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Abstract

A strong edge-coloring of a graph G is a coloring of the edges such that every
color class induces a matching in G. The strong chromatic index of a graph is
the minimum number of colors needed in a strong edge-coloring of the graph. In
1985, Erdds and Nesettil conjectured that every graph with maximum degree A
has a strong edge-coloring using at most %AQ colors if A is even, and at most
2A2 — %A + % if A is odd. Despite recent progress for large A by using an iterative
probabilistic argument, the only nontrivial case of the conjecture that has been
verified is when A = 3, leaving the need for new approaches to verify the conjecture
for any A > 4. In this paper, we apply some ideas used in previous results to an
upper bound of 21 for graphs with maximum degree 4, which improves a previous
bound due to Cranston in 2006 and moves closer to the conjectured upper bound
of 20.
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1 Introduction

All graphs considered in this paper are finite, loopless, undirected, and may have multiple
edges. For a graph G, we use V(G) and E(G) to denote the set of vertices and edges of
G, respectively, and we use A(G) to denote the maximum degree of G. First introduced
by Fouquet and Jolivet [11], a strong edge-coloring of a graph G is an assignment of colors
to the edges of G such that if edges e; and ey receive the same color, they cannot be
incident with one another nor can they be incident with a common edge. Thus, every
color class in a strong edge-coloring induces a matching in G. The strong chromatic index
of a graph G, denoted by x.(G), is the minimum number of colors necessary for a strong
edge-coloring of G. Observe that the strong chromatic index of G is equivalent to the
chromatic number of L?(G), which is the square of the line graph of G.

Via the greedy algorithm, we see that \/,(G) < 2A? — 2A + 1 for every graph G with
maximum degree A. In 1985, Erdés and Nesetiil [9] conjectured the following upper
bounds:

Conjecture 1. (Erdés and Nesetiil [9]) For every graph G with maximum degree A,

V(G) < §A2 %f A ?s even,
ZAQ — %A + 411 if A is odd.

Erdos and Nesettil showed further that this conjecture, if true, is best possible by
constructing a particular blow-up of C5. It is worth noting that if a graph G is 2Ks-free,
then x.(G) = |E(G)|. In 1990, Chung, Gyéarfds, Trotter, and Tuza [7] showed that the
maximum number of edges in a 2K,-free graph with maximum degree A is %Az for even
A, and 3A? — 2 + 1 for odd A; furthermore, the aforementioned blow-up of Cs is the
unique graph that attains this maximum.

While Conjecture 1 has been the impetus for many other conjectures and results in
the area of strong edge-colorings (see [3, 6, 10, 13, 14, 17, 18, 20, 21, 22| for only a few),
not much progress has been made in regards to proving this conjecture directly. The first
nontrivial case of Conjecture 1 (i.e., for graphs with maximum degree at most three) was
verified by Andersen [1] and independently by Hordk, Qing, and Trotter [16]. For graphs
with maximum degree at most four, Hordk [15] first proved an upper bound of 23 in 1990.
This was later improved by Cranston [8] in 2006, who showed that 22 colors suffice, which
is 2 away from the conjectured bound 20.

For graphs with large enough A, exciting progress has been made. In 1997, Molloy
and Reed [19] showed that such a graph G has Y.(G) < 1.998A%. In 2015, Bruhn and
Joos [4] improved this bound to 1.93A2. Very recently, Bonamy, Perrett, and Postle [5]
improved it to 1.835A2. All of these proofs considered the coloring of L*(G), in which
each vertex has a sparse neighborhood (with at most 0.75 (232) edges), and then used an
iterative coloring procedure. However, as pointed out in [19], this method is not sufficient
to prove the conjecture. Therefore, it is necessary to explore new approaches and ideas
to attack the conjecture.
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We turn to the first unsolved case, A = 4. We develop some ideas hidden in [1] by
Andersen and prove the following.

Theorem 2. For every graph G with maximum degree four, x.(G) < 21.

According to a result by van Batenburg and Kang [2], Theorem 2 implies that for
claw-free graphs with clique number at most four, their squared chromatic numbers are
at most 21.

The idea of the proof is as follows. For a minimum counterexample G, we construct a
partition V(G) = L U M U R such that:

(1) For any u € L and v € R , the distance between u and v is at least two, and

(2) the vertices in M are all within distance two from a fixed vertex.

By (1), we can color the edges in G[L] and G[R] independently, but also ‘collabora-
tively’, and by (2), a coloring on G[L]| and G[R] can be extended to the whole graph,
because the edges incident with M have clear structures. We hope this idea can stimulate
new ideas to attack Conjecture 1.

The paper is organized as follows. In Section 2 we introduce some notation and prove
various strutural statements about a minimal counterexample G. In particular, we show
that the girth of G is at least six, whose proof is in Section 5. In Section 3, we obtain
the partition described above. In Section 4, we show how to color the edges in G[L] and
G[R] ‘collaboratively’, and extend it to a coloring of the whole graph; this completes the
proof of Theorem 2.

2 Notation and some properties of minimal counterexamples

We will use the following notation. For two disjoint subsets of V(G), call them X and Y,
we let E(X,Y) denote the set of edges of G with one end in X and the other end in Y.
For an edge e = uv, we let Ni(e) be the set of edges incident with u or v in G — e, and we
let Ny(e) be the set of edges not in Nj(e) that have an endpoint adjacent to either u or v
in G — e. We denote the set of edges of Ni(e) U Ny(e) by N(e), so that N(e) contains at
most 24 edges in a graph with maximum degree at most four. Furthermore, if ¢’ € N(e),
we will say that e sees ¢/ and vice-versa.

A partial strong edge-coloring (or we will sometimes say a good partial coloring) of G
is a coloring of any subset of E(G) such that if any two colored edges e; and ey see one
another in G, then e; and ey receive different colors. In particular, if a partial strong
edge-coloring spans all of F(G), then it is a strong edge-coloring of G. Given a partial
strong edge-coloring of G, call it ¢, we define A,(e) to be the set of colors available for
edge e.

In the rest of this paper, we assume that G is a minimal counterexample with |V (G)|+
|E(G)| minimized. Here are some structural lemmas regarding G.

Lemma 3. G is 4-regular.

Proof. Suppose on the contrary that v is a vertex of degree at most three with N(v) C
{u1, us,uz}. By the minimality of G, G—wv has a good coloring. Observe that |A(uv)| > 3
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for i € [3]. Thus, we can color the remaining edges in any order to obtain a good coloring
of G. This is a contradiction. [

Lemma 4. G contains no edge cut with at most 3 edges.

Proof. Suppose otherwise that G contains a smallest edge cut with at most ¢ < 3 edges,
say e; = aiby,...,e; = a;by. By the minimality of G, G is connected. So G — {eq, ..., e}
contains two components, say G and Go, so that aq,...,a; € Gy and by,...,b; € Gs.
Note that a;’s and b;’s may be not distinct. Let G be the graph obtained from G; by
adding vertex z; and edges zjaq, ..., z1a;. Similarly, let GY be the graph obtained from
G5 by adding vertex zy and edges 2901, . .., 22b;. By the minimality of G, both G} and G,
can be colored with 21 colors.

By renaming the colors, we may assume that zjas and z3b, have the color s for each
1 < s <t <3 Again by renaming colors, we may assume that the colors appearing
on edges incident with a1, as,...,as by,...,b; are all different, which is possible, since
there are at most 18 such edges but there are 21 — ¢ > 18 colors other than 1,...,¢.
Now, we can obtain a coloring of G by combining the colorings of G| and G): keep the
colors of the edges in G; and G5, and color ey, ..., e; with 1,... ¢, respectively. This is a
contradiction. O]

The girth of a graph G is the length of its shortest cycle.
Lemma 5. The graph G has girth at least six.

Since the proof of this lemma is long, we devote Section 5 to it. The reader may skip
the proof for now.
By Lemma 5, we may assume that G is a simple graph.

