1 1 012a−14b−1 1 0−10a+12b−1 1

07a−8b−1 1 0−5a+6b−1 (n+ 1),

with 26 nonzero letters, locates words of length 7a− 6b and is a
b
-power-free.

Theorem 39. Let a, b be relatively prime positive integers such that 8
7
< a

b
< 6

5
and

gcd(b, 14) = 1. Then the (14a− 9b)-uniform morphism

ϕ(n) = 0a−b−1 1 0a−b−1 2 02a−2b−1 1 02a−2b−1 1 0−3a+4b−1 1 0a−b−1 2

0a−b−1 1 02a−2b−1 1 0a−b−1 1 0a−b−1 1 0−3a+4b−1 2 02a−2b−1 2

02a−2b−1 1 0a−b−1 1 0a−b−1 1 0−5a+6b−1 1 07a−8b−1 1 0−5a+6b−1 1

0a−b−1 2 02a−2b−1 2 0a−b−1 1 02a−2b−1 1 0−4a+5b−1 1 03a−3b−1 1

02a−2b−1 1 0a−b−1 1 0−5a+6b−1 1 0a−b−1 1 0a−b−1 (n+ 2),

with 29 nonzero letters, locates words of length 6a− 6b and is a
b
-power-free.

Theorem 40. Let a, b be relatively prime positive integers such that 15
13
< a

b
< 22

19
and

gcd(b, 10) = 1. Then the (10a− 5b)-uniform morphism

ϕ(n) = 0−11a+13b−1 1 014a−16b−1 1 0−18a+21b−1 1 020a−23b−1 1 02a−2b−1 1 0a−b−1 1

0−18a+21b−1 1 014a−16b−1 1 02a−2b−1 1 03a−3b−1 1 0−18a+21b−1 1 014a−16b−1 1

0−18a+21b−1 1 0a−b−1 1 0a−b−1 1 021a−24b−1 1 0−18a+21b−1 1 014a−16b−1 1

0−12a+14b−1 1 02a−2b−1 1 0a−b−1 1 014a−16b−1 1 0−18a+21b−1 1 02a−2b−1 1

03a−3b−1 1 014a−16b−1 1 0−18a+21b−1 1 014a−16b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 30 nonzero letters, locates words of length a and is a
b
-power-free.
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Theorem 41. Let a, b be relatively prime positive integers such that 9
7
< a

b
< 4

3
and

gcd(b, 24) = 1. Then the (24a− 15b)-uniform morphism

ϕ(n) = 0a−b−1 1 02a−2b−1 1 0−a+2b−1 1 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1 04a−5b−1 1

0−a+2b−1 1 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1 0−2a+3b−1 1 05a−6b−1 1

0−2a+3b−1 1 04a−5b−1 1 0a−b−1 1 0−2a+3b−1 1 03a−3b−1 1 0−2a+3b−1 1

0a−b−1 1 0−3a+4b−1 1 05a−6b−1 1 02a−2b−1 1 0a−b−1 1 0−2a+3b−1 1

03a−3b−1 1 0−2a+3b−1 1 04a−5b−1 1 0a−b−1 1 0−2a+3b−1 1 02a−2b−1 2

0a−b−1 1 0−2a+3b−1 1 03a−3b−1 1 0−2a+3b−1 1 0a−b−1 1 0a−b−1 (n+ 2),

with 37 nonzero letters, locates words of length 2a and is a
b
-power-free.

Theorem 42. Let a, b be relatively prime positive integers such that 10
9
< a

b
< 19

17
and

gcd(b, 12) = 1. Then the (12a− 7b)-uniform morphism

ϕ(n) = 019a−21b−1 1 0−16a+18b−1 1 010a−11b−1 1 0−8a+9b−1 1 010a−11b−1 1 0−8a+9b−1 1 02a−2b−1 1

0a−b−1 1 010a−11b−1 1 0−16a+18b−1 1 02a−2b−1 1 02a−2b−1 1 03a−3b−1 1 010a−11b−1 1

0−16a+18b−1 1 02a−2b−1 1 010a−11b−1 1 0a−b−1 1 0a−b−1 1 0−7a+8b−1 1

010a−11b−1 1 0−16a+18b−1 1 018a−20b−1 1 0−16a+18b−1 1 018a−20b−1 1 02a−2b−1 1

0a−b−1 1 0−16a+18b−1 1 010a−11b−1 1 02a−2b−1 1 02a−2b−1 1 03a−3b−1 1

0−16a+18b−1 1 010a−11b−1 1 02a−2b−1 1 0−16a+18b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 38 nonzero letters, locates words of length a and is a
b
-power-free.

Theorem 43. Let a, b be relatively prime positive integers such that 11
10
< a

b
< 21

19
and

a
b
6= 32

29
and gcd(b, 13) = 1. Then the (13a− 8b)-uniform morphism

ϕ(n) = 021a−23b−1 1 0−18a+20b−1 1 011a−12b−1 1 0−9a+10b−1 1 02a−2b−1 1 0a−b−1 1

02a−2b−1 1 0a−b−1 1 011a−12b−1 1 0−18a+20b−1 1 02a−2b−1 1 03a−3b−1 1

03a−3b−1 1 011a−12b−1 1 0−18a+20b−1 1 011a−12b−1 1 0a−b−1 1 0a−b−1 1

0−8a+9b−1 1 010a−11b−1 1 0a−b−1 1 0−8a+9b−1 1 011a−12b−1 1 0−18a+20b−1 1

020a−22b−1 1 02a−2b−1 1 0a−b−1 1 02a−2b−1 1 0a−b−1 1 0−18a+20b−1 1

011a−12b−1 1 02a−2b−1 1 03a−3b−1 1 03a−3b−1 1 0−18a+20b−1 1 011a−12b−1 1

0−18a+20b−1 1 0a−b−1 1 0a−b−1 1 021a−23b−1 1 0−19a+21b−1 1 0a−b−1 (n+ 1),

with 42 nonzero letters, locates words of length a and is a
b
-power-free.
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Theorem 44. Let a, b be relatively prime positive integers such that 12
11
< a

b
< 23

21
and

gcd(b, 14) = 1. Then the (14a− 9b)-uniform morphism

ϕ(n) = 0−9a+10b−1 1 02a−2b−1 1 02a−2b−1 1 012a−13b−1 1 02a−2b−1 1 02a−2b−1 1

0a−b−1 1 0−20a+22b−1 1 02a−2b−1 1 02a−2b−1 1 012a−13b−1 1 0−20a+22b−1 1

0a−b−1 1 024a−26b−1 1 0−20a+22b−1 1 022a−24b−1 1 0−20a+22b−1 1 022a−24b−1 1

0−20a+22b−1 1 012a−13b−1 1 0−10a+11b−1 1 0−9a+10b−1 1 0a−b−1 1 023a−25b−1 1

02a−2b−1 1 02a−2b−1 1 0−20a+22b−1 1 02a−2b−1 1 02a−2b−1 1 0a−b−1 1

012a−13b−1 1 02a−2b−1 1 02a−2b−1 1 0−20a+22b−1 1 012a−13b−1 1 0a−b−1 1

0−8a+9b−1 1 012a−13b−1 1 0−10a+11b−1 1 012a−13b−1 1 0−10a+11b−1 1 012a−13b−1 1

0−20a+22b−1 1 022a−24b−1 1 0−9a+10b−1 1 0a−b−1 (n+ 1),

with 46 nonzero letters, locates words of length 10a− 10b and is a
b
-power-free.

Theorem 45. Let a, b be relatively prime positive integers such that 23
21
< a

b
< 34

31
and

gcd(b, 14) = 1. Then the (14a− 9b)-uniform morphism

ϕ(n) = 033a−36b−1 1 0−30a+33b−1 1 022a−24b−1 1 0−20a+22b−1 1 022a−24b−1 1 0−20a+22b−1 1

022a−24b−1 1 0−20a+22b−1 1 02a−2b−1 1 0a−b−1 1 022a−24b−1 1 0−30a+33b−1 1

02a−2b−1 1 02a−2b−1 1 02a−2b−1 1 03a−3b−1 1 022a−24b−1 1 0−30a+33b−1 1

02a−2b−1 1 02a−2b−1 1 022a−24b−1 1 0a−b−1 1 0a−b−1 1 0−19a+21b−1 1

022a−24b−1 1 0−30a+33b−1 1 032a−35b−1 1 0−30a+33b−1 1 032a−35b−1 1 0−30a+33b−1 1

032a−35b−1 1 02a−2b−1 1 0a−b−1 1 0−30a+33b−1 1 022a−24b−1 1 02a−2b−1 1

02a−2b−1 1 02a−2b−1 1 03a−3b−1 1 0−30a+33b−1 1 022a−24b−1 1 02a−2b−1 1

02a−2b−1 1 0−30a+33b−1 1 0a−b−1 1 0a−b−1 (n+ 1),

with 46 nonzero letters, locates words of length a and is a
b
-power-free.

