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Abstract

Interval graphs are intersection graphs of closed intervals. A generalization of
recognition called partial representation extension was introduced recently. The
input gives an interval graph with a partial representation specifying some pre-
drawn intervals. We ask whether the remaining intervals can be added to create
an extending representation. Two linear-time algorithms are known for solving this
problem.

In this paper, we characterize the minimal obstructions which make partial rep-
resentations non-extendible. This generalizes Lekkerkerker and Boland’s character-
ization of the minimal forbidden induced subgraphs of interval graphs. Each min-
imal obstruction consists of a forbidden induced subgraph together with at most
four pre-drawn intervals. A Helly-type result follows: A partial representation is
extendible if and only if every quadruple of pre-drawn intervals is extendible by
itself. Our characterization leads to a linear-time certifying algorithm for partial
representation extension.
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For an interactive structural diagram of this paper, see the following website (sup-
ported for Firefox and Google Chrome):

http://pavel.klavik.cz/orgpad/minobstr.html

1 Introduction

The main motivation for graph drawing and geometric representations is finding ways to
visualize some given data efficiently. The most famous representations are plane drawings,
in which we draw a graph in the plane and we want to avoid (or minimize) crossings of
edges. However, for certain types of graphs, intersection representations are more suitable.
They represent each vertex by a geometrical object and encode the edges by intersections.

1.1 Interval Graphs

The most studied class of intersection graphs are interval graphs (INT), defined by
Hájos [15] in 1957. An interval representation R is a collection of closed intervals{
〈x〉 : x ∈ V (G)

}
where 〈x〉 ∩ 〈y〉 6= ∅ if and only if xy ∈ E(G). A graph is an in-

terval graph if it has an interval representation; see Fig. 1a.
Interval graphs have many applications. Already in 1959, Benzer [4] used them in

his experimental study of DNA. For some time, interval graphs played an important role
for the DNA hybridization [18], in which short pieces of DNA are studied independently.
Further applications include scheduling, psychology, archaeology, etc. [39, 35, 19].

Interval graphs also have nice theoretical properties. They are perfect and closely
related to path-width decompositions. They can be recognized in linear time [6, 11, 32],
and many hard combinatorial problems are polynomially solvable for interval graphs.
Fulkerson and Gross [14] characterized them by consecutive orderings of maximal cliques
(see Section 3 for details). This lead Booth and Lueker [6] to the construction of PQ-trees,
which are an efficient data structure to deal with consecutive orderings, and have many
other applications.

Chordal graphs (CHOR) are graphs with no induced cycle of length four or more, alter-
natively intersection graphs of subtrees of trees. Three vertices form an asteroidal triple if
there exists a path between every pair of them avoiding the neighborhood of the third ver-
tex. Asteroidal triple-free graphs (AT-FREE) are graphs containing no asteroidal triples.
Lekkerkerker and Boland [30] characterized interval graphs as INT = CHOR ∩ AT-FREE.

x y z

u v

(a) G R

x y z

u v

(b) R′

x z y

Figure 1: (a) An interval graph G with one of its interval representations R. (b) A partial
representation R′ with pre-drawn intervals 〈x〉′, 〈y〉′ and 〈z〉′. It is non-extendible since
〈u〉 cannot be placed. In all figures, we depict pre-drawn intervals in bold.
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Figure 2: Five types of LB obstructions which are the minimal forbidden induced sub-
graphs of INT. The bold curly lines correspond to induced paths with denoted minimal
lengths. The leftmost obstructions are induced cycles of length four or more. The remain-
ing four types of obstructions are minimal asteroidal triples (x, y, z) which are chordal
graphs.

They described this characterization by the minimal forbidden induced subgraphs given
in Fig. 2 which we call Lekkerkerker-Boland obstructions (LB).

1.2 Partial Representation Extension

The partial representation extension problem was introduced by Klav́ık et al. [24]. A
partial representation R′ of G is an interval representation

{
〈x〉′ : x ∈ V (G′)

}
of an

induced subgraph G′ of G. The vertices of G′ and the intervals of R′ are called pre-drawn.
A representation R of G extends R′ if and only if it assigns the same intervals to the
vertices of G′, i.e., 〈x〉 = 〈x〉′ for every x ∈ V (G′). For an example, see Fig. 1b.

Problem: Partial Representation Extension – RepExt(INT)
Input: A graph G and a partial representation R′ of G′.

Output: Is there an interval representation of G extending R′?

The first polynomial-time algorithm, running in O(n2) time, was given in [24]. Currently,
there are two different linear-time algorithms [5, 23] for this problem.

We note that the partial representation extension problems have been considered also
for other classes of intersection graphs. A linear-time algorithm for proper interval graphs
and an almost quadratic-time algorithm for unit interval graphs are given in [21], and
improved to quadratic time in [37, 38]. The partial representation extension problems are
polynomial-time solvable for k-nested interval graphs (classes generalizing proper inter-
val graphs), but NP-hard for k-length interval graphs (classes generalizing unit interval
graphs), even for k = 2 [25, 26]. Polynomial-time algorithms are further known for circle
graphs [8], permutation and function graphs [20], proper circular-arc graphs [3], and trape-
zoid graphs [29]. The partial representation extension problems for chordal graphs [22],
unit circular-arc graphs [40], and contact representations of planar graphs [7] are NP-hard.
The complexity of the partial representation extension problem is open for circular-arc
graphs.

Outside intersection graphs, a similar problem was considered even sooner for planar
graphs. Partially embedded planar graphs can be extended in linear time [1]. Even
though every planar graph has a straight-line embedding, extension of such embeddings
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is NP-hard [33]. Kuratowski’s characterization of minimal forbidden minors was extended
to partially embedded planar graphs by Jeĺınek et al. [17]. Our research has a similar
spirit as this last result. Also, partial representation extension problem was studied for
visibility representations [9].

1.3 Our Results

In this paper, we generalize the characterization of Lekkerkerker and Boland [30] to de-
scribe minimal obstructions which make partial representations non-extendible. Each
obstruction consists of a small graph and its non-extendible partial representation. Aside
LB obstructions, we have two trivial obstructions, called SE, and ten infinite classes of
minimal obstructions. The main class, called k-FAT obstructions, has three wrongly or-
dered disjoint pre-drawn intervals 〈xk〉

′, 〈yk〉
′, and 〈zk〉

′. The obstruction consists of a
zig-zag structure with k levels where the last level cannot be placed. See Fig. 3a and b
for 1-FAT and 2-FAT obstructions. There are eight other infinite classes derived from
k-FAT obstructions by adding a few vertices and having different vertices pre-drawn. The
last infinite class of (k, ℓ)-CE obstructions consists of a k-FAT obstruction glued with an
ℓ-FAT obstruction and contains only two pre-drawn vertices; see Fig. 3c for a (1, 1)-CE
obstruction. We formally define these minimal obstructions in Section 2.

Theorem 1. A partial representation R′ of G is extendible if and only if G and R′

contain no LB, SE, k-FAT, k-BI, k-FS, k-EFS, k-FB, k-EFB, k-FDS, k-EFDS, k-FNS
and (k, ℓ)-CE obstructions.

Since every minimal obstruction contains at most four pre-drawn intervals, we get the
following Helly-type result as a straightforward corollary:

Corollary 2. A partial representation is extendible if and only if every quadruple of
pre-drawn intervals is extendible by itself.

All known algorithms for the partial representation extension problems [24, 20, 5, 23,
21, 22] are able to certify solvable instances by outputting an extending representation.

x1

y1

z1
P1

R′H

x1 y1 z1
(a)

1-FAT

x2 y2 = z1 x1

z2 = y1t2

P2

P1

R′H

x2 y2 z2
(b)

2-FAT

z1

u

x1 y1

R′H

z1u

(c)
(1, 1)-CE

Figure 3: Three examples of minimal obstructions, each consisting of a graph H and a
non-extendible partial representation R′H . Curly lines denote induced paths and dashed
edges are non-edges. The obstructions (a) and (b) are the first two k-FAT obstructions,
and (c) is the simplest (k, ℓ)-CE obstruction.
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Using our minimal obstructions, we construct the first algorithm for partial representation
extension certifying also non-extendible partial representations.1

Corollary 3. Assume that the input gives the endpoints in a partial representation sorted
from left to right. Then there exists an O(n + m) certifying algorithm for the partial
representation extension problem, where n is the number of vertices and m is the number
of edges of the input graph. If the answer is “yes”, it outputs an extending representation.
If the answer is “no”, it detects one of the minimal obstructions.