3 A partition of the vertices

Let x be any vertex of G. In this section, we consider a coloring strategy that leads to
a partition of V(@) into sets L, M, and R, such that there are no edges between L and
R, the numbers of the edges in E(L, M) and E(M, R) are relatively small, and M only
contains some vertices within distance 2 from z. By Lemma 3, G is 4-regular. So we
let N(z) = {u,v,w,y} and for z € N(z), N(z) = {21, 22, 23, 2}. By Lemma 5, above all
these vertices are distinct. Furthermore, we let N(z;) = {21, 2i2, 2i3, 2} for z € N(x) (see
Figure 1). Note that for i, j,k,¢ € {1,2,3} and a,b € {u,v,w,y}, a;;, by may be identical
when a # b.

We now give a partial strong edge-coloring of (G, call it v, using three colors: assign
the edges uuy, vvy, ww; with the color 1, assign the edges uuy, vvy with the color 2, and
assign the edges uus, vvs with the color 3.

Consider the sequence Sy of edges: wowsqy, wiwsy, wws, wws, xu, v, xy, rw. We
extend Sy to a sequence S of uncolored edges such that the following hold:

(i) S contains Sy, where S is at the end of S;
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(i) for each edge e of S — Sy, at least 4 edges of N(e) fall behind it in S;
(iii) among all sequences satisfying (i) and (ii), S is longest.

Observe that no edge outside of S can see four edges in S, otherwise it could be added
to the start of S and contradict (iii).

n o]

REROOOODOOONOO OO0 O0DOODDDDODOE DO DEoEm O

Figure 1: 4-regular graph

Lemma 6. With 21 colors, we may extend ¢ to a partial strong edge-coloring of G that
inlcudes all edges of S.

Proof. Using 21 colors, greedily color the edges of S in order, and let e be the first edge of S
that cannot be colored. Let ¢ denote this partial strong edge-coloring of G. Observe that
e must be in {wowsy, wswsy, Tu, xv, vy, rw}, as otherwise |Ay(e)| = 21— (|N(e)| —4) =1,
so that e can be colored. Further, by the repetition of colors on the pre-colored edges,
e ¢ {xu,xv, zy,xw}. Thus, it suffices to consider e € {wywsy, waws; }.

Without loss of generality, assume that e = wyws;. Since e cannot be colored, it
follows that the 21 colored edges in N (wyws;) must be assigned 21 different colors. Thus,
we can remove the color 1 from ww; and assign it to wswsy;. Observe that in this new
partial strong edge-coloring, w3ws; sees at least 4 uncolored edges, and ww, sees at least
6 uncolored edges. Hence, we can color wsws; and recolor ww;. Since xw sees waos;
colored with 1, there is a color available for the remainder of S by the repetition of colors
on the pre-colored edges. O]

By Lemma 6, if S contains all uncolored edges of G under v, then we are done.
So we assume that S does not contain all uncolored edges of G. Let H be the set of
uncolored edges not in S, and let L be the set of endpoints of the edges in H. Then
L # (). By the maximality of S, wywsy appears in S since wyws, wws, wws and zrw are in
So. Similarly, wowas, w3wss, w3wss, YY1, YY2, Yys appear in some order in S. So, all edges
incident with z,u, v, w,y, wy, w3 are either pre-colored or in S. By the definition of L,
T, u,v,w, Yy, wy, w3 & L.

Lemma 7. E(G[L]) = H.
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Proof. Suppose otherwise that there exists an edge e € E(G[L]) with endpoints a and b
such that a,b € L but e ¢ H. Let N(a) = {a1, a2, as,b} and N(b) = {by, by, b3, a} where
aay,bby € H. Since x,u,v,w,y,wq, ws ¢ L, every pre-colored edge and every edge of Sy
cannot join two vertices of L. So, e € S —.Sy. By the definition of S, at least 4 edges, say
e1,es,e3 and ey, of N(e) are in S. If say e; belongs to Ni(e), then either aa; or bb; sees
e, e1, and two edges from {es, e3,e4}. That is, either aa; or bb; can be added to S, which
contradicts the maximality of S.

Therefore, e, es, €3, e4 € No(e). Furthermore, we claim that exactly two of these edges
are incident with vertices in {aq,as, as}, otherwise either aa; or bb; sees three of these
edges along with e, and so is in S. Without loss of generality, assume that e;, ey are
incident with vertices in {a,as,a3}. Let’s further assume that e; is behind ey in the
sequence S, and let e; = a;a;; for some i € [3]. Observe that aag, aasz ¢ S, as otherwise
aay would see four edges in S, and so be in S.

We now show that e; is not in Sy, as otherwise one of the endpoints of e; is incident
with four edges in S. Thus, aa; would see each of these four edges and so be in S, which
is a contradiction.

By the definition of S, at least three edges of N(ep) different from e are behind e; in
S. We next assume that there is at least one edge of these edges incident with a;1, a2, a;3.
Since ey, e and e are in S, aa; € S, a contradiction. So, all these three edges are incident
with N(a;)\{a:}. However, all four edges incident with a;; would see these three edges
together with ey, so that four edges incident with a;; are in S. Thus, aa; € S, again a
contradiction. O]

Let FF = E(L,G — L) and A = {uy, us, us, v1,vs,v3,w; }. We present the relationship
between edges of F' and vertices of A as follows.

Lemma 8. Fach edge of F' is incident with exactly one vertex of A, and each vertex in
A is incident with at most two edges of F'. Moreover, no vertex in L is incident with two
edges of F.

Proof. First note that if e is an edge in F' with endpoints z € L and 2’ € V(G — L), then
z must be incident with a pre-colored edge by . If not, then every edge incident with
Z' is in S, and consequently, every edge incident with z is in S, by the maximality of S.
Yet this contradicts z € L.

Now suppose e is an edge of F. Then e is incident with at most one vertex of A.
Otherwise, the girth of GG is at most 5, contrary to Lemma 5. Now we show that e
is incident with at least one vertex of A. As shown above, one of the endpoints of e
must be incident with a pre-colored edge. We are done unless e € {zu,zv, zw}. Yet
x,u,v,w € V(G — L), which contradict that e is an edge of F. Therefore, each edge of F’
is incident with exactly one vertex of A.

Next we show that each vertex in A is incident with at most two edges of F'. Suppose
otherwise that a vertex a € A is incident with three edges of F. Assume that a € L.
Since u,v,w € V(G — L), one edge of these three edges is pre-colored and other two edges
are uncolored. Let aa’ be such an uncolored edge where a’ € V(G — L). By Lemma 5,
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a’ is not incident with a pre-colored edge. Thus, every edge incident with a’ is in S. Yet
this would imply that every uncolored edge incident with a is also in .S, contrary to the
assumption that a € L.

So we assume that a € V(G — L). Since u,v,w € V(G — L), three edges, say e; =
aay,es = aas and es = aas where aj,as,a3 € L, are the three uncolored edges of F
incident with a. Since a € V(G — L), ej,e9,e3 € S, and further, ey, ey,e3 ¢ Sy. We
assume, without loss of generality, that both e; and e, preceed ez in the sequence S. By
the definition of S, at least 4 edges of N(e3) come after e3 in S. However, one of these
four edges together with ey, es, e3, are seen by all four edges incident with either ay, as,
or as. Thus, at least one of ay,as, as is incident with four edges in S, which contradicts
ai,as,az € L.

We finally show that no vertex in L is incident with two edges of F'. Suppose otherwise
that the vertex z € L is incident with two edges of F, and let 2’ and 2” be the other
endpoints of these edges. As shown at the start of this proof, 2 and z” are incident
with pre-colored edges. As a consequence, z ¢ A, and further z # x. Thus, 2/,2" €
ANV(G—L). So 2’ and 2" are surrounded by 3 edges in S, respectively. Yet every edge
incident with z sees these edges in S, and so z ¢ L, a contradiction. O

Let Vg, Vi be the endpoints of F'in G—L and in L, respectively. So F' = E(G—L, L) =
E(Ve, V). Let M = {z,u,v,w} UVr and R = V(G) — L — M. (See Figure 2 for an
example.) Observe that F(L,R) = (), E(L, M) = F and y,wy, ws € R. Furthermore, if
z € Vg, then z is incident with a pre-colored edge under ; for otherwise, z is incident
with four edges in S and its neighbor in L would then be incident with four edges in .S,
a contradiction. Thus, Vp C AU {z,u,v, w}.