Theorem 46. Let a, b be relatively prime positive integers such that 9
8
< a

b
< 26

23
and

a
b
6= 35

31
and gcd(b, 13) = 1. Then the (13a− 5b)-uniform morphism

ϕ(n) = 025a−28b−1 1 0−22a+25b−1 1 09a−10b−1 1 09a−10b−1 1 0−7a+8b−1 1 02a−2b−1 1

0a−b−1 1 09a−10b−1 1 0−22a+25b−1 1 09a−10b−1 1 02a−2b−1 1 03a−3b−1 1

09a−10b−1 1 0−22a+25b−1 1 09a−10b−1 1 09a−10b−1 1 0a−b−1 1 0a−b−1 1

0−6a+7b−1 1 09a−10b−1 1 0−22a+25b−1 1 09a−10b−1 1 0−7a+8b−1 1 02a−2b−1 1

0a−b−1 1 09a−10b−1 1 09a−10b−1 1 0−22a+25b−1 1 02a−2b−1 1 03a−3b−1 1

09a−10b−1 1 09a−10b−1 1 0−22a+25b−1 1 09a−10b−1 1 0a−b−1 1 0a−b−1 1

0−6a+7b−1 1 09a−10b−1 1 09a−10b−1 1 0−22a+25b−1 1 024a−27b−1 1 02a−2b−1 1

0a−b−1 1 0−22a+25b−1 1 09a−10b−1 1 09a−10b−1 1 02a−2b−1 1 03a−3b−1 1

0−22a+25b−1 1 09a−10b−1 1 09a−10b−1 1 0−22a+25b−1 1 0a−b−1 1 0a−b−1 (n+ 1),
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with 54 nonzero letters, locates words of length a and is a
b
-power-free.

Theorem 47. Let a, b be relatively prime positive integers such that 11
9
< a

b
< 16

13
and

gcd(b, 38) = 1. Then the (38a− 15b)-uniform morphism

ϕ(n) = 0−7a+9b−1 1 010a−12b−1 1 02a−2b−1 1 0a−b−1 1 0−12a+15b−1 1 010a−12b−1 1

03a−3b−1 1 0−12a+15b−1 1 010a−12b−1 1 0−8a+10b−1 1 0a−b−1 1 010a−12b−1 1

0−12a+15b−1 1 02a−2b−1 2 0a−b−1 1 010a−12b−1 1 0−12a+15b−1 1 03a−3b−1 1

010a−12b−1 1 0−12a+15b−1 1 0a−b−1 1 0a−b−1 2 0a−b−1 1 010a−12b−1 1

02a−2b−1 1 0−11a+14b−1 1 010a−12b−1 1 02a−2b−1 1 0a−b−1 1 0−12a+15b−1 1

010a−12b−1 1 0−8a+10b−1 1 011a−13b−1 1 0−12a+15b−1 1 02a−2b−1 1 0a−b−1 1

010a−12b−1 1 0−12a+15b−1 1 010a−12b−1 1 0−7a+9b−1 1 010a−12b−1 1 0−12a+15b−1 1

014a−17b−1 1 0a−b−1 1 0−12a+15b−1 1 010a−12b−1 1 03a−3b−1 1 0−12a+15b−1 1

010a−12b−1 1 0a−b−1 1 0−13a+16b−1 1 015a−18b−1 1 0−12a+15b−1 1 02a−2b−1 1

0a−b−1 1 010a−12b−1 1 0−12a+15b−1 1 03a−3b−1 1 010a−12b−1 1 0−12a+15b−1 1

014a−17b−1 1 0a−b−1 1 0−12a+15b−1 1 010a−12b−1 1 02a−2b−1 2 0a−b−1 1

0−12a+15b−1 1 010a−12b−1 1 03a−3b−1 1 0−12a+15b−1 1 010a−12b−1 1 0a−b−1 1

0a−b−1 2 0a−b−1 1 0−12a+15b−1 1 02a−2b−1 1 011a−13b−1 1 0−12a+15b−1 1

02a−2b−1 1 0a−b−1 1 010a−12b−1 1 0−12a+15b−1 1 014a−17b−1 1 0−11a+14b−1 1

010a−12b−1 1 02a−2b−1 1 0a−b−1 1 0−12a+15b−1 1 010a−12b−1 1 0−12a+15b−1 1

015a−18b−1 1 0−12a+15b−1 1 010a−12b−1 1 0−8a+10b−1 1 0a−b−1 1 010a−12b−1 1

0−12a+15b−1 1 03a−3b−1 1 010a−12b−1 1 0−12a+15b−1 1 0a−b−1 1 09a−11b−1 (n + 1),

with 102 nonzero letters, locates words of length 2a and is a
b
-power-free.
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Theorem 48. Let a, b be relatively prime positive integers such that 9
8
< a