Outline. In Section 2, we define the minimal obstructions which make a partial rep-
resentation non-extendible. In Section 3, we introduce the standard tools for working
with interval graphs: the characterization of Fulkerson and Gross by linear orderings of
maximal cliques, and the related data structure called MPQ-tree which stores all feasible
orderings.

In Section 4, we restate the characterization of [23]: a partial representation is ex-
tendible if and only if there exists a feasible ordering of the maximal cliques which ex-
tends a certain partial ordering ⊳. Therefore, to solve RepExt(INT), we test whether
the MPQ-tree can be reordered according ⊳.

Based on this, in Section 5, we build our strategy for showing that every non-extendible
partial representation contains one of the defined minimal obstructions. If reordering of
the MPQ-tree according to ⊳ fails, then it fails in a leaf, in a P-node, or a Q-node. We
deal with these three cases in Sections 6, 7, and 8, respectively, where the last one is
most involved. In Section 9, we put these results together and establish Theorem 1 and
Corollaries 2 and 3.

We conclude with a discussion of our results and several open problems.

1.4 Preliminaries

For a graph G, we denote by V (G) its vertices and by E(G) its edges. We denote the
closed neighborhood of x by N [x]. Maximal cliques are denoted by the letters a to f ,
and vertices by the remaining letters. For A ⊆ V (G), we denote by G[A] the subgraph
induced by A. Similarly, for A ⊆ V (G′), we denote by R′[A] the partial representations
which only contains the pre-drawn intervals in A. By Px,y we denote an induced path
from x to y; its length is the number of edges.

For an interval 〈x〉, we denote its left endpoint by ℓ(x) and its right endpoint by r(x).
If r(x) < ℓ(y), we say that 〈x〉 is on the left of 〈y〉 and 〈y〉 is on the right of 〈x〉. We say
that 〈y〉 is between 〈x〉 and 〈z〉 if 〈x〉 is on the left of 〈y〉 and 〈z〉 is on the right of 〈y〉, or
vice versa. We also work with open intervals, for which the inequalities are non-strict.

We conclude with a list of the remaining notation. In Section 3, we define MPQ-trees,
s(N), si(Q), s←u (Q), s→u (Q), G[T ], G[N ], T [N ], and Q-monotone paths. In Section 4, we
define x(a), y(a), Ia, ⊳, the flip operation, P 7→(a), and P 7→(a).

1Formally speaking, a polynomial-time algorithm certifies unsolvable instances by outputting “no” and
by a proof of its correctness. Our algorithm outputs a simple proof that a given partial representation
is non-extendible in terms of a minimal obstruction. This proof can be independently verified which is
desirable.
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2 Definition of Minimal Obstructions

In this section, we formally define all twelve classes of minimal obstructions which make
a partial representation non-extendible. Since the list is long, the description is quite
technical. In the rest of the paper, we prove that the list is complete.

Definition. Every obstruction consists of a graph H and a non-extendible partial repre-
sentation R′H . This obstruction is contained in G and R′ if the following holds:

(i) There exists an injective mapping ϕ : V (H) → V (G) such that uv ∈ E(H) if and
only if ϕ(u)ϕ(v) ∈ E(G). So ϕ(H) is an induced subgraph of G.

(ii) The pre-drawn vetices of H are mapped by ϕ to pre-drawn vertices of G.

(iii) The endpoints in R′H have the same left-to-right order as the endpoints of the
corresponding pre-drawn vertices in R′.

For an example, see Fig. 4. If G and R′ contain an obstruction, then R′ is clearly non-
extendible.

We give H by descriptions using finitely many vertices, edges, and induced paths. For
inner vertices of the induced paths, we specify their adjacencies with the remainder of H.
Since these induced paths do not have fixed lengths, each description having at least one
induced path defines an infinite class of forbidden subgraphs H. Unlike LB obstructions,
most classes of minimal obstructions need infinitely many different descriptions. For
instance, each FAT obstruction has k induced paths, and different values of k need different
descriptions.

If H contains an induced path Px,y, and x and y are allowed to be adjacent, then Px,y

can be a single edge. When N [x] = N [y], we allow the length of Px,y to be zero, i.e.,
x = y.

Minimality. An obstruction is minimal if R′H becomes extendible when any vertex is
removed or any pre-drawn interval is made free by removing it from the partial represen-
tation R′H .

u1 u2 u3 u4 u5 u6 u7 u8

G

x1 z1 y1
H

ϕ

u1 u5 u8

u3 u6

R′

x1 y1 z1

R′H

Figure 4: On top, an interval graph G with a non-extendible partial representation. This
is certified by containing a 1-FAT obstruction H and R′H , depicted on bottom. Notice
that the preimage of u3 is not predrawn and nothing is mapped to u6, which means that
R′ is non-extendible even when we free both 〈u3〉

′ and 〈u6〉
′.
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u = v

x y

H

R′H

u = v

u v

x y

H

R′H

u v

Figure 5: The SE obstructions, on the left with u = v, on the right with u 6= v.

2.1 List of Minimal Obstructions

In Fig. 2, we have already described minimal LB obstructions of [30] with R′H = ∅. There
are eleven other classes of minimal obstructions we describe now. To understand most
of the paper, the reader should carefully read the definition of k-FAT obstructions (and
possibly k-BI obstructions), while the definitions of the remaining classes can be checked
when they appear.

SE obstructions. We start with two simple shared endpoint obstructions which deal

xk zk−1 yk−1 xk−1

yk zk

tk

Pk

Hk−1

(a) (b)

xk yk zk

tk

zk−1 yk−1 xk−1

Pk

RH

xk tk

xk−1tk−1

xk−2 tk−2

x2 t2
x1

y1z1

zkyk

Pk

Pk−1

Pk−2

P2

...

RH

(c)

Figure 6: (a) A k-FAT obstruction is created from a (k−1)-FAT obstruction. It consists of
the vertices x1, . . . , xk, t2, . . . , tk, yk, zk, and the induced paths P1, . . . , Pk. The adjacencies
are defined inductively.
(b) In every representationRH , the pre-drawn interval 〈xk〉

′ together with Pk and tk forces
〈xk−1〉 to be placed on the right of 〈zk〉

′. Therefore, the induced (k− 1)-FAT obstruction
is forced.
(c) The global zig-zag pattern forced by a k-FAT obstruction, with k nested levels going
across 〈yk〉

′ and 〈zk〉
′. It is an obstruction since P1 going from x1 to z1 with all inner

vertices non-adjacent to y1 cannot be placed.
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with shared endpoints in R′; see Fig. 5. We have two pre-drawn vertices u and v such
that r(u) = ℓ(v) (possibly u = v, so only one interval may be pre-drawn). Further, there
are two non-adjacent vertices x and y, both adjacent to u and v. These representations
cannot be extended because 〈x〉 and 〈y〉 would need to pass through r(u) = ℓ(v), but in
this case x and y would be adjacent.

If u 6= v, the minimality requires that ℓ(u) < ℓ(v) = r(u) < r(v).

k-FAT obstructions. The class of forced asteroidal triple obstructions is defined in-
ductively; the first two obstructions 1-FAT and 2-FAT are depicted in Fig. 3a and b,
respectively.

A 1-FAT obstruction consists of three pre-drawn non-adjacent vertices x1, y1 and
z1 such that 〈y1〉

′ is between 〈x1〉
′ and 〈z1〉

′. Further, x1 and z1 are connected by an
induced path P1 and y1 is non-adjacent to the inner vertices of P1. See Fig. 3a. These
representations cannot be extended because, for at least one of the inner vertices u of P1,
〈u〉 would intersect 〈y1〉

′, but then u and y1 would be adjacent.
A k-FAT obstruction (for k > 1) is defined as follows; see Fig. 6a. Let Hk−1 be the

graph of a (k − 1)-FAT obstruction. To get Hk, we add to Hk−1 two vertices xk and tk
connected by an induced path Pk. Concerning edges, tk is adjacent to all vertices of Hk−1,
except for xk−1. All vertices of Hk−1 are non-adjacent to xk and to the inner vertices of
Pk. We put yk = zk−1 and zk = yk−1. A k-FAT obstruction has three pre-drawn vertices
xk, yk and zk such that 〈yk〉

′ is between 〈xk〉
′ and 〈zk〉

′. Finally, for k > 1, we allow P1 to
be a single edge, so x1 can be adjacent to z1.