(w2 w3)

& JTPRTE IO RO NI LG ] | [ y  [G X Go [ A w [ m W {

Figure 2: A possible partition of the vertices with M = {x,u,v,w,us, vy, w;}
(diamond vertice), R (square vertices) and L (octagon vertices), where F =
{uug, wug, uruy, uruiz, vivin, V1V, Wiw, wiwiz} and Ve = {u, ug, v, w }

An important observation is that no edges from G[L] and G|[R] see each other, so they
can be colored independently and be combined together without the need of changing
their colors. Now we state some straightforward results as follows.

Lemma 9. For z € {u,v,w} and i,j, k € [3], each of the following holds.

(1) If z; € M, then for some k # j, z;zi; € F and z;zy, € E(M, R).
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(2) If zizi; € F, then z; € M, z;; € L and three edges incident with z;; are in G[L].
(3) If z; € L, then z;z;; € E(G[L]).
(4) If zi € R, then z;z;; € E(G[R]). Further, yy; € E(G[R)).

(5) If zizi; € E(M,R), then z; € M, z;; € R and at least one edge incident with z;; is in
G|R].

(6) If z; # wy and z;zi;, ziza, € E(M, R), then at least three of the eight edges incident
with z;; and zy, are in G[R].

Proof. Observe that if z; € M, then z; € Vg and consequently, z; € A by Lemmas 5 and
8.

Lemma 8 implies (1) as every vertex in A is incident with at most two edges of F'.

If z;z;; € F, then z; ¢ L, else z; would be incident with two edges of F', namely z;z;;
and z;z, contradicting Lemma 8. Therefore, z; € M and z;; € L. Further, every edge
incident with z;; other than z;2;; must be in E(G[L]). This proves (2).

If z; € L, then z; € A since wq, w3 € V(G — L). Thus, zz; € F, and every other edge
incident with z; must be in F(G[L]) by Lemma 8. This proves (3)

If 2, € R and z;; ¢ R, then z;; € M. In particular, z;; € Vp so that z;; is incident
with a pre-colored edge under ¢. Yet this contradicts Lemma 5. Thus, z;z;; € E(G[R)).
Further, notice that y € R. If y; ¢ R, then y; € M. So y; € Vp. By Lemma 8, y;
is incident with a vertex of A. This contradicts Lemma 5. Thus, yy; € E(G[R]). This
proves (4).

If zizi; € E(M,R) and z; € M, then z; € Vp and is incident with a pre-colored
edge under 1. This contradicts Lemma 5 as previously. So z; € R and z; € M, and
furthermore, z; € A. Observe that z;; has no neighbors in {z,u,v,w}, as this would
contradict Lemma 5. Thus, if the three neighbors of z;; other than z; are in M, then are
all in Vp and are incident with pre-colored edges under ). However, this implies that z;;
has two neighbors in {a, a;, as,az} for some a € {u,v,w}, which contradicts Lemma 5.
This proves (5).

If z; # wy and 225, 2z € E(M, R), then z; € M and z;;, 2z € R by (5). Suppose
that z;; and z;, each have two neighbors other than z; in M. By Lemma 5, z;; and 2z, have
four distinct neighbors other than z; in M, and furthermore, none of these four vertices are
in {x,u,v,w}. Hence they must be in A. Since z; # w;, we may assume without loss of
generality that z; = w;. By Lemma 5, neither z;; nor z;, can have a neighbor in {uy, us, us}
other than u;. Thus, the four neighbors previously described must be vy, vo, v3, wy, which
contradicts Lemma 5. This proves (6). O

4 How to color the vertices in L and R ‘collaboratively’

In this section, we prove Theorem 2. Before doing so, we first prove some lemmas that
show M NA # () and potential properties of the vertices in M N A. In each of the following
lemmas, we aim to color F(G|[L]) and E(G|R]) and order the edges incident with M so
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that each edge e has at most 20 different colors in N(e), which leads to a strong edge-
coloring of G. We also remove the colors placed on the edges of G by 1 so that G is
completely uncolored.

Lemma 10. There is no vertex z € {u,v,w} such that z; € L, zj € R and zy, € LUR
for i, j,k € [3]. In particular, wy & L.

Proof. Suppose otherwise that for some z € {u,v,w}, z; € L and 23 € R. So zz; € F. By
Lemma 9(3)-(4), for each j € (3], z121; € E(G[L]), 2323; € E(G[R]) and yy; € E(G[R]).
By Lemma 4, |F'| > 4. So, there are at least three edges different from zz; in F. Assume
that aa’ is such an edge where a € Vp and o’ € V. Consider two graphs G, and Gp as
follows:

V(GL) = L and E(GL) = E(G[L]) U {zd};
V(GRr) = R and E(Gg) = E(G[R]) U {z3y}.

Note that if z1a’ already exists, then we add a parallel edge with endpoints z; and a’.
Recall that x, 2 € M so that z; has at most three neighbors in L, y and 23 have at most
three neighbors in R. Thus, G, and G both have maximum degree at most 4. By the
minimality of GG, both G and G have strong edge-colorings with 21 colors. In G, let
the colors of the three edges incident with z; in G[L] (other than the new z;a’) be 1,2, 3,
and the color of potentially new z;a’ be d, respectively. In Gy, by renaming colors, let
the colors of the three edges incident with z3 in G[R] be 1,2,3 and the color of yy; be d,
respectively.

We now color the edges in G by giving the edges in G[L] and G[R] the same colors as in
G, and Gg. As observed before Lemma 9, this yields a partial strong edge-coloring, which
we will call ¢. Thus, the edges uncolored by ¢ are exactly those in FUE(G[M])UE(M, R).
In particular, these are the edges incident with vertices in M, and recall that M C
AU {z,u,v,w}. Observe that the edges incident with u,v,w, and x are all uncolored.

We now extend ¢ to some of the uncolored edges. For 2’ € {u,v,w} — z and i,j €
{1,2,3}, assign zjz; with an available color if it is not colored yet, and assign 2'z; an
available color. This can be done as each of the aforementioned edges sees at least four
uncolored edges. This yields a new, partial strong edge-coloring, which we will call p.
Observe that the edges incident with z5 other than 2z, are the colored edges under p.
Recall also that the edges incident with z; other than zz;, and the edges incident with z3
other than zz3, are colored with 1,2, and 3. Also, yy; is colored with d.

We finally color the remaining edges based on whether or not d occurs on an edge
incident with zy. Let {u,v,w} —z = {2/, 2"}.

e If d occurs at an edge incident with z5, then color the remaining edges in the following
order: xz', x2", xy, 221, 223, 229, XZ.

e If d does not occur at the edges incident with z, in G[R], then color zz; with d, and
color the remaining edges in the following order: x2', x2”, xy, zz3, 229, z.
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Note that in each case we always have a color available on the edges in the above
sequence. In particular, zw will see four pairs of edges colored with 1,2,3, and d. Thus,
G has a strong edge-coloring with 21 colors, a contradiction. O

Lemma 11. M N A # (.

Proof. Suppose otherwise M NA = (). Then the vertices of A must be partitioned amongst
L and R, and furthermore Vr C {u,v,w}. By Lemma 10, w; € R, and for each z € {u, v},
21,722,235 € L or z1,29,23 € R. Thus, F' contains all or none of edges in {zz1, 229, 223}.
Note that F'is an edge-cut and ww;, wwsy, wws € E(M, R). This implies that Vi C {u, v},
and additionally, F' C {zz; : z € {u,v},i € {1,2,3}}. However, this implies that {zu, zv}
is also an edge-cut, contrary to Lemma 4. O]

Remark 1: For z € {u,v,w}, if z; € M (and so is in Vr), then by Lemma 9(1), z;
is incident with an edge in F' and an edge in F(M, R); we may assume, as a convention,
that z;z;; € F and z;z;3 € E(M, R).

Lemma 12. There exists some vertex z; € M N A such that at least three of the eight
edges incident with z; and z; are in E(G[R)).

Proof. Suppose otherwise that for each vertex z; € M N A, at most two of the eight edges
incident with z;» and z;3 are in G[R].

Case 1. w; € M and there is only one edge incident with w3 in G[R].