b
< 17

15
and

a
b
6= 26

23
and gcd(b, 53) = 1. Then the (53a− 30b)-uniform morphism

ϕ(n) = 0a−b−1 1 09a−10b−1 1 0−7a+8b−1 1 0a−b−1 1 09a−10b−1 1 02a−2b−1 1

0−13a+15b−1 1 02a−2b−1 2 0a−b−1 1 09a−10b−1 1 02a−2b−1 1 0a−b−1 1

0−14a+16b−1 1 03a−3b−1 1 09a−10b−1 1 0−7a+8b−1 1 010a−11b−1 1 0−14a+16b−1 1

0a−b−1 1 0a−b−1 2 0a−b−1 1 02a−2b−1 1 0a−b−1 1 09a−10b−1 1

02a−2b−1 1 0−13a+15b−1 1 09a−10b−1 1 0−6a+7b−1 1 09a−10b−1 1 02a−2b−1 1

0a−b−1 1 0−14a+16b−1 1 016a−18b−1 1 0a−b−1 1 0−14a+16b−1 1 09a−10b−1 1

0−7a+8b−1 1 010a−11b−1 1 03a−3b−1 1 0−14a+16b−1 1 02a−2b−1 1 0a−b−1 1

09a−10b−1 1 0a−b−1 1 0−15a+17b−1 1 017a−19b−1 1 0−14a+16b−1 1 09a−10b−1 1

0−6a+7b−1 1 02a−2b−1 1 0a−b−1 1 09a−10b−1 1 0−14a+16b−1 1 016a−18b−1 1

0a−b−1 1 0−14a+16b−1 1 03a−3b−1 1 09a−10b−1 1 03a−3b−1 1 0−14a+16b−1 1

016a−18b−1 1 0a−b−1 1 0−14a+16b−1 1 09a−10b−1 1 0a−b−1 1 0−15a+17b−1 1

017a−19b−1 1 02a−2b−1 2 0a−b−1 1 0−14a+16b−1 1 02a−2b−1 1 0a−b−1 1

09a−10b−1 1 03a−3b−1 1 0−14a+16b−1 1 03a−3b−1 1 09a−10b−1 1 0a−b−1 1

0a−b−1 2 0a−b−1 1 0−14a+16b−1 1 016a−18b−1 1 0a−b−1 1 0−14a+16b−1 1

02a−2b−1 1 010a−11b−1 1 02a−2b−1 2 0a−b−1 1 0−14a+16b−1 1 02a−2b−1 1

0a−b−1 1 09a−10b−1 1 03a−3b−1 1 0−14a+16b−1 1 016a−18b−1 1 0−13a+15b−1 1

09a−10b−1 1 0a−b−1 1 0a−b−1 2 0a−b−1 1 02a−2b−1 1 0a−b−1 1

0−14a+16b−1 1 02a−2b−1 1 010a−11b−1 1 0−14a+16b−1 1 017a−19b−1 1 0−14a+16b−1 1

02a−2b−1 1 0a−b−1 1 09a−10b−1 1 0−7a+8b−1 1 0a−b−1 1 09a−10b−1 1

0−14a+16b−1 1 016a−18b−1 1 0−13a+15b−1 1 03a−3b−1 1 09a−10b−1 1 02a−2b−1 1

0a−b−1 1 0−14a+16b−1 1 0a−b−1 1 08a−9b−1 1 0−6a+7b−1 1 09a−10b−1 1

0−14a+16b−1 1 017a−19b−1 1 02a−2b−1 1 0a−b−1 1 0−14a+16b−1 1 09a−10b−1 1

0−7a+8b−1 1 0a−b−1 1 09a−10b−1 1 03a−3b−1 1 0−14a+16b−1 1 03a−3b−1 1

09a−10b−1 1 0−7a+8b−1 1 0a−b−1 1 09a−10b−1 1 0−14a+16b−1 1 0a−b−1 1

08a−9b−1 1 0−6a+7b−1 1 02a−2b−1 2 0a−b−1 1 09a−10b−1 1 02a−2b−1 1

0a−b−1 1 0−14a+16b−1 1 03a−3b−1 1 09a−10b−1 1 03a−3b−1 1 0−14a+16b−1 1

0a−b−1 1 0a−b−1 (n + 2),

with 158 nonzero letters, locates words of length 8a− 7b and is a
b
-power-free.
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Theorem 49. Let a, b be relatively prime positive integers such that 7
6
< a

b
< 13

11
and

a
b
6= 20

17
and gcd(b, 66) = 1. Then the (66a− 28b)-uniform morphism

ϕ(n) = 02a−2b−1 1 07a−8b−1 1 0−10a+12b−1 1 07a−8b−1 1 0a−b−1 1 0−4a+5b−1 1

07a−8b−1 1 0−10a+12b−1 1 08a−9b−1 1 0−4a+5b−1 1 07a−8b−1 1 0−10a+12b−1 1

0a−b−1 1 07a−8b−1 1 0−5a+6b−1 1 06a−7b−1 1 02a−2b−1 1 0−9a+11b−1 1

08a−9b−1 1 0−5a+6b−1 1 07a−8b−1 1 0a−b−1 1 0−10a+12b−1 1 0a−b−1 1

02a−2b−1 1 08a−9b−1 1 0−9a+11b−1 1 02a−2b−1 1 0a−b−1 1 07a−8b−1 1

0a−b−1 1 0−10a+12b−1 1 012a−14b−1 1 0−9a+11b−1 1 08a−9b−1 1 02a−2b−1 1

0a−b−1 1 0−10a+12b−1 1 0a−b−1 1 07a−8b−1 1 0−10a+12b−1 1 013a−15b−1 1

0−9a+11b−1 1 07a−8b−1 1 0−5a+6b−1 1 0a−b−1 1 07a−8b−1 1 0a−b−1 1

0−10a+12b−1 1 03a−3b−1 1 08a−9b−1 1 0−10a+12b−1 1 0a−b−1 1 06a−7b−1 1

0−4a+5b−1 1 0a−b−1 1 07a−8b−1 1 02a−2b−1 1 0a−b−1 1 0−9a+11b−1 1

07a−8b−1 1 03a−3b−1 1 0a−b−1 1 0−10a+12b−1 1 07a−8b−1 1 0−5a+6b−1 1

0a−b−1 1 08a−9b−1 1 0−10a+12b−1 1 02a−2b−1 2 0a−b−1 1 0a−b−1 1

07a−8b−1 1 0−10a+12b−1 1 03a−3b−1 2 0a−b−1 1 07a−8b−1 1 0−10a+12b−1 1

0a−b−1 1 03a−3b−1 1 07a−8b−1 1 02a−2b−1 1 0a−b−1 1 0a−b−1 1

0−10a+12b−1 1 07a−8b−1 1 0−9a+11b−1 1 013a−15b−1 1 0−10a+12b−1 1 07a−8b−1 1

0−5a+6b−1 1 0−4a+5b−1 1 013a−15b−1 1 0−10a+12b−1 1 02a−2b−1 1 0−4a+5b−1 1

013a−15b−1 1 0−10a+12b−1 1 07a−8b−1 1 0a−b−1 1 0−10a+12b−1 1 012a−14b−1 1

0−11a+13b−1 1 013a−15b−1 1 0−3a+4b−1 1 0−9a+11b−1 1 012a−14b−1 1 0−11a+13b−1 1

0a−b−1 1 0a−b−1 1 07a−8b−1 1 0a−b−1 1 03a−3b−1 1 0−10a+12b−1 1

08a−9b−1 1 0a−b−1 1 02a−2b−1 1 0−10a+12b−1 1 0a−b−1 1 02a−2b−1 1

0a−b−1 1 07a−8b−1 1 0−9a+11b−1 1 03a−3b−1 1 07a−8b−1 1 0a−b−1 1

0−10a+12b−1 1 012a−14b−1 1 0a−b−1 1 0−10a+12b−1 1 08a−9b−1 1 02a−2b−1 2

0a−b−1 1 0−10a+12b−1 1 0a−b−1 1 07a−8b−1 1 03a−3b−1 1 0−9a+11b−1 1

07a−8b−1 1 0a−b−1 1 0a−b−1 2 0a−b−1 1 0a−b−1 1 0−10a+12b−1 1

02a−2b−1 1 08a−9b−1 2 0a−b−1 1 0−10a+12b−1 1 02a−2b−1 1 0a−b−1 1

08a−9b−1 1 0−10a+12b−1 1 012a−14b−1 1 0−9a+11b−1 1 0a−b−1 1 07a−8b−1 1

02a−2b−1 1 0a−b−1 1 0−9a+11b−1 1 07a−8b−1 1 0−10a+12b−1 1 013a−15b−1 1

0a−b−1 1 0−10a+12b−1 1 07a−8b−1 1 0−5a+6b−1 1 0a−b−1 1 08a−9b−1 1

0−10a+12b−1 1 03a−3b−1 1 0a−b−1 1 07a−8b−1 1 0−10a+12b−1 1 0a−b−1 1

06a−7b−1 1 0−3a+4b−1 1 07a−8b−1 1 02a−2b−1 1 0a−b−1 1 0a−b−1 1

0−10a+12b−1 1 07a−8b−1 1 0−3a+4b−1 1 07a−8b−1 1 0−10a+12b−1 1 07a−8b−1 1

0−5a+6b−1 1 02a−2b−1 1 07a−8b−1 1 0−10a+12b−1 1 02a−2b−1 (n + 2),
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with 191 nonzero letters, locates words of length 2a and is a
b
-power-free.