We next see that these representations cannot be extended. Without loss of generality,
we assume that 〈xk〉

′ is to the left of 〈yk〉
′, which in turn is to the left of 〈zk〉

′; see Fig. 6b.
Since the inner vertices of Pk are not adjacent to any vertex of Hk−1, ℓ(tk) < ℓ(yk) and
r(tk) > ℓ(zk). Since xk−1 is not adjacent to tk, 〈xk−1〉 is either to the right or to the
left of 〈tk〉. If it was to its left, then it would be to the left of 〈xk〉

′. Since the inner
vertices of Pk are not adjacent to any vertex of Hk−1, we would obtain that Hk−1 is
disconnected, reaching a contradiction. Therefore, 〈xk−1〉 is to the right of 〈tk〉 and, in
consequence, to the right of 〈zk〉

′. In general, 〈xk−1〉 is forced to be placed on the other
side of 〈zk〉

′ = 〈yk−1〉
′ than 〈yk〉

′ = 〈zk−1〉
′. Then, the (k − 1)-FAT obstruction of Hk−1

is forced. Since 1-FAT is a obstruction, we obtain that k-FAT, for k > 1, is also an
obstruction. The global structure forced by a k-FAT obstruction is depicted in Fig. 6c.
The main structural lemma of this paper, k-FAT Lemma 22, explains in which situations
these complicated k-FAT obstructions occur.

The remaining nine classes, depicted in Fig. 7, are derived from k-FAT obstructions.
Let Hk denote the graph of a k-FAT obstruction. Except for the class of (k, ℓ)-CE obstruc-

tions, we create the graphs H̃k of the remaining obstructions by adding a few vertices to
Hk. These vertices are pre-drawn, and their positions force xk, yk and zk to be represented
as in their pre-drawn positions in a k-FAT obstruction. Since partial representations of
k-FAT obstructions cannot be extended, partial representations of these derived classes
cannot be extended either.

For k = 1, when one of x1 and z1 is not pre-drawn, we also allow x1 to be adjacent to
z1. Additionally, it is possible that the added vertices already belong to Hk; for instance,
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xk yk zk

u v

Hk

H̃k

R′
H̃k

xk yk zk
u v

k-BI
(a)

xk yk zk

u

Hk

H̃k

R′
H̃k

xk yk zk

u

k-FS
(b)

xk yk zk

u v

Hk

H̃k

R′
H̃k

xk yk zk

u v

k-EFS
(c)

xk yk zk

u

Hk

H̃k

R′
H̃k

xk yk zk

u

k-FB
(d)

xk yk zk

u v

Hk

H̃k

R′
H̃k

xk yk zk

u v

k-EFB
(e)

xk yk zk

u v

Hk

H̃k

R′
H̃k

xk yk zk

u v

k-FDS
(f)

xk yk zk

u v w

Hk

H̃k

R′
H̃k

xk yk zk

u v

w

k-EFDS
(g)

xk yk zk

u v w

Hk

H̃k

R′
H̃k

xk yk zk

u v

w

k-FNS
(h)

xk = y′ℓ zk = z′ℓ

u

yk = x′ℓ

Hk H ′ℓ

H̃k,ℓ

R′
H̃k,ℓ

xk yk zk

u

(k, ℓ)-CE
(i)

Figure 7: Nine classes of obstructions derived from k-FAT obstructions.

a k-BI obstruction may have u = tk or v = tk. Also, we do not specify in details the
edges between the added vertices and Hk \ {xk, yk, zk}. An accurate description would be
too lengthy and the reader may derive it from Fig. 6c. We finally remark that we also
consider all of the obstructions from the list horizontally flipped.

k-BI obstructions. The class of blocked intersection obstructions is shown in Fig. 7a.
To create H̃k from Hk, we add two vertices u and v adjacent to xk, yk and zk. Then
the partial representation contains four pre-drawn vertices xk, zk, u and v. We have
ℓ(u) 6 ℓ(v) < r(u) 6 r(v), 〈xk〉

′ covering ℓ(v), and 〈zk〉
′ covering r(u). We allow u = v.

The minimality further implies that k 6 2. The reason is that a k-BI obstruction
with k > 3 contains a smaller (k, 1)-CE obstruction by removing v and freeing 〈xk〉

′ (this
follows from Lemma 23).

Concerning 1-BI, we allow x1 = z1. We illustrate all distinct obstructions only for this
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u

x1 y1

H̃1

R′
H̃1

x1

u

(a)

ℓ(x1) ≤ ℓ(u) < r(u) ≤ r(x1)

vu

x1 y1

H̃1

R′
H̃1

x1

u v

(b)

ℓ(u) < ℓ(x1) ≤ ℓ(v) <

r(u) ≤ r(x1) < r(v)

u

x1 z1
y1

H̃1

R′
H̃1

x1

u

z1(c)

ℓ(x1) ≤ ℓ(u) < ℓ(z1) ≤

r(x1) < r(u) ≤ r(z1)

x1 z1

u v

y1

H̃1

R′
H̃1

x1
z1

u v

(d)

ℓ(u) < ℓ(x1) ≤ ℓ(v) < ℓ(z1) ≤

r(x1) < r(u) ≤ r(z1) < r(v)

P1
x1 z1

u

y1

H̃1

R′
H̃1

x1 z1

u

(e)

ℓ(x1) ≤ ℓ(u) ≤ r(x1) <

ℓ(z1) ≤ r(u) ≤ r(z1)

P1x1 z1

u v

y1

H̃1

R′
H̃1

x1 z1
u v

(f)

ℓ(u) < ℓ(x1) ≤ ℓ(v) ≤ r(x1) <

ℓ(z1) ≤ r(u) ≤ r(z1) < r(v)

Figure 8: All minimal 1-BI obstructions are depicted. Each gives several 1-BI obstructions
with different R′

H̃1

, since there are several possible orderings of the endpoints satisfying

the given inequalities. We have x1 = z1 for (a) and (b), and x1 6= z1 otherwise. We have
u = v for (a), (c) and (e), and u 6= v otherwise.

particular case (k = 1), so that the reader can understand the complexity of these classes;
see Fig. 8.

For k = 2, we know by Lemma 23 that x2 is adjacent to t2. The pre-drawn intervals
are as follows:

ℓ(x2) 6 ℓ(u) 6 r(x2) < ℓ(z2) 6 r(u) 6 r(z2), for u = v,

ℓ(u) < ℓ(x2) 6 ℓ(v) 6 r(x2) < ℓ(z2) 6 r(u) 6 r(z2) < r(v), for u 6= v.

The position of 〈u〉′ and 〈v〉′ forces 〈y2〉 to be placed between 〈x2〉
′ and 〈y2〉

′ in every
extending representation, which forces a 2-FAT obstruction.

k-FS obstructions. The class of forced side obstructions is shown in Fig. 7b. To create
H̃k from Hk, we add a vertex u adjacent to yk and zk. The partial representation contains
three pre-drawn vertices xk, yk and u. We have ℓ(yk) 6 ℓ(u) 6 r(yk) < r(u), and 〈xk〉

′ is
on the left of 〈yk〉

′.

k-EFS obstructions. The class of extended forced side obstructions is similar to that of
k-FS obstructions; see Fig. 7c. To create H̃k from Hk, we add u adjacent to xk, yk, and
zk, and v adjacent to yk and zk. The partial representation contains four vertices yk, zk,
u and v pre-drawn as follows:

ℓ(u) < ℓ(v) < ℓ(yk) 6 r(yk) < ℓ(zk) 6 r(zk) < r(u) 6 r(v).
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k-FB obstructions. The class of forced betweenness obstructions is similar to k-BI
obstructions with u = v; see Fig. 7d. To create H̃k from Hk, we add u adjacent to yk and
zk. The partial representation contains three pre-drawn vertices xk, zk, and u. We have
ℓ(u) < ℓ(zk) 6 r(u) 6 r(zk), and 〈xk〉

′ is pre-drawn on the left of 〈u〉′.

k-EFB obstructions. The class of extended forced betweenness obstructions is similar
to those of k-BI and k-FB obstructions; see Fig. 7e. To create H̃k from Hk, we add u
adjacent to xk, yk and zk, and v adjacent to yk and zk. The partial representation contains
four pre-drawn vertices xk, zk, u, and v. We have

ℓ(u) < ℓ(xk) 6 r(xk) < ℓ(v) < ℓ(zk) 6 r(u) 6 r(zk) < r(v).

k-FDS obstructions. The class of forced different sides obstructions is shown in Fig. 7f.
To create H̃k from Hk, we add u adjacent to xk, yk, and zk, and v adjacent to yk and zk.
The partial representation contains three vertices yk, u and v pre-drawn as follows:

ℓ(u) < ℓ(yk) 6 ℓ(v) 6 r(yk) < r(u) 6 r(v).

k-EFDS obstructions. The class of extended forced different sides obstructions is similar
to that of k-FDS obstructions; see Fig. 7g. To the construction of k-FDS, we further add
w adjacent to yk and zk. The partial representation contains four vertices yk, u, v and w
pre-drawn as follows:

ℓ(u) < ℓ(v) < ℓ(yk) 6 ℓ(w) 6 r(yk) < r(w) < r(u) 6 r(v).

k-FNS obstructions. The class of forced nested side obstructions is constructed sim-
ilarly to that of k-EFDS obstructions. In this case, zk is pre-drawn instead of yk; see
Fig. 7h. In R′

H̃k

, we have

ℓ(u) <
{
ℓ(v), ℓ(w)

}
6 ℓ(zk) 6 r(w) < r(u) 6 r(v),

where ℓ(v) and ℓ(w) are ordered arbitrarily.