In this case, since w3 € R, the other three edges incident with w;3 must be in E(M, R).
In particular, w3 has at least two neighbors in M N A other than w;. By Lemma 5, w3
can be adjacent to at most one vertex in each of {uy,us,u3} and {vy,vq,v3}. Without
loss of generality, we may assume that w3 is adjacent to u; and v;. Then uy,v; € M. So,
uugg, VU1, wiwyy € F ugugg, vyvis, wawig € E(M, R), where ujg = v13 = wss.

Since wywy; € F, by Lemma 9(2), the three edges incident with wy; (other than wjwi)
are in G[L]. Similarly, there are three edges incident with uy; (other than uju;,) that are
in G[L]. In particular, u;; is not adjacent to either wy; or wyy, as this would contradict
Lemma 5. In addition, there exists uj v’ € E(G[L]) where v/ ¢ {wy1,w2}.

Let G and Gg be the following graphs:

V(GL) =L and E(Gr) = E(G[L]) U {wyun };
V(GR) = R and E(GR) = E(G[R]) U {wlgwg, wi13Ws, wlgy}.

Observe that A(G) and A(GRr) are both at most four. By the minimality of G, each
of G, and G has a strong edge-coloring with 21 colors. In GGy, let the colors of the three
edges incident with wq; in G[L] be 1,2, 3, respectively, and the color of u;u’ be d. In Gp,
let the color of the edge incident with wq3 in G[R] be 1, the color of wisws be 2, the color
of wizws be 3, and the color of w3y be d. Clearly, d ¢ {1,2,3}.

We now color the edges of G by assigning the edges in G[L] and G[R] the same colors
as in G and Gg, respectively. Observe that this yields a partial strong edge-coloring of
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G in which the only uncolored edges are incident with vertices in M C AU {x, u, v, w}.
Recall that uy, v, w € M.

Since ywi3, wows3, and wzw3 are colored with d, 2, and 3, respectively in G, we color
Yy, wwy, wws with d, 2, 3, respectively.

e [f some edge incident with w5 has been colored with d, then we first color the edges
Uglaj, UsUs;, VaVaj, U3vs; where j € [3] (if they are not colored) with available colors,
and color the remaining edges in the following order:

U1, U2, UU, UU2, UU3, TU, V1V11, Vi1V12, VU2, VU3,

rv, vvi, U1V13, U1U13, TW, WiW11, W1W12, W1W13, WW].

e If the edges incident with wjy are not colored with d (including the case that they
are not colored), then color wywys with d, color the edges ususg;, ustsj, Vav2j, V3Us;
where j € [3] (if they are not colored) with available colors, and color the remaining
edges in the order (recall that uq;u’ is colored with d):

Ui, U2, uui, uUuz, uuz, ru, UV1V11, Vi1Vi2, VU2,

vv3, TU, VU1, U1V13, U1U13, TW, Wi1W11, Wi1W12, WW].

So, G has a strong edge-coloring with 21 colors. It is a contradiction.

Case 2. wy; € M and there are ezxactly two edges incident with wys in G[R].

Recall from Remark 1, that wiw;; € F so that wy; € L, and wywis € E(M, R). If
wiz € G'— L, then it must be in R, and by Lemma 9(5), w2 would have an edge incident
with it in G[R]. Yet, we are assuming that at most two of the eight edges incident with
w2 and wyz are in G[R], a contradiction. So wys € L and wywis € F.

Since wq3 has exactly two neighbors in R, we may assume without loss of generality,
that w3 is adjacent to u;. Then w; € M, and consequently, uiu;; € F' and ujuiz €
E(M, R), where u;3 = wy3. Consider two graphs G, and G as follows:

V(GL) = L and E(GL) = E(G[L]) U {wllwlg};
V(GR) = R and E(GR) = E(G[R]) U {wlng, w13w3}.

Notice that wq1, w12 € L, wy € M, wy, w3 € R and wi3 has exactly two neighbors in
R. So, both graphs G, and G g have maximum degree at most four. By the minimality of
G, both G, and G have strong edge-colorings with 21 colors. In G, let the colors of the
three edges incident with wi, other than wywi9, be 1,2, 3, and let the color of one edge
incident with wis, other than wywia, be d (these edges exist by Lemma 9(2)). Clearly,
d # 1,2,3. In G, by renaming colors, let the color of the edges incident with w3, other
than wi3wy and wizws, be 1 and 2, let the color of wi3ws be 3, and let the color of wsws;
be d.
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We now color the edges of G by assigning the edges in G[L] and G[R] the same colors
as in GGy, and Gg, respectively. Observe that this yields a partial strong edge-coloring of
G in which the only uncolored edges are incident with vertices in M C AU {x,u, v, w}.
Recall that uy,w; € M.

Next we color ww, with 3. We assign ujui, vjv;, for j,k € [3], if not colored yet,
with available colors except for ujui3, and assign uu;, vv; for i € [3] with available colors.
Finally, we color the remaining edges in the order:

v, 1Y, TU, UiUiz, TW, WW3, wW1wWi, W1Wi2, W1W13, WWi.
So, G has a strong edge-coloring with 21 colors. It is a contradiction.

Case 3. wy ¢ M. By the symmetry of u and v, we may assume that u; € M N A.

Since wjuy; € F and wuiz € E(M, R), by Lemma 9(6), ujuiz must be in F. By
Lemma 9(2), the three edges incident with w;; other than wju;; and the three edges
incident with u;5 other than wjujy are in G[L]|. Since ujuiz € E(M, R), by Lemma 9(5),
at least one edge incident with wu;3 is in G[R].

Since wy ¢ M, Lemma 10 implies that w; € R. By Lemma 9(4), wyw;; € G[R] for
Jj € [3]. Since we are assuming that at most two of the eight edges incident with wujy
and w3 are in G[R], w3 must have a neighbor other than u; in M. Since w; ¢ M, we
may assume it is v; so that v; € M. Note that by Lemma 5, u;3 cannot have any other
neighbors in M, as they would be in {us,us, ve,v3}. Thus, there are exactly two edges
incident with w3 in G[R].

By a similar argument to the above, wjuii, uit1s, V1011, V1012 € F, ujuiz, viv13 €
E(M, R), and U1z = V13- By Lemma 5, U1, U2, V11, V12 are all distinct.

Consider two graphs G and G as follows:

V(GL) = L and E(GL) = E(G[L]) U {Uuulg};
V(GRr) = RU{b} and E(GRr) = E(G[R]) U {w1b, wab, w3b, u13b, u13y}.

Notice that z,w,u; € M, wy,ws, w3,y € R and u;3 has exactly two neighbors in R.
So, both graphs G; and Gi have maximum degree at most four. By the minimality of
G, both G and Gi have strong edge-colorings with 21 colors. In G, let the colors of
the three edges incident with uy; (other than uj;u;s) be 1,2,3, and the color of ujius be
d. Clearly, d # 1,2,3. In Gg, by renaming colors, let the colors of the two edges incident
with w3 (other than u3b, ui3y) be 1,2, the color of w3y be 3, the color of u3b be d, and
the colors of wib, waeb, wsb be dy, da, ds, respectively. Clearly, {dy, ds, d3} N{1,2,3,d} = 0.

Claim: the colors 1, 2,3 appear on edges incident with vy or vis in Gp.

Proof. Suppose otherwise that at least one of colors 1,2,3 does not appear.
If 3 appears on an edge incident with vy, or v but 1 does not, then switch
the colors 3 and 1 in G so that 3 is missing. We do a similar switch if 3
appears, but 2 does not. Thus, we may assume that 3 does not appear on
edges incident with vy or vys.
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We now color the edges of G by assigning the edges in G[L] and G[R] the colors
used in G and Gp, respectively. Note that vi3y ¢ E(G), by Lemma 5. So we
can color viv13 and xy with 3. We next color ww;, wws,, wws with dy, ds, ds,
respectively. We assign uaus;, usus;, Vo025, vsvs; for j € [3] with available colors
if they are not colored yet. Finally, we color the remaining edges in the order:

U111, Uili2, VU1, VU2, VU3, TU, TW, TU, UU2, UU3, UiUI1, UIU12, U1UL3, UUL.
So, G has a strong edge-coloring with 21 colors. It is a contradiction. O]

We now color the edges of G by assigning the edges in G[L| and G[R] the same colors
as in GGy, and G, respectively. Observe that this yields a partial strong edge-coloring of
G in which the only uncolored edges are incident with vertices in M C AU {x,u, v, w}.
Recall that uy,v; € M. We next color xy with 3, color xw and uju;3 with d, and color
wwy, wws, wws with dy, da, ds, respectively. We assign ususg;, ugus;, vavsj, v3vs; for j € [3]
with available colors if they are not colored yet. Finally, we color the remaining edges in
the order:

uug, uuz, U111, U1U12, TU, TV, VU2, VU3, VU1V11, VU1V12, V1V13, VU1, UU;7.