Theorem 50. Let a, b be relatively prime positive integers such that 10
9
< a

b
< 29

26
and

a
b
6= 39

35
and gcd(b, 67) = 1. Then the (67a− 30b)-uniform morphism

ϕ(n) = 0
−7a+8b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
a−b−1

1 0
−26a+29b−1

1 0
28a−31b−1

1 0
2a−2b−1

1

0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
3a−3b−1

1

0
−25a+28b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1 0
a−b−1

1 0
10a−11b−1

1

0
−25a+28b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
2a−2b−1

2 0
a−b−1

1

0
10a−11b−1

1 0
−25a+28b−1

1 0
2a−2b−1

2 0
a−b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
10a−11b−1

1

0
−25a+28b−1

1 0
3a−3b−1

1 0
10a−11b−1

1 0
a−b−1

1 0
a−b−1

2 0
a−b−1

1 0
10a−11b−1

1

0
−25a+28b−1

1 0
a−b−1

1 0
a−b−1

2 0
a−b−1

1 0
2a−2b−1

1 0
11a−12b−1

1 0
10a−11b−1

1

0
2a−2b−1

1 0
−24a+27b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
2a−2b−1

1

0
a−b−1

1 0
−25a+28b−1

1 0
27a−30b−1

1 0
−24a+27b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1

0
11a−12b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
2a−2b−1

1 0
a−b−1

1

0
10a−11b−1

1 0
−25a+28b−1

1 0
28a−31b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
−7a+8b−1

1

0
10a−11b−1

1 0
−8a+9b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1

0
a−b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
10a−11b−1

1 0
−25a+28b−1

1 0
3a−3b−1

1 0
10a−11b−1

1

0
a−b−1

1 0
9a−10b−1

1 0
−7a+8b−1

1 0
10a−11b−1

1 0
−25a+28b−1

1 0
a−b−1

1 0
9a−10b−1

1

0
−7a+8b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
2a−2b−1

1 0
a−b−1

1

0
−25a+28b−1

1 0
3a−3b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
−25a+28b−1

1 0
27a−30b−1

1

0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1 0
a−b−1

1 0
10a−11b−1

1

0
2a−2b−1

2 0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
2a−2b−1

2 0
a−b−1

1 0
10a−11b−1

1

0
3a−3b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
10a−11b−1

1 0
a−b−1

1 0
a−b−1

2

0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
a−b−1

1 0
a−b−1

2 0
a−b−1

1 0
2a−2b−1

1

0
11a−12b−1

1 0
−25a+28b−1

1 0
2a−2b−1

1 0
11a−12b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1

0
−25a+28b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1 0
11a−12b−1

1 0
10a−11b−1

1

0
−25a+28b−1

1 0
27a−30b−1

1 0
−24a+27b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
10a−11b−1

1

0
2a−2b−1

1 0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
−7a+8b−1

1 0
10a−11b−1

1 0
10a−11b−1

1

0
−25a+28b−1

1 0
28a−31b−1

1 0
−25a+28b−1

1 0
27a−30b−1

1 0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1

0
10a−11b−1

1 0
−8a+9b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1

0
3a−3b−1

1 0
10a−11b−1

1 0
a−b−1

1 0
−26a+29b−1

1 0
28a−31b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1

0
a−b−1

1 0
9a−10b−1

1 0
−7a+8b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
−25a+28b−1

1

0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
10a−11b−1

1 0
−25a+28b−1

1 0
3a−3b−1

1

0
10a−11b−1

1 0
−8a+9b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
−25a+28b−1

1 0
27a−30b−1

1

0
a−b−1

1 0
−25a+28b−1

1 0
2a−2b−1

2 0
a−b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
2a−2b−1

2

0
a−b−1

1 0
−25a+28b−1

1 0
3a−3b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
−25a+28b−1

1

0
a−b−1

1 0
a−b−1

2 0
a−b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
a−b−1

1 0
a−b−1

2

0
a−b−1

1 0
2a−2b−1

1 0
−24a+27b−1

1 0
10a−11b−1

1 0
2a−2b−1

1 0
11a−12b−1

1 0
2a−2b−1

1

0
a−b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1

0
11a−12b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1 0
11a−12b−1

1 0
2a−2b−1

1 0
a−b−1

1

0
10a−11b−1

1 0
−25a+28b−1

1 0
2a−2b−1

1 0
a−b−1

1 0
10a−11b−1

1 0
10a−11b−1

1 0
−7a+8b−1

1

0
10a−11b−1

1 0
−25a+28b−1

1 0
10a−11b−1

1 0
−7a+8b−1

1 0
10a−11b−1

1 0
−8a+9b−1

1 0
a−b−1

1

0
10a−11b−1

1 0
10a−11b−1

1 0
−25a+28b−1

1 0
27a−30b−1

1 0
a−b−1

1 0
−25a+28b−1

1 0
3a−3b−1

1

0
10a−11b−1

1 0
10a−11b−1

1 0
3a−3b−1

1 0
−25a+28b−1

1 0
a−b−1

1 0
9a−10b−1

(n + 1),

with 279 nonzero letters, locates words of length 5a− 4b and is a
b
-power-free.

The morphisms in Theorems 29, 34, 36, and 37 appear to belong to a general family
of parameterized morphisms with 4r nonzero letters for each r > 3.
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Conjecture 51. Let r > 3 be an integer. Let a, b be relatively prime positive integers
such that 2r+1

2r
< a

b
< 2r

2r−1 and a
b
6= 4r+1

4r−1 and gcd(b, 2r + 1) = 1. Let

A = 0a−b−1 1

B = 02a−2b−1 1

C = 03a−3b−1 1

X = 0(2r+1)a−(2r+2)b−1 1

Y = 0−(2r−2)a+(2r−1)b−1 1

Z = 0(2r)a−(2r+1)b−1 1.

Then the ((2r + 1)a− (2r − 1)b)-uniform morphism

ϕ(n) = X(Y Z)r−2BAY Br−2CY Br−3Y A 0a−b−1 (n+ 1),

with 4r nonzero letters, is a
b
-power-free.

Because of the additional symbolic parameter r, proving Conjecture 51 is beyond the
scope of our code. If this conjecture is true, then it exhibits a

b
-power-free morphisms with

a
b

arbitrarily close to 1.
For r = 2 the morphism in Conjecture 51 is not defined, due to the factor Br−3.

However, moving from the free monoid to the free group on Z>0 allows us to interpret the
factor Y Br−3 for r = 2 as 0−2a+3b−1 1 · (02a−2b−1 1)−1 = 0−4a+5b. By doing this, we obtain
the morphism in Theorem 27.

4.6 Finding morphisms experimentally

The statements of the theorems in Section 4.5, with the exception of Theorem 27, were
discovered by computing prefixes of wa/b for 910 rational numbers in the interval 1 < a

b
<

2. In all, we computed over 256 million letters. For each a
b
, we attempted to find an integer

k such that partitioning (the prefix of) wa/b into rows of length k as in Figures 1 and 2
produces an array with k − 1 eventually periodic columns and one self-similar column in
which wa/b reappears in some modified form.

In some cases, k can be found easily by determining the largest integer c that occurs
in the prefix, computing the positions where it occurs, and computing the gcd of the
successive differences of these positions. If wa/b = ϕ∞(0) for some ϕ(n) = u (n+d) where
c does not occur in u, then this gcd is a multiple of |ϕ(n)| = k. When this method does
not identify a candidate k, one can look for periodic blocks in the difference sequence of
the positions of 1 (or some larger integer), and add the integers in the repetition period
to get the length of the corresponding repeating factor of wa/b; this procedure can detect
repetitions of ϕ(0) in wa/b.

We identified conjectural structure in wa/b for 520 of the 910 rational numbers. (Note
that these 910 numbers were not chosen uniformly; some were chosen to bound the interval
endpoints for symbolic morphisms that had already been conjectured.) Of these 520
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words, 510 have the property that wa/b + d (the word obtained by incrementing each
letter by d) appears in the self-similar column for some integer d > 0.

The remaining 10 words do not have a constant difference d. For the 4 rationals
59
48
, 65
57
, 73
60
, 113

99
the word wa/b reappears in the self-similar column with its letters incre-

mented by a periodic but not constant sequence. For the 6 rationals 4
3
, 13
12
, 15
14
, 28
25
, 37
34
, 64
59

the
increment appears to depend on the letter, as in Theorem 7.

To find families of words wa/b with related structure among the 510 with constant d,
for each word we record

• the difference d,

• the number of columns k,

• the index of the self-similar column, and

• the number of transient rows.

For words wa/b such that all columns except the self-similar column are eventually
constant, we build a word u of length k − 1 from the eventual values of these columns.
Letting ϕ(n) = u (n+ d), the structure of wa/b is potentially related to ϕ∞(0).

If u1 and u2, arising from two different words, have the same subsequence c1, . . . , cr−1
of nonzero letters, we can look for a symbolic morphism ϕ(n) = u (n+ d) that generalizes
the two morphisms ϕ1(n) = u1 (n+ d) and ϕ2(n) = u2 (n+ d) by writing

u = 0i1a+j1b−1c1 · · · 0ir−1a+jr−1b−1cr−1 0ira+jrb−1

and solving each linear system ia + jb = l using the two rationals a
b

to determine i, j. If
there is not a unique solution for some block, discard this pair of rationals; otherwise this
gives a unique symbolic morphism.