(k, ℓ)-CE obstructions. The class of covered endpoint obstructions is created from

a k-FAT obstruction glued to an ℓ-FAT obstruction; see Fig. 7i. To create H̃k,ℓ, we
glue Hk to H ′ℓ, with k > ℓ. We put zk = z′ℓ, xk = y′ℓ and yk = x′ℓ, and some other
vertices of these obstructions may also be shared. We add u adjacent to xk, yk, and
zk. The partial representation contains two pre-drawn intervals 〈zk〉

′ and 〈u〉′ such that
ℓ(u) < ℓ(zk) 6 r(u) 6 r(zk). These representations cannot be extended because, if 〈xk〉 is
placed to the left of 〈yk〉, we get a k-FAT obstruction, while if 〈xk〉 is placed to the right
of 〈yk〉, we get an ℓ-FAT obstruction.

By Lemma 23, for k > 2, if we swap the positions of 〈xk〉
′ and 〈yk〉

′ in a k-FAT
obstruction, we obtain a 1-FAT obstruction. For k > 2, this implies that a minimal
(k, ℓ)-CE obstruction is a (k, 1)-CE obstruction and it is formed by the graph Hk of a
k-FAT obstruction together with an added vertex u. (By a careful analysis, either u is
adjacent to all vertices of Hk, or u = tk.) Hence, the only (k, ℓ)-CE obstructions that
are minimal are (k, 1)-CE obstructions and (2, 2)-CE obstructions; in other words, either
ℓ = 1, or k = ℓ = 2. The remaining (k, ℓ)-CE obstructions, where 2 > k > ℓ, are analysed
in Lemma 25 and depicted in Fig. 9.
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Figure 9: (a) There are three minimal (1, 1)-CE obstructions, and they are all finite
graphs. The reason is that if, say, a path P1 was very long, we could replace x1 by an
inner vertex of P1; so such an obstruction would not be minimal.
(b) There are three minimal (2, 1)-CE obstructions. Due to the minimality, P2 is a path
of length at most two. When x2 and t2 are non-adjacent, then P ′1 = y2t2z2 is a path
avoiding N [x2]. When x2 and t2 are adjacent, there are two cases, namely, u 6= t2, and
u = t2. The path P ′1 is of length at least two.
(c) There are four minimal (2, 2)-CE obstructions, and they are all finite graphs. Neces-
sarily x2t2 and y2t

′
2 are edges, and we can choose x2 in such a way that it is adjacent to

y′1 (similarly, y2 is adjacent to x1). There are four different graphs, because the vertices
u, t2 and t′2 might be distinct or not.

2.2 Proofs of Non-extendibility and Minimality

We sketch proofs that the defined obstructions are non-extendible and minimal. This
implies the first part of Theorem 1. We establish the harder implication in Sections 5, 6,
7, 8, and 9.

Lemma 4. Every k-FAT obstruction is non-extendible and minimal.

Proof. We prove the claim by induction. For k = 1, non-extendibility and minimality are
clear. For k > 1, assume that 〈xk〉

′ is on the left of 〈yk〉
′, and 〈yk〉

′ is on the left of 〈zk〉
′.

In every representation of k-FAT, 〈tk〉 covers [ℓ(yk), ℓ(zk)]. We know that 〈xk−1〉 cannot
be on the left of 〈xk〉

′, since Hk−1 is connected and xk is non-adjacent to all vertices of
Hk−1. Therefore 〈xk−1〉 has to be placed on the right of 〈zk〉

′. We get a (k − 1)-FAT
obstruction, which is non-extendible by the induction hypothesis.

It remains to argue the minimality. If one of 〈xk〉
′, 〈yk〉

′ and 〈zk〉
′ is made free, we
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can place them in such a way that 〈zk〉 is between 〈xk〉 and 〈yk〉. This makes the partial
representation extendible: It works for k = 1, and for k > 1, we can place xk−1 on the
right of 〈yk〉, which makes the induced Hk−1 extendible. If we remove one of the vertices
or induced paths, the argument is similar.

Lemma 5. The following obstructions are non-extendible and minimal:

• SE, k-FS, k-EFS, k-FB, k-EFB, k-FDS, k-EFDS, and k-FNS obstructions,

• k-BI obstructions for k 6 2,

• (k, ℓ)-CE obstructions where either ℓ = 1, or k = ℓ = 2.

Proof. For SE obstructions, the proof is trivial. For the remaining classes (aside k-BI
and (k, ℓ)-CE), we proceed as follows. Non-extendibility follows from the fact that, in
all cases, 〈yk〉 is forced to be placed between 〈xk〉 and 〈zk〉. To show minimality, we use
the minimality of k-FAT obstructions. Then it is easy to show that freeing any added
pre-drawn interval or removing any added vertex results in the possibility of placing 〈zk〉
between 〈xk〉 and 〈yk〉.

Consider a k-BI where k 6 2. Non-extendibility follows from the fact that 〈yk〉 has
to be placed between 〈xk〉

′ and 〈zk〉
′, thus forcing the k-FAT obstruction, which is non-

extendible by Lemma 4. By removing a vertex or an induced path of Hk, it becomes
extendible as argued in Lemma 4. By freeing 〈u〉′ or 〈zk〉

′, we can place 〈yk〉 on the right
of 〈zk〉

′ which makes the partial representation extendible. By freeing 〈v〉′ or 〈xk〉
′, we

can place 〈yk〉 on the left of 〈xk〉
′, which also makes it extendible because k 6 2 and x2 is

adjacent to t2.
For (k, ℓ)-CE, either 〈yk〉 is between 〈xk〉 and 〈zk〉

′ (non-extendible due to the k-FAT
obstruction), or 〈yℓ〉 is between 〈xℓ〉 and 〈zℓ〉

′ (non-extendible due to the ℓ-FAT obstruc-
tion). Minimality is also easy: Removing or freeing u allows to place 〈zk〉

′ between 〈xk〉
and 〈yk〉, which is extendible. And removing anything from one of the FAT obstructions
allows one of the orderings of 〈xk〉 and 〈yk〉 to be extendible.

We note that the list of minimal obstructions is unique. Indeed, every minimal ob-
struction itself corresponds to a valid input, which cannot be obstructed by a distinct
obstruction due to the minimality. Therefore, it is not possible to construct a smaller list
of minimal obstructions, or to argue that if the partial representation contains a particular
obstruction, then it also contains an additional one.

3 Maximal Cliques and MPQ-trees

In this section, we review well-known properties of interval graphs. First, we describe
their characterization in terms of orderings of maximal cliques. Then, we introduce two
data structures to deal with these orderings, namely, PQ-trees and MPQ-trees. Finally,
we prove some simple structural results concerning MPQ-trees.

Consecutive Orderings. Fulkerson and Gross [14] proved the following fundamental
characterization of interval graphs:
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Lemma 6 (Fulkerson and Gross [14]). A graph is an interval graph if and only if there
exists a linear ordering < of its maximal cliques such that, for each vertex, the maximal
cliques containing this vertex appear consecutively.

We call an ordering of the maximal cliques satisfying the statement of Lemma 6 a
consecutive ordering. See Fig. 10 for an example. The ordering < from the statement is
obtained by sweeping an interval representation from left to right. By the Helly property,
the intervals of every maximal clique have a non-empty intersection. For all maximal
cliques, these intersections are disjoint and ordered from left to right. In the intersection
of the intervals of a maximal clique a, we pick one point which we call a clique-point
cp(a). The left-to-right ordering of these clique-points gives <. On the other hand, given
a consecutive ordering <, we place the clique-points from left to right according to < and
construct an interval representation by placing each interval on top of its clique-points and
no others. This can be done because the ordering places the maximal cliques containing
each of the vertices consecutively.