With the claim, it is easy to check that each edge has an available color. So, G has a
strong edge-coloring with 21 colors. It is a contradiction. O]

Lemma 13. If there exists z; € M N A such that at least three of the eight edges incident
with zp and zg are in G[R|, then z; ¢ R for all j € [3]. In particular, wy is not such a
vertex in M N A.

Proof. Suppose otherwise that for some z; € M N A, at least three of the eight edges
incident with z;» and z; are in G[R] and z; € R. Without loss of generality, we may
assume that ¢ = 1 and that z3 € R. Recall that by our convention in Remark 1, z12;; € F,
21213 € E(M, R), and by Lemma 9(2), three edges incident with z;; are in G[L].

By Lemma 4, |F| > 4. Tt follows that at least three edges other than z;21; are in F.
Assume that aa’ is such an edge with a € Vr and o’ € V.. Consider the graph G

V(GL) =L and E(GL) = E(G[L]) U{z11d'},

where if 211a" already exists, then we add a parallel edge with endpoints z;; and a’.
Observe that A(G) < 4. By the minimality of G, G, has a strong edge-coloring with 21
colors. In G, let the colors of the three edges incident with z1; (other than the new copy
of z11a’) be 1,2,3, and the color of new copy of z11a’ be d, respectively.

We may assume that either z;3 is incident with three edges in G[R], or both 215 and
z13 are incident with at most two edges in G[R]. Consider G with V(Gg) = R and

E(Gp) = E(G[R]) U{z323}, if 213 is incident with three edges in G[R];
| E(G[R]) U {z15212, 21323},  otherwise.
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Observe that A(Ggr) < 4. By the minimality of G, G have a strong edge-coloring
with 21 colors. In Gg, let the colors of any three edges in G[R] incident with 219, 213
be 1,2, 3, respectively. By Lemma 9(4), 23 is incident with three edges in G[R]. So we
may assume that one of them, say 23231, is colored with d (up to renaming it), which is
possible even if zy5 is incident with less than three edges in G[R).

Now we color the edges in G. First of all, the edges in G[L] and G[R] keep their colors
in G, and Gg. For 2’ € {u,v,w} — 2z, we assign 2z}, for i, j € [3] with an available color if
it is not colored yet, and then assign z'z] for ¢ € [3] with an available color. We then color
the edges 2229, for j € [3] with an available color (note that the edges z323; are colored).
Finally, we color the remaining edges according to whether the color d appears on the
edges incident with 215 (let {u,v,w} — z = {2/, 2"}):

e If the color d does not appear at the edges incident with z15, then color z;21; with

d, and color the remaining edges in the following order

/ "
Tz, Tz, XY, Tz, 222, 2R3, X1%12, <1%13, <Z1.

e If the color d appears at an edge incident with z;5, then color the remaining edges
in the following order:

/ "
Tz, T2, XY, Tz, ZZ9, ZZ3, Z1%11, R1R12, <1%13, RZ1-

So, GG has a strong edge-coloring with 21 colors. It is a contradiction. O]
We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2. By Lemmas 12 and 13, there exists some vertex z; € (M NA)\ {w, }
such that at least three of the eight edges incident with z;2 and z;3 are in G[R]. Without
loss of generality, we will assume z; = u;. Recall that from Remark 1, we will assume
wug; € F and wyugg € E(M, R). Thus, by Lemma 9(2) and (5) three edges incident with
uyy are in G[L] and there is at least one edge incident with u;3 in G[R]. Note that by
Lemma 13, up, u3 ¢ R. So, we consider the following cases.

Case 1. us € L orug € L. Without loss of generality, let us € L.
By Lemma 9(3), usug; is in G[L] for each j € [3]. We consider graph G/
V(Gr) = L and E(Gr) = E(G[L]) U {ujius}.
Observe that A(Gr) < 4. By the minimality of G, G, has a strong edge-coloring with
21 colors. In G, let the colors of the three edges in G[L] incident with u; be 1,2, 3, and
the color of usus; be d, respectively.

We may assume that either u;3 is incident with three edges in G[R], or both ;5 and
uy3 are incident with at most two edges in G[R]. Consider G with V(Gr) = R and

E(G[R]) U{uisy}, if uy3 is incident with three edges in G[R];
E(G[R]) U {u13u12, ulgy}, otherwise.

E(Gr) = {
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Observe that A(Gr) < 4. By the minimality of G, G has a strong edge-coloring with
21 colors. In Gg, by renaming colors, let the colors of (any) three edges incident with
u3, w1z in G[R| be 1,2,3, and the color of u;3y be d, respectively.

Now we color the edges in GG, where the edges in G[L] and G[R] keep their colors in
G and Gi. We then assign v;v;;, w;w;j, usug; for i, j € [3] with an available color if it is
not colored yet, and assign vv;, ww; for i € [3] with available colors. Finally, we color the
remaining edges according to whether the color d appears on the edges incident with u;s:

e [f the color d does not appear at the edges incident with w5, then color u;u3 with
d, and color the remaining edges in the following order:

v, Tw, Y, TU, UUz, U3, U1U11, U1U12, UUL.

e If the color d appears at an edge incident with w9, then color the remaining edges
in the following order:

Irv, Tw, TrY, rU, Uz, uuz, U1U11, U1U12, U1U13, UU;.

In either case, GG has a strong edge-coloring with 21 colors. It is a contradiction.

Case 2. uy,uz € M.
By Lemma 9, we have ujuqy, ugtor, ugusz; € F and ujuis, ustieg, usugs € E(M, R).
Subcase 2.1. For some i,j € [3] with i # j, ujui € F and ujuje € E(M, R).

Assume that ujuis € F and ugugy € E(M, R). Consider two graphs G and Gg as
follows:

V(Gr) = LU{a} and E(Gy) = E(G[L]) U {uia, uiza, usia, uzgal;
V(GR) = R U {b} and E(GR> = E(G[R]) U {Ulgb, Uggb, UQ3b, U33b}.
Observe that A(GL) < 4 and A(Gg) < 4. By the minimality of G, both G and G

can be colored with 21 colors. Let the colors of auqy, auqs, ausy be 1,2, 3, respectively. We
rename colors of edges in G so that the colors of busg, buss, buqs are 1,2, 3, respectively.
We further assume that an edge incident with us; (other than usja) and an edge incident
with wugs (other than ussb) have the same color, say d. Clearly, d # 1,2, 3.

Now we color the edges in G. First of all, the edges in G[L] and G[R] keep their colors
in GGy, and Gi. Then we color ujuq; and ususs with 1, color ujuis and usugy with 2, and
color ujuz and usug with 3. We assign vv;;, wyw;; for 4, j € [3] with available colors if
they are not colored yet, and assign vv;, ww; for i € [3] with available colors. Finally, we
color the remaining edges in the order:

v, Tw, TrY, TU, U3U31, U3U32, U3U33, UUI, UU2, UU3.

So, G has a strong edge-coloring with 21 colors. It is a contradiction.
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Subcase 2.2. ujuis, ustioy € F, or ujuys, ugugs € E(M, R).

If w9, usugy € F, then clearly, the three edges incident with w3 other than wujuq3
are in G[R|. Consider two graphs G, and G as follows:

V(GL) = LU{a} and E(GL) = E(G[L]) U {u11a, u12a, us1a, ugea};
V(GR) = R and E(GR) = E(G[R]) U {U13UQ3}.
Observe that A(GL) < 4 and A(Gg) < 4. By the minimality of G, both G, and G

have strong edge-colorings with 21 colors. In G, let the colors of the three edges incident
with uy; in G[L] be 1,2, 3, and the color of uj;a be d, respectively. In Gg, by renaming
the colors of edges in Gg, let the colors of the three edges incident with w3 in G[R] be
1,2, 3, and the color of uj3us3 be d, respectively.