For each pair of words with the same d and same subsequence of nonzero letters,
we construct a symbolic morphism, if possible. If multiple pairs of rationals give the
same symbolic morphism, this suggests a general family. On the other hand, a symbolic
morphism is likely not meaningful if it only appears for one pair of rationals and contains
run lengths where the coefficients of a, b are rational numbers with large denominators.
In practice, the coefficients of a, b in all morphisms in Section 4.5 are integers, although
it is conceivable that families with non-integer coefficients exist (in which case a

b
would

be restricted by a gcd condition on a or b).
For each symbolic morphism, we then attempt to determine an interval Imin <

a
b
< Imax

on which the morphism is a
b
-power-free. Each block 0ia+jb−1c in ϕ(n) restricts the values

that a
b

can take, since the run length must be non-negative. We solve the homogeneous
equation ia + jb = 0 to get a lower bound or upper bound on a

b
for each block. We use

the maximum lower bound and minimum upper bound as initial guesses for the interval
endpoints. If this guessed interval is too wide, then running the algorithm identifies
obstructions to a

b
-power-freeness, and we shorten the interval by removing the subintervals

on which a
b
-power-freeness failed to be verified.
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Many symbolic morphisms do not turn out to be a
b
-power-free on a general interval. A

common problem is that solving a homogeneous equation to split an interval gives a value
that is not in the interval. A particularly disappointing case occurs among morphisms
with 14 nonzero letters. We identified 30 rational numbers in the interval 4

3
< a

b
< 3

2
for

which the correct value of k for wa/b seems to be 6a − b and which have 14 eventually
nonzero columns when partitioned into rows of length k. One might expect the structure
of all these words to be explained by the same symbolic morphism, but in fact no three
of these words are captured by the same symbolic morphism. We only found suitable
intervals for two of the resulting morphisms (Theorems 32 and 33). Both morphisms
use 24

17
as one of their sources, which leaves 27 of the 30 rationals without a symbolic

morphism.

5 Families of words wa/b

In Section 4 we identified a number of symbolic a
b
-power-free morphisms that were derived

from words wa/b. In this section we discuss exact relationships between some of these
morphisms and wa/b. We begin with the morphism in Theorem 23.

Theorem 52. Let a, b be relatively prime positive integers such that 3
2
< a

b
< 5

3
and

gcd(b, 5) = 1. Let ϕ be the (5a− 4b)-uniform morphism defined by

ϕ(n) = 0a−1 1 0a−b−1 1 02a−2b−1 1 0a−b−1 (n+ 1).

Then wa/b = ϕ∞(0). In particular, ρ(a
b
) = 5a− 4b.

Proof. The morphism ϕ is a
b
-power-free by Theorem 23, so it suffices to show that ϕ∞(0) is

the lexicographically least a
b
-power-free word. Write ϕ(n) = u (n+1). Decrementing one of

the three 1 letters in u to 0 introduces the a
b
-power (0b)a/b, (0b−11)a/b, or (0−a+2b−110a−b)a/b.

The word u 0 ends with (0b−11)a/b, and the induction argument showing that decrementing
n + 1 to c > 1 introduces an a

b
-power works exactly as in the proof of Theorem 16.

Namely, decrementing n+ 1 to c corresponds, under ϕ, to decrementing an earlier letter
n to c− 1.

The morphisms in Theorems 21 and 23 are the only morphisms in Section 4.5 that
were derived from words wa/b with no transient. We can see wa/b 6= ϕ∞(0) for the other
morphisms, since the length-a prefix of wa/b is 0a−11 (as in Proposition 12) but the length-
a prefix of ϕ∞(0) is not 0a−11. To account for a transient, we extend ϕ to the alphabet
Z>0 ∪ {0′} and consider morphisms of the form

ϕ(n) =

{
v ϕ(0) if n = 0′

u (n+ d) if n ∈ Z>0.

Still, we cannot expect every morphism in Section 4.5 to be related to wa/b for each a
b

in its corresponding interval, since there exist rationals to which multiple theorems apply
with different values of k; by Corollary 10, the word τ(ϕ∞(0′)) is k-regular for a unique
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Figure 4: Prefixes of w24/17, partitioned into rows of width k = 62 (left) and k = 127
(right).

value of k up to multiplicative dependence. For example, a
b

= 24
17

satisfies the conditions
of Theorems 25, 26, 32, and 33. The corresponding values of k are 4a − 2b = 62 for
Theorems 25 and 26, and 6a− b = 127 for Theorems 32 and 33; these two row widths are
shown in Figure 4. While there are regions of the word w24/17 that have constant columns
when partitioned into rows of width 62, these do not persist, and therefore it seems the
morphisms in Theorems 25 and 26 do not determine the long-term structure.

To establish the structure of a word wa/b with a transient, we must generalize our
approach to proving a

b
-power-freeness and lexicographic-leastness. For rationals satisfying

the conditions of Theorem 41, the word wa/b has a short transient. Recall that τ(0′) = 0
and τ(n) = n for n ∈ Z>0.

Theorem 53. Let a, b be relatively prime positive integers such that 9
7
< a

b
< 4

3
and

gcd(b, 24) = 1. Let
v = 0′ 0a−2 1 0a−b−1 1 0a−b−1 1.

Let ϕ be defined as in Theorem 41, extended to the alphabet Z>0 ∪ {0′} by

ϕ(0′) = v ϕ(0).

Then wa/b = τ(ϕ∞(0′)). In particular, ρ(a
b
) = 24a− 15b.

Proof. First we show that τ(ϕ∞(0′)) is a
b
-power-free. Since

ϕ∞(0′) = v ϕ(τ(v))ϕ2(τ(v)) · · · ,

a factor beginning at position i > |v| in τ(ϕ∞(0′)) is a factor of ϕ(w) for some finite factor
w of τ(ϕ∞(0′)). Since ϕ|Z>0

is a
b
-power-free by Theorem 41, it follows that if τ(ϕ∞(0′))

contains an a
b
-power then it contains an a

b
-power beginning at some position i 6 |v| − 1.
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For each n ∈ Z>0, the word ϕ(n) begins with p := 0a−b−1 1 02a−2b−1 1. The prefix v ends
with 1, while ϕ(n) ends with n+2 6= 1. By examining ϕ(n), one checks that if w is a word
on the alphabet Z>0 then 1 p is not a factor of ϕ(w). It follows that 1 p occurs at position
|v|−1 in τ(ϕ∞(0′)) but does not occur after position |v|−1. If a factor x begins at position
i 6 |v| − 1 in τ(ϕ∞(0′)) and has length |x| > |v|+ |p| = (3a− 2b) + (3a− 3b) = 6a− 5b,
then x contains 1 p and therefore only occurs once in τ(ϕ∞(0′)). Therefore if τ(ϕ∞(0′))
contains an a

b
-power factor (xy)a/b = xyx then |x| < 6a − 5b; since 9

7
< a

b
< 4

3
, we have

|x| < 6a− 5b 6 10(a− b).
It remains to show that τ(ϕ∞(0′)) contains no a

b
-power (xy)a/b = xyx with |x| 6

9(a − b) beginning at a position i 6 |v| − 1. For each m in the range 1 6 m 6 9, this
is accomplished by sliding a window of length ma through τ(ϕ∞(0′)) from position 0 to
position |v| − 1 and verifying inequality of symbolic factors as in Section 4.3.

Now we show that decrementing any nonzero letter of τ(ϕ∞(0′)) introduces an a
b
-

power. Decrementing one of the three 1 letters in the prefix τ(v) to 0 introduces the
a
b
-power (0b)a/b or (0b−11)a/b. Every other nonzero letter is a factor of ϕ(n) for some

integer n. Write ϕ(n) = u (n+ 2) for n ∈ Z>0. The word u 2 contains 37 nonzero letters.
One checks that decrementing each 1 in u 2, except the first two, to 0 and each 2 in u 2 to
0 or 1 introduces an a

b
-power of length a or 2a. For the first two 1s, there are two cases

each, depending on whether u is immediately preceded by τ(v) or ϕ(n). Decrementing
the first 1 to 0 introduces the a

b
-power

0a−b · 0−3a+4b−1 1 0a−b−1 1 0a−b−1 1 · 0a−b

if preceded by τ(v) and the a
b
-power

0a−b · 0−3a+4b−1 1 0a−b−1 1 0a−b−1 (n+ 2) · 0a−b

if preceded by ϕ(n). Decrementing the second 1 to 0 introduces the a
b
-power

02a−2b · 0−5a+7b−1 1 0a−b−1 1 0a−b−1 1 0a−b−1 1 · 02a−2b

if preceded by τ(v) and the a
b
-power

02a−2b · 0−3a+4b−1 1 0−2a+3b−1 1 0a−b−1 1 0a−b−1 (n+ 2) 0a−b−1 1 · 02a−2b

if preceded by ϕ(n). As in the proof of Theorem 52, decrementing n + 2 to c > 2 corre-
sponds to decrementing an earlier letter n to c− 2 and therefore, inductively, introduces
an a

b
-power.