PQ-trees. Booth and Lueker [6] designed a data structure called PQ-trees to efficiently
work with consecutive orderings of maximal cliques. A PQ-tree T is a rooted tree. Its
leaves are in one-to-one correspondence with the maximal cliques. Its inner nodes are of
two types: P-nodes and Q-nodes. Each P-node has at least two children, and each Q-node
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Figure 10: An interval graph G and two of its representations with different left-to-right
orderings < of the maximal cliques. Some choices of clique-points are depicted on the real
lines.
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Figure 11: (a) Two equivalent PQ-trees with frontiers a < b < c < d < e < f and
f < e < c < d < b < a, respectively. In all figures, we denote P-nodes by circles and
Q-nodes by rectangles. (b) The corresponding MPQ-trees with depicted sections.
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has at least three. Further, for every inner node, a left-to-right ordering of its children is
given. Every PQ-tree T represents one linear ordering <T of the maximal cliques called
the frontier of T , which is the ordering of the leaves from left to right.

Every PQ-tree T further represents other linear orderings. These orderings are fron-
tiers of equivalent PQ-trees. A PQ-tree T ′ is equivalent to T if it can be constructed from
T by a sequence of equivalent transformations of two types: (i) an arbitrary reordering
of the children of a P-node, and (ii) a reversal of the order of the children of a Q-node.
Fig. 11a depicts two equivalent PQ-trees corresponding to the interval graph from Fig. 10.

Booth and Lueker proved that, for every interval graph, there exists a unique PQ-tree
(up to equivalence transformations) representing precisely the consecutive orderings of the
maximal cliques. In other words, this tree describes all possible interval representations
of this interval graph.

A subtree of T consists of a node and all its descendants. The subtrees of a node N
are those subtrees having the children of N as the roots. For a node N , let T [N ] denote
the subtree of T with the root N .

MPQ-trees. For the purpose of this paper, we need more information about the way
in which the vertices of the interval graph are related to the structure of the PQ-tree.
This additional information is contained in the modified PQ-tree (MPQ-tree), introduced
by Korte and Möhring [28]. We note that the same idea is already present in the earlier
paper of Colbourn and Booth [10].

The MPQ-tree is an augmentation of the PQ-tree in which the nodes of T have assigned
subsets of V (G) called sections. To a leaf representing a clique a, we assign one section
s(a). Similarly, to each P-node P , we assign one section s(P ). For a Q-node Q with n
children, we have n sections s1(Q), . . . , sn(Q), each corresponding to one subtree of Q.

The section s(a) has all vertices contained in the maximal clique a and no other
maximal clique. The section s(P ) of a P-node P has all vertices that are contained in all
maximal cliques of T [P ] and in no other maximal clique. Sections of Q-nodes are more
complicated. Let Q be a Q-node with subtrees T1, . . . , Tn. Let x be a vertex contained
only in maximal cliques of T [Q], and suppose that it is contained in maximal cliques of
at least two subtrees. Then x is contained in every section si(Q) such that some maximal
clique of Ti contains x. Fig. 11b depicts the sections for the example in Fig. 10.

Korte and Möhring [28] state the following properties:

• Every vertex x is placed in the sections of exactly one node of T . In the case of a
Q-node, it is placed in consecutive sections of this node.

• For a Q-node Q, if x is placed in a section si(Q), then x is contained in all cliques
of Ti.

• Every section of a Q-node is non-empty. Moreover, two consecutive sections have a
non-empty intersection.

• A maximal clique contains exactly those vertices contained in the sections encoun-
tered when we traverse the tree from the corresponding leaf to the root.
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Structure of MPQ-trees. Next, we show several structural properties used in building
minimal obstructions which are quite easy to prove:

Lemma 7. Let Q be a Q-node. Then si(Q) 6= sj(Q) for every i 6= j. Further, if si(Q) (
si+1(Q), then at least one section of Ti is non-empty.

Proof. If si(Q) = sj(Q), then we could exchange Ti and Tj and we would obtain a valid
MPQ-tree for G. Since n > 3, this yields a contradiction with the fact that the only
possible transformation of a Q-node is reverting the order of its children.

For the latter part, let a and b respectively be maximal cliques of a leaf in Ti and a
leaf in Ti+1. Then a \ b 6= ∅ and every x ∈ a \ b belongs to sections of Ti.

Let N be a node of the MPQ-tree. By G[N ] we denote the subgraph induced by all
the vertices in the sections of the subtree rooted at N . Similarly, for a subtree T ′, we
denote the subgraph induced by the vertices in its sections by G[T ′].

Lemma 8. Let N be an inner node of an MPQ-tree.

(i) If N is a Q-node, then G[N ] is connected.

(ii) If N is a P-node, then G[N ] is connected if and only if s(N) is non-empty. Fur-
thermore, for every child Ti of N , the graph G[Ti] is connected.

Proof. (i) It follows from the facts that the vertices in any section form a clique, and that
any two consecutive sections of N have non-empty intersection.

(ii) The first statement is clear. For the second part, notice that if G[Ti] was not
connected, we could permute the connected components of G[Ti] arbitrarily with the
other children of N . Therefore Ti would not be a child of N , but N would have one child
per each connected component of G[Ti].

Let Q be a Q-node and i < j. Let x and y be two vertices of G[Q], where x is either in
Ti, or si(Q), and y is either in Tj , or sj(Q). A path Px,y is called Q-monotone if all inner
vertices of the path belong to the sections of Q, their leftmost sections strictly increase,
and their rightmost ones strictly increase as well.

Lemma 9. Let H be an induced subgraph of G[Q] such that x, y ∈ V (H) belong to one
component. Then every shortest path Px,y in H is Q-monotone.

Proof. It is easy to see that any path from x to y that is not Q-monotone can be shortened.

Let Q be a Q-node. Let u be a vertex appearing in sections of T [Q]. If u belongs
to sections of Q, let s←u (Q) be the leftmost section of Q containing u and s→u (Q) be the
rightmost one. If u belongs to sections of a subtree Ti of Q, we put s←u (Q) = s→u (Q) =
si(Q). If s→u (Q) is on the left of s←v (Q), then we say that u is on the left of v and v is
on the right of u. Also, u and v are on the same side of w if they are both on the left
of w, or both on the right of w. Similarly, v is between u and w if either u is on the left
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and w is on the right of v, or u is on the right and w is on the left of v. For a maximal
clique a ∈ Ti, we say that u is on the left of a when s→u (Q) is on the left of si(Q); the
other relations are defined similarly.

Non-adjacencies of Maximal Cliques. Maximal cliques of interval graphs have the
following special property, which we use to build minimal obstructions.

Lemma 10. Let H be a connected subgraph of an interval graph and let c be a maximal
clique with no vertex in V (H). There exists x ∈ c non-adjacent to all vertices of V (H).

Proof. Consider an interval representation R. It places all intervals of H to one side of
cp(c), say on the left. Let x be the interval of c having the rightmost left endpoint. If x
is adjacent to some vertex y ∈ V (H), then every vertex of c is adjacent to y. Since c is
maximal, it follows that y ∈ c, contradicting the assumption. So x is non-adjacent to all
vertices of V (H).

4 Characterizing Extendible Partial Representations by Maxi-
mal Cliques

In this section, we explain the characterization of extendible partial representations due
to Klav́ık et al. [23].

Restricting Clique-points. Suppose that there exists a representation R extending
R′. Then R gives some consecutive ordering < of the maximal cliques from left to right.
We want to show that the pre-drawn intervals give constraints in the form of a partial
ordering ⊳, defined below. Fig. 12 illustrates examples of constraints posed by a pair of
pre-drawn intervals.

For a maximal clique a, let P (a) denote the set of all pre-drawn intervals that are
contained in a. Recall that a clique-point cp(a) is some point chosen from the intersection
of all intervals of a in the representation R. Then P (a) restricts the possible position of
the clique-point cp(a) to only those points x of the real line which are covered in R′ by
the pre-drawn intervals of P (a) and no others. We denote the set of these admissible

x y

x1 x2 x3 y1 y2 y3

R

(a)
xx1 xx2 xx3

yy1 yy2 yy3

⊳ x y
u v w

R

(b) xu
xyv
yw

⊳

x

yu v w

R

(c)

Figure 12: Possible relative positions of pre-drawn intervals 〈x〉′ and 〈y〉′, and some exam-
ples of the Hasse diagrams of the posed constraints. (a) All maximal cliques containing
x have to be on the left of those containing y. (b) All maximal cliques containing x have
to be on the left of those containing both x and y, which are on the left of those con-
taining only y. (c) An inclusion of pre-drawn intervals poses no constraints. A maximal
clique containing only x can be either on the left, or on the right of the maximal cliques
containing both x and y.
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Figure 13: (a) Four maximal cliques a, b, c, and d with P (a) = {u, v}, P (b) = {y},
P (c) = {x, y}, and P (d) = {y, z}. The possible positions ↓a, ↓b, ↓c, and ↓d of their
clique-points are illustrated. (b) The corresponding open intervals Ia, Ib, Ic, and Id.

positions by ↓a. Formally:

↓a=
{
x : x ∈ R and x ∈ 〈u〉′ ⇐⇒ u ∈ P (a)

}
;

for examples see Fig. 13a. Equivalently, ↓a is defined in [2] as

↓a=
( ⋂

u∈P (a)

〈u〉′
)
\
( ⋃

v/∈P (a)

〈v〉′
)
. (1)

We are interested in the extremal points of ↓a. By x(a) (resp. y(a)), we denote
the infimum (resp. the supremum) of ↓a. We use an open interval Ia = (x(a),y(a)) to
represent ↓a. We note that this does not imply that ↓a contains all points between x(a)
and y(a); see ↓b in Fig. 13. Notice that when P (a) = ∅, then Ia = R.