If uyuig, uguge € E(M, R), consider G, with V/(G) = L and Gg with V(Gg) = RU{b}

and
E(GL) = E(G[L]) U {uius };

E(G[R]) U {u12b, u13b, ug2b, ugsb}, if uy3 is incident with three edges in G[R];
E(G[R]) U {U12b, u13b, u22b, ua3b, ulgulg}, otherwise.

E(Gr) = {

Observe that A(GL) < 4 and A(Gg) < 4. By the minimality of G, both G and G
have strong edge-colorings with 21 colors. In G, let the colors of the three edges incident
with uy; in G[L] be 1,2, 3, and the color of u;;us; be d, respectively. In Gg, let the colors
on any three edges in G[R] incident with w9, u13 be 1,2, 3, and the color of uy3b be d,
respectively.

In either case, we color the edges in GG in the following procedure. First of all, the
edges in G[L] and G[R] keep their colors in GG, and Gr. Next, we color ujuy; and ugusgs
with d, and assign v;v;;, w;w;; for i,j € [3] with available colors if they are not colored
yet, and assign vv;, ww; for ¢ € [3] with available colors. Finally, we color the remaining
edges in the following order:

v, Tw,TY, UU21, U2U22, U3U31, U3U32, U3U33, TU, UU2, UUZ, UIU12, UIU13, UU].

So, G has a strong edge-coloring with 21 colors. It is a contradiction. O]

5 Proof of Lemma 5

In this section, we proof Lemma 5 in a series of lemmas. In these proofs, we will often
remove vertices and edges from G to obtain a strong edge-coloring, say ¢, of the remaining
graph that use at most 21 colors. Often, we will consider |A,(e)| for each uncolored edge
e of G with the purpose of applying the well-known result of Hall [12] in terms of systems
of distinct representatives. This yields a coloring of the remaining uncolored edges such
that they will receive distinct colors, which ultimately produces a strong edge-coloring of
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GG. Thus, when in a situation in which we can apply this result of Hall, we will say that
we obtain a strong edge-coloring of G' by SDR.

Let Uy(v) to be the set of colors used on edges incident with a vertex v. For adjacent
vertices u and v, let Ty(u,v) be Ug(u) \ {p(uv)}. That is, Ty(u,v) is the set of colors
used on the edges incident with u other than wv. Observe that Y y(u,v) and Y4(v,u)
are disjoint. Often, we will refer to only one partial strong edge-coloring that will not be
named. In such cases we will suppress the subscripts used in the above notations.

Lemma 14. G has no multiple edges. That is, G is simple.

Proof. Suppose on the contrary that there exists a parallel edge e with endpoints u,v. By
the minimality of G, G — e has a good coloring. Since e has at least five colors available,
we can obtain a good coloring of G. [

Lemma 15. G contains no triangles.

Proof. Suppose on the contrary that G contains a triangle wuy, us, us. Since G is 4-regular,
there exist x;,y; € N(u;) \ {u1,u2,us}. By the minimality of G, G — {uy,us,u3} has a
good coloring.

Observe that |A(x;u;)|, |A(yiu;)| = 6 for i € [3] and |A(ujuji1)| = 9 for j € [3] modulo
3. Thus, we obtain a good coloring of G by SDR. O]

Lemma 16. G contains no Ks 3.

Proof. Suppose on the contrary that G contains Ks3 as a subgraph with partite sets
{uy,uz,u3} and {vy,ve,v3}. For ¢ € [3], let z; denote the fourth neighbor of u; not in
{v1,v9,v3}, and let y; denote the fourth neighbor of v; not in {u, us, us}.

Let G’ be obtained from G by removing uq, us, uz, v1, V2, v3. By the minimality of G,
G’ has a good coloring that we can impose onto G. Observe that |A(u;x;)|, |A(viy;)| = 9
for i € [3], and |A(u;ve)| = 15 for 1 < j < £ < 3. We then obtain a good coloring of G by
SDR. O

Lemma 17. G contains no Ky 4.

Proof. Suppose on the contrary that G contains K, 4 as a subgraph with partite sets
{uy, ug, us, us} and {vy,v9}. For ¢ € [4], let x;,y; denote the third and fourth neighbors
of u; not in {wy,ve}. Of course, z; # y;, and by Lemma 15, x;,y; & {u1, us, us, us} for
i€ [4]. So {z1,y1,..., x4, ya}| = 4.

Let G' be obtained from G by removing v; and v,. By the minimality of G, G’ has
a good coloring that we can impose onto G. Call it ¢. Note that if e,¢’ € F(G’), and
o(e) = ¢(€'), then they are still sufficiently far apart in G. Thus, ¢ is a good partial
coloring of G. Observe that |A,(w;v;)| > 7 for i € [4],5 € [2].

If| U As(wwv;)| > 8, then we can greedily color the remaining edges to obtain

i€[4],5€2]
a good coloring of G. Therefore, since |Ag(w;v;)| > 7 for each i € [4] and j € [2], we
may assume each A,(u;v;) = [7]. Observe that this implies each w;z; and w;y; receives
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distinct colors. So without loss of generality, suppose they are colored with the colors from
[15]\[7]. Furthermore, we may assume Yy (z;, u;)UY 4(y;, u;) = [21]\[15], for each i € [4], as
otherwise A,(u;v;) # [7] for some ¢ and j. This also implies that [{z1,y1,..., 24, Y1} = 8&;
that is, they are all distinct.

Thus, our goal is to recolor two edges among {u;x;, u;y; : ¢ € [4]} to be the same
and obtain a good partial coloring of GG. If so, then we can color the remaining edges
greedily to obtain a good coloring of G. As a result, if we uncolor an edge u;z;, then in the
resulting good partial coloring, the only colors available on this edge must be contained
in [7] U ¢(u;x;).

Note that by Lemma 3, z; cannot be adjacent to every vertex in {xa, y2, T3, Y3, T4, Ys }-
So we may assume 122 ¢ F(G). Uncolor the edges ujx; and usxe, and let o be this good
partial coloring of G. Since the colors on these edges in ¢ were distinct and in [15]\ [7], we
may assume they were 8 and 9. Observe that | A, (u;x;)| > 5 for i € [2], and A, (u;v;) = [9)
for i € [4],7 € [2].

As noted, A,(u1x1) U Ay (ugzs) C [9]. However, since each edge now has at least 5
colors available, there must be some o € A, (u1x1) U A, (ugxs). Thus, we can color these
two edges with a to obtain a coloring 1. Since xixs ¢ F(G), and since the z;’s and y;’s
are all distinct, ¢ is a good partial coloring of G in which |Ay (u;v;)| = 8 for i € [4], 7 € [2].
Thus, we can greedily color the remaining edges to obtain a good coloring of G. O]

Lemma 18. G contains no Ky 3.

Proof. Suppose on the contrary that G' contains a K, 3 with partite sets {uy, us, u3} and
{v1,v2}. By Lemma 15, this subgraph is induced, and as G is 4-regular, for ¢ € [3], there
exist vertices x;,y; adjacent to u; other than vy, v, and vertices 21, zo adjacent to uy, us,
respectively, other than wq, us, u3. By Lemma 17, 21 # z5, and by Lemma 15, 21, 25 are
distinct from the z;, ;.

We define the following sets, for j € [2], let V; := {uv; : i € [3]}, let Y := V1 U s, let
Z = {v121,v920}, and let X := {w;z;, uzy; : i € [3]}.

We proceed based on the existence of 2125 € E(G).

Case 1. 212, € E(G).

Let G’ be the graph obtained from G by deleting v; and v5. By the minimality of G,
G’ has a good coloring ¢.

Observe that |Ag(e)| > 6 for e € Y and |Ay(€e’)| = 4 for € € Z. Since 2122 € E(G),
we may assume Uy(2z1) = {1,2,5} and Uy(z2) = {3,4,5} so that ¢(z122) = 5.

We can extend ¢ by coloring the edges of Z, and denote this good partial coloring by
o. Note that neither edge in Z is colored with 1 or 2. Now, every edge in ) has at least
four colors available on it. We proceed by considering which edges incident to some x; or
y; are already colored with either 1 or 2.