In addition to the presence of transients, another complication is that some words
wa/b reappear with finitely many modified letters in the self-similar column. As shown
in Figure 5, w19/16 has k − 1 eventually constant columns when partitioned into k = 53
columns. After 4 transient rows, the self-similar column consists of w19/16 + 1 with the
letter at position 18 changed from 2 to 0. The previous letter in w19/16 is 1, despite it
being in an eventually-0 column. However, changing this 1 to 0 introduces an a

b
-power(

0−5a+6b−1 1ϕ(0) 1−1 0−(−5a+6b−1))a
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Figure 5: A prefix of w19/16, partitioned into rows of width 53.

ending at that position, where we work in the free group on Z>0 in order to remove some
letters from the end of ϕ(0). This happens because the prefix v and ϕ(0) have a nonempty
common suffix. In contrast, in Theorem 53 the prefix v ends with 1 whereas ϕ(n) ends
with n+ 2, so we aren’t at risk of completing the a-power before we reach the self-similar
column on the (a+ 1)th row.

To capture this modification, we introduce a new letter 1′, define τ(1′) = 1, and define
ϕ(1′) to be identical to ϕ(1) except in two positions. Only minor changes to the proof
of Theorem 8 are necessary to establish that the sequence of letters in τ(ϕ∞(0′)) is k-
regular. The following conjecture claims the structure of w19/16 is related to the morphism
in Theorem 29. Note however that the interval is shorter than in Theorem 29.

Conjecture 54. Let a, b be relatively prime positive integers such that 13
11
< a

b
< 6

5
and

gcd(b, 7) = 1. Let ϕ be the morphism defined in Theorem 29. Let

v = 0′ 0a−2 1′ 0a−b−1 1 0a−b−1 1 0a−b−1 1 0a−b−1 1 0a−b−1 1 02a−2b−1 1 02a−2b−1 1

0−3a+4b−1 1 02a−2b−1 1 02a−2b−1 1 0a−b−1 1 0−4a+5b−1 1 06a−7b−1 1 0−4a+5b−1 1

06a−7b−1 1 0−3a+4b−1 1 02a−2b−1 1 02a−2b−1 1 0a−b−1 1 0−4a+5b−1 1 02a−2b−1 1

0−4a+5b−1 1 07a−8b−1 1 0−4a+5b−1 1 06a−7b−1 1 0−4a+5b−1 1 06a−7b−1 1 0a−b−1 1

0−4a+5b−1 1 02a−2b−1 1 03a−3b−1 1 0−4a+5b−1 1 02a−2b−1 1 0a−b−1 1 0−5a+6b−1 1.

Extend ϕ to the alphabet Z>0 ∪ {0′, 1′} by

ϕ(0′) = v ϕ(0),

and define ϕ(1′) to be the word obtained by taking ϕ(1) and changing the 0 at position
12a−11b−1 to 1 and the last letter (at position 7a−5b−1) to 0. Then wa/b = τ(ϕ∞(0′)).
In particular, ρ(a

b
) = 7a− 5b.
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The prefix v has length |v| = 19a− 12b. The length of ϕ(1) is |ϕ(1)| = 7a− 5b, so the
0 at position 12a− 11b− 1 in ϕ(1) is contained in the last block of 0s. Therefore

ϕ(1′) = 07a−8b−1 1 0−4a+5b−1 1 06a−7b−1 1 02a−2b−1 1 0a−b−1 1 0−4a+5b−1 1

02a−2b−1 1 03a−3b−1 1 0−4a+5b−1 1 0−4a+5b−1 1 0a−b−1 1 06a−7b−1 1 0−5a+6b.

Conjecture 54 is the case r = 3 of a more general conjecture corresponding to the
morphism in Conjecture 51 with 4r nonzero letters. As in Conjecture 54, the interval is
shorter than in Conjecture 51.

Conjecture 55. Let r > 3 be an integer. Let a, b be relatively prime positive integers.
Let ϕ be the morphism defined in Conjecture 51. Let

v = 0′0a−21′A2r−1Br−1V Br−1A(Y Z)r−1V Br−1AY Br−2Y X(Y Z)r−1AY Br−2CY Br−2AW,

where A,B,C,X, Y, Z are as defined in Conjecture 51 and

V = 0−(2r−3)a+(2r−2)b−1 1

W = 0−(2r−1)a+(2r)b−1 1.

Extend ϕ to Z>0 ∪ {0′, 1′} by
ϕ(0′) = v ϕ(0),

and define ϕ(1′) to be the word obtained by taking ϕ(1) and changing the 0 at position
(4r)a− (4r − 1)b− 1 to 1 and the last letter to 0. There exists a finite set Qr ⊂ Q such
that if 4r+1

4r−1 <
a
b
< 2r

2r−1 and a
b
/∈ Qr and gcd(b, 2r + 1) = 1 then wa/b = τ(ϕ∞(0′)). In

particular, ρ(a
b
) = (2r + 1)a− (2r − 1)b.

Exceptional rationals can arise when the morphism fails to produce an a
b
-power-free

word. For example, 37
34
∈ Q6, since ϕ(0′) contains an 37

34
-power of length 8 · 37 ending at

position 410. The correct value of k for w37/34 seems to be 777.
Exceptional rationals can also arise when a morphism fails to produce a lexicograph-

ically least word. The following conjecture gives the structure of wa/b for most rationals
satisfying the conditions of Theorem 43. However, 74

67
is a new exceptional rational because

the transient v contains a 1 at position 1247, whereas a 0 does not complete any 74
67

-powers.
Interestingly, the correct value of k for a

b
= 74

67
seems to nonetheless be k = 13a−8b = 426,

and the nonzero columns have the same spacings as in the morphism, but the self-similar
column is in a different place. It is possible there are additional exceptions like 74

67
.

Conjecture 56. Let a, b be relatively prime positive integers such that 11
10
< a

b
< 21

19
and

a
b
/∈ {32

29
, 74
67
} and gcd(b, 13) = 1. There exists a word

v = 0′ 0a−2 1′ 0a−b−1 1 0a−b−1 1 · · · 0−19a+21b−1 1

of length 317a−178b with 1127 letters from {1′, 1, 2} such that if we extend the morphism
ϕ defined in Theorem 43 to Z>0 ∪ {0′, 1′} by

ϕ(0′) = v ϕ(0)
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and define ϕ(1′) to be the word obtained by taking ϕ(1) and changing the 0 at position
32a− 29b− 1 to 1 and the last letter to 0, then wa/b = τ(ϕ∞(0′)). In particular, ρ(a

b
) =

13a− 8b.

For rationals satisfying the conditions of Theorem 46, the word wa/b appears to be
given by the following.

Conjecture 57. Let a, b be relatively prime positive integers such that 9
8
< a

b
< 26

23
and

a
b
6= 35

31
and gcd(b, 13) = 1. There exists a word

v = 0′ 0a−2 1′ 0a−b−1 1 0a−b−1 1 · · · 0−23a+26b−1 1,

of length 148a− 66b with 552 letters from {1′, 1, 2} such that if we extend the morphism
ϕ defined in Theorem 46 to Z>0 ∪ {0′, 1′} by

ϕ(0′) = v ϕ(0)

and define ϕ(1′) to be the word obtained by taking ϕ(1) and changing the 0 at position
36a− 31b− 1 to 1 and the last letter to 0, then wa/b = τ(ϕ∞(0′)). In particular, ρ(a

b
) =

13a− 5b.

Of the 29 symbolic morphisms given in Section 4.5 that were derived from words wa/b,
at this point we have given a theorem or conjecture relating 9 of them to an infinite
family of words wa/b. The 10 morphisms in Theorems 24, 25, 26, 28, 30, 32, 33, 38, 45,
and 49 were derived from at most four each and therefore are perhaps not likely to be
related to infinitely many words wa/b. It seems likely that the final 10 morphisms do
govern the large-scale structure of infinitely many words wa/b. However, none of these
families support a symbolic prefix v of the form we have seen previously, since the number
of nonzero letters in the prefix is not constant. Specifying the general structure of these
words will therefore require a new idea. We state the following conjectures in terms of ρ
only.

For the two families of words that give rise to the morphisms in Theorems 35 and 48,
the index of the self-similar column is a linear combination of a, b, which might indicate
some structure that would be useful in a proof. Note that the intervals are shorter than
the intervals for a

b
-power-freeness.

Conjecture 58. Let a, b be relatively prime positive integers such that 28
25
< a

b
< 9

8
and

gcd(b, 10) = 1. Then ρ(a
b
) = 10a− 8b.

Conjecture 59. Let a, b be relatively prime positive integers such that 26
23
< a

b
< 17

15
and

gcd(b, 53) = 1. Then ρ(a
b
) = 53a− 30b.