The Relation ⊳. For two distinct maximal cliques a and b, we write a ⊳ b if y(a) 6
x(b), or in other words, if Ia is on the left of Ib. We put a ⊳ a when ↓a= ∅. The
definition of ⊳ is quite natural, since a ⊳ b implies that every extending representation
R has to place cp(a) to the left of cp(b). For instance, in Fig. 13, we get that a ⊳ b ⊳ d
and a ⊳ c ⊳ d, but b and c are incomparable.

All maximal cliques a with ↓a 6= ∅ can be represented by open intervals Ia. This
representation describes ⊳, since a ⊳ b if and only if Ia and Ib are disjoint and Ia is on
the left of Ib. An ordering is called an interval ordering if it can be represented by closed
intervals in the above manner: a < b if and only if the interval of a is on the left of the
interval of b. Interval orders are studied in the context of time constraints and have many
applications; for instance, see [13]. We get the following:

Lemma 11 (Klav́ık et al. [23]). The relation ⊳ is an interval ordering if and only if no
maximal clique a has ↓a= ∅ and there are no two distinct maximal cliques a and b such
that ↓a=↓b= {x}.

Proof. When ↓a= ∅, then a ⊳ a, so ⊳ is not an ordering. Similarly, when ↓a=↓b= {x},
we have a ⊳ b ⊳ a. Otherwise, let us define the closure of any interval (x, y) as [x, y],
even when x = y. Then ⊳ can be represented by the closure of the intervals Ia, where we
add a small gap between touching pairs of right and left endpoints that belong to distinct
intervals.

the electronic journal of combinatorics 25 (2018), #P00 18



We note that the situations in which ⊳ is not an interval order can be easily dealt
with, leading to a 1-BI or an SE obstruction (Lemmas 16, 19, and 21).

Below, we characterize extendible partial representations R′ using ⊳. Since our char-
acterization of minimal obstructions highly depends on this, we also explain the proof
from [23].

Lemma 12 (Klav́ık et al. [23]). A partial representation R′ is extendible if and only if
there exists a consecutive ordering of the maximal cliques that extends ⊳.

Proof. It is obvious that the constraints posed by ⊳ are necessary.
To show the other implication, suppose that we have a consecutive ordering < of the

maximal cliques which extends ⊳. We construct a representation R extending R′ as
follows. We place the clique-points according to < from left to right, in the following
greedy manner: Suppose that we want to place a clique-point cp(a). Let cp(b) be the last
placed clique-point. Consider all the points where the clique-point cp(a) can be placed
and that are to the right of the clique-point cp(b). If there is a single such point, we
place cp(a) there. Otherwise x(a) < y(a), and we take the infimum of all such points
and place the clique-point cp(a) to its right by an appropriate epsilon, for example the
distance of two closest distinct endpoints of pre-drawn intervals divided by n.

We prove by contradiction that this greedy procedure cannot fail; see Fig. 14. Let
cp(a) be the clique-point for which the procedure fails. It is not possible that ↓a= ∅, since
in this case a ⊳ a and < cannot extend ⊳. Since cp(a) cannot be placed, there are some
clique-points placed on y(a) or to its right. Let cp(b) be the leftmost among them. If
x(b) > y(a), we obtain a ⊳ b, which contradicts b < a because cp(b) was placed before
cp(a). Thus, we know that x(b) < y(a).

The clique-point cp(b) was not placed on the left of y(a) because all these positions
were either blocked by some other previously placed clique-points, or they are covered by
some pre-drawn interval not in P (b). There is at least one clique-point placed to the right
of x(b), since otherwise we could place cp(b) at x(b) or right next to it. Let cp(c) be the
right-most clique-point placed between x(b) and cp(b). Every point between cp(c) and
y(a) is covered by a pre-drawn interval not in P (b). Consider the set S of all the pre-
drawn intervals not contained in P (b) intersecting [cp(c),y(a)] (see the dashed intervals
in Fig. 14). Let C be the set of all maximal cliques containing at least one vertex from S.
Since S induces a connected subgraph, it can easily be observed that all maximal cliques
of C appear consecutively in <. We have that a and c belong to C, but b does not. Since
c < b, then a < b, which contradicts our original assumption that b < a.

y(a) cp(b)x(b) cp(c)

S

Figure 14: Illustration of the proof of Lemma 12 showing the positions of the clique-points
cp(b) and cp(c); the intervals of S are dashed.
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Overlaps. In this paper, we show one additional crucial property of ⊳. We say that a pair
of intervals Ia and Ib single overlaps if Ia 6= Ib and either x(a) 6 x(b) < y(a) 6 y(b),
or x(b) 6 x(a) < y(b) 6 y(a).

Lemma 13. No pair of intervals Ia and Ib single overlaps.

Proof. Assume without loss of generality that x(a) 6 x(b). If y(a) 6 x(b), then Ia
and Ib are disjoint and do not single overlap. Suppose now that x(a) 6 x(b) < y(a).
Since all intervals of P (a) cover [x(a),y(a)], we get P (a) ⊆ P (b).

The position of y(a) can be defined as a result of two distinct situations:

• If some pre-drawn interval of P (a) ends in y(a), then y(b) 6 y(a), since the same
pre-drawn interval is contained in P (b).

• Otherwise, there exists a sequence of pre-drawn intervals not contained in P (a)
that covers the whole portion between y(a) and the leftmost right endpoint of the
intervals of P (a). The left endpoints of these intervals are on or to the right of
y(a). Since the left endpoints of the intervals in P (b) are to the left of y(a), the
pre-drawn intervals of the sequence are not contained in P (b). Thus, y(b) 6 y(a).

In both cases, x(a) 6 x(b) 6 y(b) 6 y(a), so Ib is contained in Ia.

If no single overlaps are allowed, every pair of intervals is either disjoint, or one interval
is contained in the other (possibly the intervals are equal). This type of interval orderings
is very simple and has not been much studied. We note that graphs having interval
representations with no single overlaps are called trivially perfect. By examining the
above proof, we get the following useful result:

Lemma 14. If Ia ⊆ Ib, then P (a) ⊇ P (b). Further, strict containments correspond to
strict inclusions.

If Ia and Ib are disjoint, then we only know that at least one of the sets P (a) \ P (b)
and P (b) \P (a) is non-empty. They both might be non-empty, or the sets P (a) and P (b)
might be in inclusion. See Fig. 13 for examples.

Sliding Lemma. We introduce some notation. We denote by P 7→(a) and P 7→(a) re-
spectively the subsets of P (a) containing the pre-drawn intervals with left-most right
endpoints, and with right-most left endpoints. If u ∈ P 7→(a) and v ∈ P 7→(a), then
〈u〉′ ∩ 〈v〉′ =

⋂
w∈P (a) 〈w〉

′, thus Ia is a subinterval of 〈u〉′ ∩ 〈v〉′.

Single overlaps of pre-drawn intervals pose more constraints than containment (see
Fig. 12b and c). Therefore, single overlaps are more powerful in building obstructions.
The following lemma states that, under some assumptions, we can turn a containment of
pre-drawn intervals into a single overlap of other pre-drawn intervals; see Fig. 15.

Lemma 15 (Sliding). Let Ia be on the left of Ib, P (a) ( P (b) and r ∈ P (b) \ P (a).

(i) There exists a pre-drawn interval 〈z〉′ on the right of Ia covering r(u), for u ∈ P 7→(a).
Further, there exists an induced path Pr,z from r to z whose vertices are all pre-drawn
and not contained in P (a).
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Figure 15: (a) With the assumption satisfied, we can slide r to z which covers r(u). (b)
The relative positions in the MPQ-trees of z and r with respect to a are the same.

(ii) Consider the smallest subtree having a and the sections containing r. If the root of
this subtree is a P-node, then z and r are contained in the same subtree. If the root
is a Q-node, then z and r appear on the same side of a.