We first claim that neither 1 nor 2 appear on any edge of X under o. If 1 and 2 both
appear, then each vertex in ), has at least six colors available, and we can extend o by
SDR. If only 1 appears on an edge of X', then each edge in ), has at least five colors
available. So if one edge in ) has at least six colors available, we can extend o by SDR.
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This implies that for every i € [3], 2 ¢ U, (x;) UU,(u;), else |A,(uvq1)| = 6. Thus, we can
color any edge in ), with 2 to obtain a good partial coloring ). Observe that |Ay(e)| > 4
for e € Yy, and |Ay(e¢')| = 5 for € € Y;. So we can extend ¢ by SDR, which proves our
claim.

We now return to o. Suppose 1 ¢ U, (z1) UU,(y1). If in addition, 2 ¢ U, (z2) UU,(y2).
Then we can color u;ve and wusve with 1 and 2, respectively to obtain a good partial
coloring of G. From here we can color the remaining four edges by SDR as every edge in
YV, still has at least four colors available. Then by a similar argument, we may assume
2 € U,(z;) Ul,(y;) for i € {2,3}. We again color uyvy with 1 to obtain a good partial
coloring of GG. From here we can color the remaining five edges by SDR as vyus and vyus
each have at least five colors available.

Thus, we can assume 1,2 € U, (x;) UU,(y;) for each i € [3]. We then color the edges of
Y be SDR as every edge in ); has at least six colors available. This completes the case.

Case 2. 2120 ¢ E(QG).

Let G’ be the graph obtained from G by deleting v; and v, and adding the edge z;25.
By the minimality of G, G’ has a good coloring, which ignoring z; 25, can be applied to G.
We immediately extend this by coloring v;z; and vy29 with the color used on z;2z5. Call
this good partial coloring ¢.

We may assume that Uy(z;) = {15,16,17,21} and U,(z2) = {18,19,20,21} so that
d(v121) = P(v922) = 21. Observe that |Ag(e)| = 5 for e € Y. If |Ay(e)| = 6 for any e € ),
we can color the remaining edges of G by SDR.

If 15, 16, or 17 appears in some Ay (x;) U Ay(y;) for some ¢ € [3], then |A,(viu;)| = 6,
and we are done. So we may color the edges in ), with 15, 16, and 17, to obtain a good
partial coloring of G, call it 0. Observe that |A,(e)| = 5 for each e € ), so that we can
color them greedily to obtain a good coloring of G.

This completes the proof of the case, and hence, proves the lemma. O

Lemma 19. G has no 4-cycles.

Proof. Suppose on the contrary that ujususuy is a 4-cycle in G. By Lemmas 3 and 15,
for each i € [4], there exists x;,y; € N(u;) \ {u1,us, uz,us}. By Lemmas 15 and 18,
T1,Y1, .., 24, Yys are distinct. Define the sets X = {z;u;, yu; i € [4]}, YV = {zjxi41 i €
[4] modulo 4}, X; = {z;u;, y;u;} for i € [4].

By the minimality of G, G — {u, us, u3, us} has a good coloring ¢ that we can apply
to G. Observe that |A4(e)| > 6 for e € X and |Ay(e’)| = 9 for ¢’ € Y. We proceed based
on if we can extend ¢ by coloring the edges of X} and X3 (or Xy and X)) with the same
colors.

Case 1. We can extend ¢ by coloring the edges of X1 and X3 with 1 and 2.

Suppose we can extend ¢ by coloring ziuy, r3us with 1, and yjuq, ysus with 2. Call
this good partial coloring o. Observe that |A,(e)| > 4 for e € Xy U Xy and |A,(e/)| > 7
for e € ).
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If there are at least eight colors available over all the edges of Y under o, then we
can obtain a good coloring of G by SDR. Thus, A,(e;) = A,(e2) and |Ay,(e1)] = 7
for all e1,eo € V. Without loss of generality, we may assume Y, (x;, u;) U Vo (ys, u;) =
{3,4,5,6,7,8} for i = 1,3, and Y, (x;, u;) U Lo (ys, u;) = {9,10,11,12,13,14} for i = 2, 4.

Now, xa,ys,24,ys cannot induce a Kso by Lemma 18. So, say zoxy ¢ E(G). If
| Ay (zous) U Ay (z4uq)| = 8, then we obtain a good coloring of G by SDR. Thus, we can
extend o by coloring xsus, x4us with the same color, and then further extend by SDR.

Case 2. We can extend ¢ by coloring an edge of Xy and an edge of X3 with 1.

We may assume that we can extend ¢ by coloring ziuq, x3us with 1. Suppose that we
can further extend ¢ by coloring an edge of Xy and &) with 2, say wous, v4us. Call this
good partial coloring o. Observe that |A,(e)| > 4 for uncolored e € X and |A,(¢/)| > 7
for e € ).

As in the previous case, we may assume that YV, (z;, u;) U Vo (y;, uw;) = {3,4,5,6,7,8}
for 1 =1,3, and Y, (z;, u;) U Yo (yi, ;) = {9,10,11,12,13,14} for i = 2,4 so that A,(e) =
A, (€') and |A,(e)| =T for e, e’ € Y.

Now, suppose y1y3 € E(G). Then |A,(yiu1)l, |As(ysus)| = 7, and we can obtain a
good coloring of G by coloring yous, Y4y, 129, ToXs, T3Ly, T4X1, Y1U1, Y3us in this order.

So y1y3 ¢ E(G), and by the previous case A, (y1u1) N Ay (ysus) = 0. Thus, | Ay (y1ur) U
A, (ysus)| = 8, and we can obtain a good coloring of G by SDR.

Thus, it remains to consider when we cannot extend ¢ by coloring an edge of A5 and
X4 with a common color. By Lemma 18, we may assume xoxy ¢ E(G). Let ¢ denote the
good partial coloring extending ¢ by coloring xyuy, x3us with 1.

Observe that |Ay(e)| > 5 for uncolored e € X and |Ay(e')| > 8 for ¢ € Y. Since
xoxy ¢ E(G), we must have | Ay (xous) UAy(x4uq)| > 10, otherwise we can color zous, 24ty
with a common color, a contradiction. Now, if there are at least nine colors available over
all the edges of Y under v, then we obtain a good coloring of G by SDR. Thus, we have
Ay(er) = Ay(ez) and |Ay(er)] = 8 for eq,e0 € V.

As above, we may assume Y, (z;,u;) U To(y;, u;) = {2,3,4,5,6,7} for i = 1,3, and
Y, (2, ;) U Yo (ys, ) = {8,9,10,11,12, 13} for i = 2, 4.

Suppose yoys ¢ FE(G). By the previous case, A,(youz) N Ags(ysus) = 0 so that
| Ay (yauz) U Ay (yaug)| = 10. We then obtain a good coloring of G by SDR.

Thus, yoys € E(G) so that |A,(yous)l,|As(yaus)| = 8. Now if yexy € E(G), then
| Ay (youz)| = 11, and we obtain a good coloring of G by SDR. Thus, yez4 ¢ E(G), and by
symmetry, zoys ¢ E(G). By the previous case, we have | A, (yau2) U Ay (T4uy)|, | Ay (z2us)U
A, (yquyg)| = 13, and we obtain a good coloring of G by SDR.

Case 3. We cannot extend ¢ by coloring an edge of X1 and an edge of X3 with the same
color.

By symmetry, we may assume that the same holds for edges in X5 and X;. By Lemma
18, we may assume that zix3, zox4 ¢ E(G). Thus, by the previous case, |Ag(x1uq) U
A¢($3u3)|, |A¢(IL‘2U2) U A¢(ZE4U4)| 2 12.
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Now, if we have at least ten colors available over all the edges in ), then we can
obtain a good coloring of G by SDR. So, we have A,(e;) = Ay(ez) and |Ag(er)| = 9 for
e1,e2 € Y. Thus, as above, we may assume that ¥, (z;, u;) U Yo (yi, u;) = {1,2,3,4,5,6}
for i = 1,3, and Y, (2, u;) U Yo (ys, u;) = {7,8,9,10,11,12} for i = 2, 4.