The remaining morphisms are those in Theorems 22, 31, 39, 40, 42, 44, 47, and 50.
For words related to these, the index of the self-similar column is not a linear combination
of a, b. The morphism in Theorem 22 seems to be related to wa/b only for odd b, so we
add this condition to Conjecture 60. Additionally, the morphism in Theorem 31 seems to
be related to wa/b only for b divisible by 3, so we add this condition to Conjecture 61.
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Conjecture 60. Let a, b be relatively prime positive integers such that 5
4
< a

b
< 9

7
and

a
b
/∈ {14

11
, 44
35
} and gcd(b, 2) = 1. Then ρ(a

b
) = a.

Two potential counterexamples to Conjecture 60 are 62
49

and 79
63

, for which we do not
have conjectural values of k. On the other hand, 41

32
is not covered by the conjecture

because its denominator is even, but nonetheless the conclusion ρ(41
32

) = 41 seems to
hold, and the structure of w41/32 is related to the morphism in Theorem 22. Some of the
following conjectures have rationals with this same property.

Conjecture 61. Let a, b be relatively prime positive integers such that 9
7
< a

b
< 4

3
and

b ≡ 0 mod 3 and gcd(b, 8) = 1. Then ρ(a
b
) = 8a− 4b.

Conjecture 62. Let a, b be relatively prime positive integers such that 8
7
< a

b
< 23

20
and

gcd(b, 14) = 1. Then ρ(a
b
) = 14a− 9b.

Conjecture 63. Let a, b be relatively prime positive integers such that 15
13
< a

b
< 22

19
and

gcd(b, 10) = 1. Then ρ(a
b
) = 10a− 5b.

Conjecture 64. Let a, b be relatively prime positive integers such that 29
26
< a

b
< 19

17
and

gcd(b, 12) = 1. Then ρ(a
b
) = 12a− 7b.

Conjecture 65. Let a, b be relatively prime positive integers such that 12
11
< a

b
< 23

21
and

a
b
6= 95

87
and gcd(b, 14) = 1. Then ρ(a

b
) = 14a− 9b.

Conjecture 66. Let a, b be relatively prime positive integers such that 11
9
< a

b
< 16

13
and

gcd(b, 38) = 1. Then ρ(a
b
) = 38a− 15b.

Conjecture 67. Let a, b be relatively prime positive integers such that 10
9
< a

b
< 29

26
and

a
b
/∈ {39

35
, 49
44
, 69
62
, 89
80
} and gcd(b, 67) = 1. Then ρ(a

b
) = 67a− 30b.

Our method for identifying families of related rationals is restrictive in several ways.
For example, we did not look for relationships among words with different numbers of
nonzero letters.

Additionally, we do not know how to prove a
b
-power-freeness for families such as the

following two families (with 10 nonzero letters each), where there is an extra congruence
condition on the denominator.

Conjecture 68. Let a, b be relatively prime positive integers such that 5
4
< a

b
< 9

7
and

b ≡ 2 mod 4 and gcd(b, 5) = 1. Then ρ(a
b
) = 5a− 2b.

Conjecture 69. Let a, b be relatively prime positive integers such that 13
10

6 a
b
< 4

3
and

b ≡ 2 mod 4 and gcd(b, 3) = 1. Then ρ(a
b
) = 4a− 2b.

For the rationals in Conjecture 69, the word wa/b contains 6 columns that are not
eventually constant but are eventually periodic with repetition period 01, reminiscent
of w3/2.
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6 Sporadic words wa/b

Of the 520 rational numbers a
b

for which we identified conjectural structure in wa/b, there
are 277 that fall under Theorem 16 or one of the theorems or conjectures in Section 5.
In this section we establish the structure of wa/b for some of the remaining rationals. In
particular, we prove Theorems 3–5. For proving a

b
-power-freeness, much of the algorithm

is the same as for symbolic a
b
. There are some differences, however. The most obvious

difference is that we need not work with run-length encodings of words; we can manipulate
ϕ(n) as a word on the alphabet Z>0 ∪ {n + d}. Computationally this is much faster,
especially considering the scale involved: Whereas the largest symbolic morphism we
identified was the morphism in Theorem 50 with 279 nonzero letters, the 50847-uniform
morphism for w7/4 has 11099 nonzero letters.

Another difference is how we find an integer ` such that ϕ locates words of length `.
Rather than use the method of Section 4.4, we compute the minimum possible ` as follows.
Begin with ` = 0, and maintain a set of sets of the positions of length-` factors of ϕ(n)
that are not unequal (that is, each pair of these factors is equal for some value of n).
Initially, this set is {{0, 1, . . . , |ϕ(n)| − 1}}, since all length-0 factors of ϕ(n) are equal.
We treat ϕ(n) as a cyclic word so we visit all factors of ϕ(n)ϕ(n) · · · . Then increase ` by
1, and update the sets of positions for the new length by extracting a single letter from
ϕ(n) for each position; in this way we avoid holding many large words in memory. During
this update, a set of positions breaks into multiple sets if it contains a pair of positions
corresponding to unequal words of length ` that were not unequal for ` − 1. Delete any
sets containing a single position, since the corresponding factor of length ` or greater is
uniquely located modulo |ϕ(n)|. When the set of position sets becomes empty, then ϕ
locates words of length `.

We use a variant of Proposition 19 in which mmax := d `
a−be − 1, since `

a−b is an
explicit rational number. We verify the conclusion of Lemma 20 directly by checking that
dmmaxa−1

k
e+ 1 6 a− 1.

The structure of words wa/b with no transient can now be established automatically.
We condense results for 24 words (including Theorems 3 and 4) into the following theorem.
In particular, this establishes the value of ρ(a

b
) for these 24 rationals.

Theorem 70. For each a
b

in Table 1, there is a k-uniform morphism ϕ(n) = u (n + d)
such that wa/b = ϕ∞(0). Moreover, ϕ locates words of length `.

Some of the words u in Theorem 70 are themselves highly structured. For example,
for a

b
= 71

50
we have

ϕ(n) =
(
070 1 020 1 020 1 041 1 028 1

)
·
(
041 1 028 1 012 1 028 1 041 1 028 1

)34 (
041 1 028 1 012 1 028 1 041 1 028 2

)
·
(
041 1 028 1 012 1 028 1 041 1 028 1

)10 (
041 1 028 1 012 1 07 1 012 (n+ 1)

)
.

Perhaps w71/50 can be generalized to an infinite family using this structure.
Words wa/b with a transient can be handled as in Section 5. We now prove Theorem 5

on the structure of w6/5.
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a
b

d k ` a
b

d k `
7
4
≈ 1.75 2 50847 12940 37

26
≈ 1.42308 1 2359 1680

8
5
≈ 1.6 2 733 301 37

28
≈ 1.32143 1 5349 3861

13
9
≈ 1.44444 1 45430 11400 41

28
≈ 1.46429 1 2103 999

17
10
≈ 1.7 2 55657 37104 49

34
≈ 1.44118 1 4171 3008

15
11
≈ 1.36364 1 6168 711 55

38
≈ 1.44737 1 5269 3816

16
13
≈ 1.23077 1 12945 1321 53

40
≈ 1.325 1 9933 4149

18
13
≈ 1.38462 1 4188 2094 59

42
≈ 1.40476 1 5861 4332

19
13
≈ 1.46154 1 7698 946 65

46
≈ 1.41304 1 7151 5292

21
16
≈ 1.3125 2 25441 5606 67

46
≈ 1.45652 1 7849 5720

25
17
≈ 1.47059 1 11705 3268 71

50
≈ 1.42 1 8569 6348

31
22
≈ 1.40909 1 1645 1160 73

50
≈ 1.46 1 9331 6816

33
23
≈ 1.43478 1 24995 3576 77

54
≈ 1.42593 1 10115 7500

Table 1: Rational numbers a
b

for which the structure of wa/b is established by Theorem 70.

Theorem 5. There exist words u, v of lengths |u| = 1001 − 1 and |v| = 29949 such that
w6/5 = τ(ϕ∞(0′)), where

ϕ(n) =

{
v ϕ(0) if n = 0′

u (n+ 3) if n ∈ Z>0.

Proof. Let k = 1001. Compute the prefix of v′u of w6/5 where |v′| = 29949 and |u| = k−1.
Let v = 0′ 04 15 01 21 · · · 11 21 be the word obtained by changing the first letter of v′ to 0′.