Proof. (i) By the assumptions and the definition of Ia, we get that (y(a), r(u)] is not
empty and all points in (y(a), r(u)] are covered by pre-drawn intervals not in P (a).
Among these intervals, we choose z covering r(u). Since r is also one of these intervals,
we can construct an induced path from r to z, consisting of pre-drawn intervals not in
P (a).

(ii) It follows from the existence of Pr,z not contained in a.

We note that possibly r = z. The above lemma is repeatedly used for constructing
minimal obstructions. The general idea is the fact that 〈r〉′ properly contained inside 〈u〉′

restricts the partial representation less than 〈z〉′ covering r(u). The lemma says that we
can assume that such z exists and use it instead of r.

Flip Operation. We say that we flip the partial representation vertically when we map
every x ∈ R to −x. This reverses the ordering ⊳. Clearly, there exists an obstruction in
the original partial representation if and only if the flipped obstruction is present in the
flipped partial representation. The purpose of this operation is to decrease the number of
cases in the proofs.

5 Strategy for Finding Minimal Obstructions

In this section, we describe the general strategy to show that every non-extendible partial
representation contains one of the obstructions described in Section 2.

For any two disjoint subtrees Ti and Tj of the MPQ-tree T , we write Ti ⊳ Tj if and
only if there exist cliques a ∈ Ti and b ∈ Tj such that a ⊳ b. In this situation, the maximal
cliques of Ti are forced to appear on the left of the maximal cliques of Tj.

Testing Extendibility by MPQ-tree Reordering. Recall that a MPQ-tree T rep-
resents all feasible orderings of the maximal cliques of a given interval graph G. By
Lemma 12, a partial representation is extendible if and only if there exists a reordering T ′

of T such that the frontier of T ′ extends ⊳. This condition can be tested by the following
algorithm (see [23]).
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Figure 16: This example is from [23], and it shows from left to right the way in which the
reordering algorithm works. We depict comparable pairs of maximal cliques by directed
edges. The processed trees are contracted into vertices.
First, we reorder the highlighted P-node on the left. The subdigraph induced by a, b

and c is ordered b → a → c. We contract this subtree T1 into a vertex. Next, we keep
the order of the highlighted Q-node and contract its subtree T2 into a vertex. When we
reorder the root P-node, the algorithm finds a two-cycle between T1 and T2, and outputs
“no”.

We process the MPQ-tree T from the bottom to the root. When a P-node is processed,
we test whether there exists a linear extension of ⊳ on its subtrees. It exists if and only if
⊳ induced on the subtrees of the node is acyclic. Thus, if there is a cycle, the MPQ-tree
cannot be reordered according to ⊳. When a Q-node is processed, there are two possible
orderings of its subtrees, and we check whether any of them is compatible with ⊳. The
partial representation is extendible if and only if all nodes can be reordered in this manner.
See Fig. 16 for an example.

A node that cannot be reordered is called obstructed. A set of maximal cliques creates
an obstruction if the ordering of this set in ⊳ makes the node obstructed.

Strategy. Suppose that a partial representation R′ is non-extendible. From [23], we
know that there exists an obstructed node in the MPQ-tree. We divide the argument
into three cases, according to the type of this node: an obstructed leaf (Section 6), an
obstructed P-node (Section 7), and an obstructed Q-node (Section 8). Figure 17 shows an
overview of the proof.

First, we argue that there exist at most three maximal cliques creating an obstruction.
Then, we consider their positions in the MPQ-tree and their open intervals from the
definition of ⊳. We use tools of Sections 3 and 4 to derive positions of several pre-drawn
intervals forming one of the obstructions.

In Section 8.2, we prove a key tool called k-FAT Lemma 22: If three non-adjacent
vertices xk, yk, and zk are pre-drawn in an order that is different from their order in
the sections of a Q-node, then they induce a k-FAT obstruction. The proof is done by
induction for k, and it explains why complicated obstructions are needed.
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R′ is non-extendible ⇐⇒

∃ an obstructed node [23]

Lemma 16

an obstructed leaf: a ⊳ a

Section 7
an obstructed P-node
T1 ⊳ · · · ⊳ Tn ⊳ T1

Lemma 17

T1 ⊳ T2 ⊳ T1

Lemma 18

at most three cliques
Lemma 19

Section 8

an obstructed Q-node

Lemma 20

at most three cliques

Lemma 21

in two subtrees

Section 8.3

in three subtrees

Sliding Lemma

15

k-FAT Lemma

22

(k, ℓ)-CE Lemma

24

1-BI
1-FAT

SE

SE

1-FAT

2-FAT
1-BI 2-BI

k-FAT

k-BI

k-FS k-EFS k-FB

k-EFB

k-FDS

k-EFDS

k-FNS

(k, ℓ)-CE

Figure 17: Overview of the main steps of the proof, it starts in the middle. The obtained
obstructions are highlighted in gray, and three tools are depicted with highlighted borders.
The most involved case is in Section 8.3.

6 Obstructed Leaves

Suppose that some clique-point a cannot be placed, so ↓a= ∅. In terms of ⊳, we get
a ⊳ a. Since ⊳ is a strict partial ordering, this already makes the partial representation
non-extendible.

Lemma 16 (The leaf case). If a leaf is obstructed, then G and R′ contain an SE, or 1-BI
obstruction.

Proof. We name the vertices as in the definition of the 1-BI obstructions. Suppose that
the leaf corresponds to a maximal clique a such that ↓a= ∅.

Let u ∈ P 7→(a) and v ∈ P 7→(a) (possibly u = v). Since Ia is a subinterval of⋂
w∈P (a) 〈w〉

′ and ↓a= ∅, every point of [ℓ(v), r(u)] is covered by some pre-drawn interval
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Figure 18: A construction leading to a 1-BI obstruction.

not contained in P (a). Let 〈x1〉
′ be one such interval covering ℓ(v) and let 〈z1〉

′ be one
such interval covering r(u) (again, possibly x1 = z1); see Fig. 18. Let P1 be a shortest
path from x1 to z1 consisting of pre-drawn intervals not in P (a).

We prove that the relative pre-drawn position of u, v, x1, and z1 makes the partial
representation non-extendible. The maximal clique a does not contain any vertex of P1.
Since the vertices of P1 induce a connected subgraph, by Lemma 10 there exists y1 ∈ a
which is non-adjacent to all vertices of P1. Hence, these (at most) five vertices together
with P1 create either a 1-BI obstruction (when ℓ(u) < r(v)), or an SE obstruction (when
ℓ(u) = r(v), for which x = x1 = z1 and we can free it). We note that this obstruction
might not be minimal, in which case we can remove some vertices and get one of the
minimal obstructions illustrated in Fig. 5 and 8.

7 Obstructed P-nodes

If a P-node is obstructed, then it has some subtrees T1, . . . , Tn forming the cycle T1 ⊳

T2 ⊳ · · · ⊳ Tn ⊳ T1. We start by showing that the specific structure of ⊳ forces the
existence of a two-cycle, so we can assume that n = 2.

Lemma 17. If a P-node is obstructed, then it has two subtrees T1 and T2 such that
T1 ⊳ T2 ⊳ T1.

Proof. The proof is illustrated in Fig. 19a. Let T1 ⊳ · · · ⊳ Tn ⊳ T1 be a shortest cycle for
the obstructed P-node. To get a contradiction, we assume n > 3. Since T1 ⊳ T2, there
exist a ∈ T1 and b ∈ T2 such that a ⊳ b. Similarly, there exist c ∈ T2 and d ∈ T3 such
that c ⊳ d. We know that Ia is on the left of Ib, and Ic is on the left of Id. We analyze
the remaining relative positions.

First, Id is not on the right of Ia, since otherwise T1 ⊳ T3 and a shorter cycle would
exist. Additionally, Id is not on the left of Ib, since we would get T3 ⊳ T2, and T2 and T3

would form a two-cycle. According to Lemma 13, no single overlaps of open intervals are
allowed, so Id necessarily contains both Ia and Ib; see Fig. 19a. Therefore, Ic is on the
left of Ia, so T2 ⊳ T1 and we get a two-cycle.

To create a two-cycle, at most four cliques are enough. Aside from Lemma 13, so
far we have not used that ⊳ arises from a partial interval representation. Next, we use
properties of the MPQ-tree.

Lemma 18. A two-cycle T1 ⊳ T2 ⊳ T1 is created by at most three maximal cliques.
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Figure 19: (a) At the top, a shortest n-cycle of ⊳ on the children of a P-node. At the
bottom, the derived positions of the open intervals. (b) At the top, the four cliques
involved in a two-cycle in ⊳. The cliques a and c are incomparable, and so are b and d.
At the bottom, one of the four possible configurations of the open intervals.