If y1y3 € E(G), then |Ag(yiur)l, |Ap(ysus)| = 9, and we obtain a good coloring of G
by SDR. So, y1y3 ¢ E(G). By the previous case, we have |A,(y1u1) U Ay (ysus)| > 12, and
we obtain a good coloring of G by SDR.

Thus, in any case, we can extend ¢ to a good coloring of G. O

Proof of Lemma 5. By the previous lemmas, we know that the girth of GG is at least five.
So suppose on the contrary that wjusususus is a 5-cycle. By Lemmas 3, 15, and 19,
each u; has neighbors x;, y; not on this 5-cycle. Furthermore, x1,y1, ..., x5, ys are distinct
and the only possibly adjacencies are between {x;,y;} and {212, yix2}, ¢ € [5] modulo 5.
However, by Lemma 19, neither x; nor y; can be adjacent to both x;, 2 and y;; 2 (similarly,
x;_9 and y; ). As a result, we may assume that xoyy, T4y1, T1Ys3, T3ys ¢ E(G).

Let G’ be the graph obtained from G by removing uy, us, u3, uy, us. By the minimality
of G, G’ has a good coloring ¢. Let X denote {z;u;, y;u; : i € [5]} and Y denote {u;u;41 :
i € [5] modulo 5}. Observe that |A,(e)| > 9 for e € Y and |A,(e')| > 6 for ¢ € X.

Since 1ys ¢ E(G), if Ag(ziur) N Ap(ysus) # 0, then we can color edges xuy, ysus
with the same color. Similarly for the other three nonadjacencies. Let S := {{xaus, ysus},
{zqug, yrus }{z1u1, ysus}, {xsus, ysus}} so that each element of S is a pair of edges that
can possibly receive the same color. Let S’ C S such that we can extend ¢ by coloring
each pair of edges in &’ with its own color, and suppose that S’ is as large as possible.
Color each pair of edges in &" with its own color, and call this good partial coloring o.

Case 1. &' =S.

Observe that |A,(e)] = 5 for e € Y, and |A,(yous2)|, |As(x5us)] = 2. Suppose
there exists a € A,(yauz) N Ay(uqus). We then color yous, usus with «, and then
TsUs, Usly, Ut ls, Ugly, Usuz in this order to obtain a good coloring of G. Thus, |A,(yaus)U
A, (ugus)| = 7, and by symmetry, |A,(z5us) U Ay (usus)| = 7. We then obtain a good
coloring of G' by SDR.

Case 2. &' C S.

Let k' := |S’| so that 0 < k' < 3. Observe that |A,(e)] > 9 — k' for e € ), and
|A,(€')| = 6 — K for uncolored ¢’ € X. Since S’ is the largest subset of S that we can
color, we have |A,(g) U A,(¢')| = 12 — 2K for all {g,¢'} € S\ S".

Since k' < 3, there exists some uncolored f € X'\ {yous, x5us} and h € Y\ {ugus, usus}
such that f and h can receive the same color if A, (f)NA,(h) # (). Since f ¢ {yous, r5us}
and k' < 3, there exists an uncolored edge f" € X’ such that {f, f'} € S.

Let T := {{youa, ugus}, {xsus, ugus}, {f, h}} so that every element of 7 is a pair of
edges that can possibly receive the same color. Let 7' C T such that we can extend o
by coloring each pair of edges in 7’ with its own color, and suppose that 77 is as large
as possible. Color each pair of edges in T’ with its own color, and call this good partial
coloring . Let ¢’ := |T’| so that 0 < ' < 3.
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Let X C X and V' C Y be the edges colored by ¥. So, |X \ X'| = 10 — 2k’ — ¢/
and |V \ V| = 5 —t. Additionally, |Ay(e;)] > 6 — k' —t' for all e, € X\ X’ and
|Ay(ey)| =9 —K —t foralle, € Y\

We now show that we can obtain a good coloring of G by SDR. Let A be a nonempty
subset of (X \ X" )U(V\Y'), and let |J 4 := U.cq Avle). So 1 < |A| <15—-2k -2t and
we aim to show that ||J | > | A|.

Subcase 2.1. ¢ does not color f or h.

Observe that ' <2 If 1 <JA| <6 —F — 1, then [, ]| >6—F —

7 —kK—t< \A] 9— k" t"and AN(Y\Y') # (ZJ then |J, | > 9 K —t. So, we
may assume A C (X \ X”). Since |[S\ S| =4 — k' > 1, if A contains at least 7 — k' — ¢/
edges from X \ X”, it must include a pair of edges, say es, €, that form an element of
S\ Thus, |J,| = |Ay(es) U Ay(e,)| = 12 — 2K" — ¢/, otherwise we could have colored
es and e/ with the same color and obtained a larger S’ C S.

Since [T\ 7' =3 =1t > 1, if A contains at least 13 — 2k’ — ¢’ edges, it must include a
pair of edges, say e, e;, that form an element of 7\ 7". Thus, |, | = |Av(er) UAy(e})| >
15 —2k" —2t', otherwise we could have colored e; and e; with the same color and obtained
a larger T C T'.

So, it remains to consider when 10 — k' — ¢ < |A| < 12 — 2k — ¢/, Thus, if k' =
3, we are done and obtain a good coloring of G by SDR. So k' < 2. Observe that
(S\S)YU(T\T')| =7—k —1t, and the only edge that is contained in an element of
both S\ & and T\ T"is f ({f,f'} € S\ & and {f,h} € T\ T'). Thus, we can find
6 — k' —t' elements in (S\ &) U (T \ T') that are pairwise disjoint.

As aresult, when |A| > 10—k —t', A must contain a pair of edges, say e, €/, that forms
an element of (S\S")U(T\T"). Thus, | U, | = |Ay(e)UAy(e)| = 122K =t > 10—k" -1’
for k < 2. So, in any case, we obtain a good coloring of G by SDR.

Subcase 2.2. ¥ colors both [ and h.

Observe that ¢’ > 1 and ffe X\ X If1<|A<6—-F =t then | | =>6—-F -t

If [A| =7 — Kk —t" and either ' € A or Am(ymy) #0,then |U | 27—k -t
S0, we may assume A C X\ (X'U{[f'}). Since there are exactly 3 — k" uncolored pairs in
S\ &', if A contains at least 7— k' —t' edges from X \ (X" U{f’}), it must include a pair
of edges, say e, €., that form an element of S\ &'. Thus, |J,| = [Ay(es) U Ay(el)| =
12—2k'—t’>7’ k' —

f8—k —t' <JA| < 9 K —t and AN(Y\Y') #0, then |U, | =>9—F —1t'. So we
may assume A Q (X \ X’). However, in a similar manner to the above, A must contain
a pair of edges that form an element of S\ &'. Thus, |J,| =212 -2k =t/ > 9 -k -1’

So, it remains to consider when 10 — k" —t' < |A| < 15 — 2k’ — 2t’. Suppose that
t' < 2sothat [T\ 7| =3—1t > 1. As in the previous subcase, if A contains at least
13 — 2k’ — ' edges, it contains a pair of edges, say e, e, that form an element of 7\ 7.
Thus, |, | = |Ap(e) U A(e})] = 15 — 2K — 2. So, 10 — k' — ' < |A] < 12— 2K/ — ¢/
If ¥ = 3, we are done and obtain a good coloring of G by SDR. If ¥’ < 2, then as in the
previous subcase, we can find 6 — k" — ¢’ elements in (S\ S")U (T \ 7') that are pairwise
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disjoint. Thus, when |A| > 10 — ¥ — ', A must contain a pair of edges that form an
element of (S\S')U(T\7'),and ||J,| = 12—-2F —t' > 10—k —t' for k < 2. So, when
t' < 2, we obtain a good coloring of G by SDR.

When ¢ = 3, we consider 7 — k' < |A| < 9—2k'. If ¥’ = 3, we are done and obtain
a good coloring of G by SDR. When &' < 2, |S\ &| =3 — k' > 1 so that if A contains
at least 7 — k' edges, it contains a pair of edges, say e, €, that form an element of S\ &,
and |[[J, | =9 —2F.

Thus, in any case we obtain a good coloring of G by SDR. n

6 Closing remarks

The essential part of the proof is to get a nice partition of the vertices described in the
introduction. This partition is largely due to some kind of non-trivial edge-cuts. The
study of existence of such edge-cuts may be of independent interest.
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