First we show that τ(ϕ∞(0′)) is 6
5
-power-free. We compute that ϕ|Z>0

locates words

of length 315 and is 6
5
-power-free. It follows that if τ(ϕ∞(0′)) contains a 6

5
-power then it

contains a 6
5
-power beginning at some position i 6 |v| − 1.

We seek a length ` such that the factor x of length ` beginning at position i in
τ(ϕ∞(0′)), for each i in the interval 0 6 i 6 |v| − 1, only occurs once in τ(ϕ∞(0′)).
We can compute ` just as we computed the length 315, but by beginning with the set
{{0, 1, . . . , |τ(v)ϕ(n)| − 1}} instead of {{0, 1, . . . , |ϕ(n)| − 1}}; integers in the range 0
to |τ(v)| − 1 represent positions in τ(v), while the remaining integers represent general
positions (modulo k) in the rest of the infinite word τ(v)ϕ(n)ϕ(n)ϕ(n) · · · . The minimal
such length is ` = 18215. Therefore if τ(ϕ∞(0′)) contains a 6

5
-power factor (xy)6/5 = xyx

then |x| < 18215 = 18215(a− b). Let mmax := 18214.
It remains to show that τ(ϕ∞(0′)) contains no 6

5
-power (xy)6/5 = xyx with |x| 6

mmax(a − b) beginning at a position i 6 |v| − 1. For each m in the range 1 6 m 6
mmax, this could be accomplished by sliding a window of length ma through τ(ϕ∞(0′))
from position 0 to position |v| − 1 and verifying inequality of factors. But since we
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already computed the length-50000 prefix of w6/5 in order to guess its structure, and
(|v| − 1) + mmaxa − 1 = 48161 6 50000, we simply check that this prefix agrees with
τ(ϕ∞(0′)) and conclude that there are no 6

5
-powers in that range.

Now we show that decrementing any nonzero letter of τ(ϕ∞(0′)) introduces a 6
5
-power.

Decrementing any nonzero letter of τ(v) introduces a 6
5
-power, since we defined v′ = τ(v)

to be a prefix of w6/5. Every other nonzero letter is a factor of ϕ(n) for some integer n.
Decrementing any but four of the nonzero letters in u 3 to 0 introduces a 6

5
-power of length

ma for some m 6 25. Decrementing any 2 or 3 in u 3 to 1 introduces a 6
5
-power of length

ma for some m 6 20. Decrementing any of the first five of six 3s in u 3 to 2 introduces a
6
5
-power of length ma for some m 6 4. For the remaining four 0s and one 2, we consider

two cases, depending on whether u is immediately preceded by τ(v) or ϕ(n). In both
cases, decrementing the last letter of u 3 to 2 introduces a 6

5
-power of length 233a, and

decrementing one the four remaining nonzero letters to 0 introduces a 6
5
-power of length

ma for some m 6 82. As before, decrementing n+3 to c > 3 corresponds to decrementing
an earlier letter n to c− 3 and therefore, inductively, introduces a 6

5
-power.

We have automated the steps of the preceding proof as well.

Theorem 7. There exist words u, v of lengths |u| = 56 − 1 and |v| = 18 such that
w4/3 = τ(ϕ∞(0′)), where

ϕ(n) =


v ϕ(0) if n = 0′

u 1 if n = 0

u (n+ 2) if n ∈ Z>1.

Proof. Let

u = 1202110001120202010101020211100012120201010102020211000,

v = 0′00111020201110002.

One checks that τ(v) is a prefix of w4/3.
Showing that τ(ϕ∞(0′)) is 4

3
-power-free with our code requires an extra step, since

the morphism effectively uses two values of d. Define ϕ1(n) = u (n + 1) for all n > 0.
We use the morphism ϕ1 and specify as an assumption that n = 0 or n > 2. The code
then verifies that ϕ|Z>0

locates words of length 14 and is 4
3
-power-free. It follows that

if τ(ϕ∞(0′)) contains a 4
3
-power then it contains a 4

3
-power beginning at some position

i 6 |v| − 1.
We proceed as in the proof of Theorem 5. The factor of length ` = 7 beginning at

position i in τ(ϕ∞(0′)), for each i in the interval 0 6 i 6 |v| − 1, only occurs once in
τ(ϕ∞(0′)). Therefore if τ(ϕ∞(0′)) contains a 4

3
-power factor (xy)4/3 = xyx then |x| < 7 =

7(a − b). Sliding a window of length ma from position 0 to position |v| − 1 for each m
in the range 1 6 m 6 6 shows that τ(ϕ∞(0′)) contains no 4

3
-power (xy)4/3 = xyx with

|x| 6 6(a− b).
Now we show that decrementing any nonzero letter of τ(ϕ∞(0′)) introduces a 4

3
-power.

Decrementing any nonzero letter of τ(v) introduces a 4
3
-power, since τ(v) is a prefix
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of w4/3. One checks as before that decrementing a nonzero letter of u introduces a 4
3
-

power, regardless of whether u is preceded by τ(v) or ϕ(n). The last letter of ϕ(n) is
either 1 or n + 2 > 3. Decrementing this letter to 0 introduces the 4

3
-power 04. If n = 0

then 0 is the only possibility. If n > 1 then decrementing n + 2 to c = 1 corresponds to
decrementing an earlier letter n to 0 and, inductively, introduces a 4

3
-power. If n > 1 then

decrementing n+ 2 to c > 2 corresponds to decrementing an earlier letter n to c− 2 and,
inductively, introduces a 4

3
-power.

The morphisms we have encountered up to this point have all been defined for n ∈ Z>0

as ϕ(n) = u (n+ d) for some d > 1 (or two positive values of d in the case of Theorem 7).
However, d = 0 also occurs, and this is significant because it yields a word on a finite
alphabet.

Theorem 71. There exist words u, v ∈ {0, 1, 2}∗ of lengths |u| = 353− 1 and |v| = 75019
such that w27/23 = τ(ϕ∞(0′)), where

ϕ(n) =

{
v ϕ(0) if n = 0′

un if n ∈ Z>0.

In particular, w27/23 is a 353-automatic sequence on the alphabet {0, 1, 2}.

Proof. Lexicographic-leastness is proved as in Theorem 5. The proof of 27
23

-power-freeness
is similar to Theorem 5. The morphism ϕ|Z>0

locates words of length 52 and is 27
23

-power-
free. However, there is a new subtlety in finding a length ` such that the factor of length
` beginning at position i in τ(ϕ∞(0′)), for each i in the interval 0 6 i 6 |v| − 1, only
occurs once in τ(ϕ∞(0′)). This subtlety arises because v and ϕ(n) have a common suffix
for some n, namely the word 1 when n = 1. Consequently, there is no uniquely-occurring
factor beginning at position |v|−1 in τ(v)ϕ(n)ϕ(n)ϕ(n) · · · . Instead, we use the fact that
018 occurs at positions 0, 1, . . . , 8 in τ(ϕ∞(0′)) but nowhere else, so the factor 1ϕ(0)18

occurs at position |v| − 1 but does not re-occur later. Then we find a length that induces
a uniquely-occurring factor at all positions i in the interval 0 6 i 6 |v| − 2 using the
symbolic τ(v)ϕ(n) as before. This length is 29588, which we do not need to increase on
account of position |v| − 1 since 29588 > 1 + (18 + 1) · 353. So, to finish, one slides a
window of length ma from position 0 to position |v| − 2 for each 1 6 m 6 7396.

Guay-Paquet and Shallit [6] asked whether w>5/2 is a word on a finite alphabet. While
the answer is not known, Theorem 71 shows that for some rationals the word wa/b is a word
on a finite alphabet. Theorem 71 also shows that ϕ|{0,1,2} is a 27

23
-power-free morphism on

the alphabet {0, 1, 2}.
We identified 20 additional rational numbers such that wa/b seems to be generated

by a morphism with d = 0 and is therefore conjecturally a word on a finite alphabet.
For the 9 rationals 117

97
, 64

53
, 107

87
, 85

69
, 90

73
, 127

103
, 95

77
, 100

81
, and 68

55
, the correct value of k seems

to be 38a − 15b, just as in Conjecture 66. Moreover, the number of nonzero, eventually
constant columns for these words is 102, which is the number of nonzero letters in the
corresponding morphism in Theorem 47. This suggests a further connection between
a
b
-power-free morphisms on finite vs. infinite alphabets.
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