Proof. The proof is depicted in Fig. 19b. Suppose that this two-cycle is given by four
cliques a, d ∈ T1 and b, c ∈ T2 such that a ⊳ b and c ⊳ d. Assume for contradiction that
no three of these cliques define the two-cycle, i.e., a and c are incomparable, and so are b
and d. According to Lemma 13, Ia ⊆ Ic or Ia ⊇ Ic, and analogously for Ib and Id. In all
of the four cases, Ic is on the left of Ib, and Id is on the right of Ia.

We look at the case where Ia ⊆ Ic and Ib ⊆ Id, as in Fig. 19b. By Lemma 14,
we have P (c) ⊆ P (a). Therefore, P (c) contains no vertices from the sections of T2.
Similarly, P (d) ⊆ P (b), and P (d) contains no vertices from the sections of T1. Therefore
P (c) = P (d), which implies Ic = Id, a contradiction. The other cases can be analyzed
similarly.

It remains to put these results together and characterize the possible obstructions.

Lemma 19 (The P-node case). If a P-node is obstructed, then G and R′ contain an SE,
1-FAT, or 1-BI obstruction.

Proof. According to Lemma 17, the obstructed P-node has a two-cycle in ⊳. By
Lemma 18, there are at most three maximal cliques defining this cycle. First assume
that this cycle is defined by two cliques a ∈ T1, b ∈ T2 such that a ⊳ b ⊳ a. According to
the definition of ⊳, this implies that Ia = Ib, both of lenght zero. Therefore P (a) = P (b).
Let u ∈ P 7→(a) and v ∈ P 7→(a) (possibly u = v); we have that 〈u〉′ ∩ 〈v〉′ is a singleton.
Since a and b are two maximal cliques, there exists x ∈ a \ b and y ∈ b \ a. We get an SE
obstruction.

It remains to deal with the case where three cliques define the two-cycle. Let a, c ∈ T1

and b ∈ T2 such that a ⊳ b ⊳ c. We have three non-intersecting intervals whose left-to-
right order is Ia, Ib and Ic. Since Ia and Ic are disjoint, one of the sets P (a) \ P (c) and
P (c) \ P (a) is non-empty. Without loss of generality, we assume that P (a) \ P (c) 6= ∅.
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Figure 20: The two cases of the proof of Lemma 19. (a) Case 1 leads to a 1-FAT obstruc-
tion. (b) Case 2 leads to a 1-BI obstruction.

Let p ∈ P (a) \ P (c); then p belongs to sections of T1, and as a consequence p /∈ P (b).
Therefore 〈p〉′ is on the left of Ib. We distinguish two cases.

Case 1: P (b) \ P (c) 6= ∅. We choose q ∈ P (b) \ P (c). Then q belongs to sections of
T2, and 〈q〉′ is between 〈p〉′ and Ic. In the next paragraph we show that there also exists
r ∈ P (c) \ P (b). Then r belongs to sections of T1, and 〈r〉′ is on the right of 〈q〉′, as in
Fig. 20a. By Lemma 8(ii), G[T1] is connected; let P1 be a shortest path from p to r in
G[T1]. We obtain a 1-FAT obstruction for x1 = p, y1 = q and z1 = r.

It remains to show that such r exists. Suppose for contradiction that P (c) \P (b) = ∅.
Since P (c) ( P (b), no vertex of P (c) appears in sections of T1, and we get P (c) ( P (a).
Consequently, every pre-drawn interval of P (c) contains [x(a),y(c)]. The position of
Ic implies that every point of [x(a),x(c)) is covered by some pre-drawn interval not
contained in P (c). In particular, there exists a path from p to q consisting of such
intervals. Since p belongs to sections of T1 and q belongs to sections of T2, every path
from p to q contains a vertex of the section of the P-node, or of a section above it; hence,
the path contains a vertex belonging to c. We obtain a contradiction.

Case 2: P (b) \ P (c) = ∅. Then there exists r ∈ P (c) \ P (b). We again observe that
〈r〉′ is on the right of Ib, as depicted in Fig. 20b. Furthermore, P (b) ⊆ P (a) ∩ P (c), so
every pre-drawn interval of P (b) contains [x(a),y(c)].

We construct a 1-BI obstruction and we name the vertices as in the definition. Let
u ∈ P 7→(b) and v ∈ P 7→(b) (possibly u = v). Since p does not necessarily cover ℓ(v) and
r does not necessarily cover r(u), we might not be able to construct a 1-BI obstruction
with x1 = p and z1 = q. We instead use Sliding Lemma 15. By applying it (flipped)
to Ib, Ia and p, we obtain a pre-drawn interval x1 covering ℓ(v) (possibly x1 = p). By
applying it to Ib, Ic and r, we obtain a pre-drawn interval z1 covering r(u) (possibly
z1 = r). Furthermore, x1 and z1 belong to sections of T1. Since G[T1] is connected by
Lemma 8(ii), there exists a shortest path P1 from x1 to z1 containing no vertex of b.
By Lemma 10, there exists y1 ∈ b non-adjacent to all vertices of P1. We obtain a 1-BI
obstruction.
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8 Obstructed Q-nodes

Suppose that a Q-node with subtrees T1, . . . , Tn is obstructed. Then the two possible
orderings of this Q-node are not compatible with ⊳. Notice that at most four cliques are
sufficient to create the obstruction. We next prove that at most three cliques are already
sufficient.

Lemma 20. If a Q-node is obstructed, there exists an obstruction created by at most three
maximal cliques.

Proof. Suppose that an obstruction is created by four cliques a ∈ Tα, b ∈ Tβ, c ∈ Tγ and
d ∈ Tδ such that α < β, γ < δ, a ⊳ b, and c ⊲ d. We know that Ia is on the left of Ib, and
Ic is on the right of Id. Notice that the four subtrees Tα, Tβ, Tγ and Tδ are not necessarily
distinct. We classify all possible orderings < of α, β, γ, δ in two general cases, namely,
α 6= γ and α = γ. In the first case, we may assume without loss of generality that α < γ.

Case 1: α < γ < δ (see Fig. 21a). Consider the relative positions of Ic and Id with
respect to Ia. If Id is to the left of Ia, we have d ⊳ a ⊳ b, and these three cliques already
create an obstruction. If Ic is to the right of Ia, then we get a ⊳ c and c ⊲ d, creating an
obstruction. If neither happens, then Ic and Id are subintervals of Ia. Thus c, d ⊳ b. If
β 6 γ, we have a ⊳ b and b ⊲ d, creating an obstruction. If β > γ, then d ⊳ c ⊳ b, which
also creates an obstruction.

Case 2: α = γ (see Fig. 21b). If Ic does not intersect Ib, or Id does not intersect Ia, it
is easy to see that three of the cliques already create an obstruction. Suppose next that
these intersections occur. Then d ⊳ b. If δ < β or β < δ, it is again easy to show that
three cliques are enough to create an obstruction. It only remains to consider the case
where α = γ < β = δ.

Since the intervals Ic and Ia are non-intersecting, we may assume without loss of
generality that there exists x ∈ P (a)\P (c). This vertex x belongs to sections of Tα. Thus
x /∈ P (d), and we get that Ia ( Id. By Lemma 14, P (d) ( P (a); in particular, P (d)
contains no private pre-drawn interval from sections of Tβ, and all pre-drawn intervals of
sβ(Q) are also contained in sα(Q).

Tα Tγ Tδ

a c d

· · · · · ·

(a)

Ia Ib

Id Ic

Tα = Tγ Tβ = Tδ

a b

c d

· · ·

(b)

Ia Ib

Id Ic

Figure 21: Two cases of the proof of Lemma 20. The Q-node is depicted in the top, while
in the bottom we have the relative positions of the intervals.
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Since P (d)\P (b) = ∅, there exists y ∈ P (b)\P (d) which is contained in sections of Tβ.
We next apply the argument in the previous paragraph, and obtain y /∈ P (c), Ib ( Ic, and
P (c) ( P (b). Consequently, P (c) contains no private pre-drawn intervals from sections
of Tα, and all pre-drawn intervals of sα(Q) are contained in sβ(Q). We conclude that
P (c) = P (d) and Ic = Id, which gives a contradiction.

In summary, we can assume that a minimal obstruction involves at most three maximal
cliques. These three cliques belong to either two or three different subtrees.

In the rest of the section, many figures describe positions of derived pre-drawn intervals
in sections of the Q-node and its subtrees; for instance Fig. 22. Some of these intervals
necessarily belong to sections of the Q-node, since they belong to maximal cliques of
several subtrees; for instance t2 in Fig. 22. But for the remaining intervals, it is not
important to distinguish whether they belong to sections of the Q-node or one of its
subtrees, only their relative positions in the Q-node matter; for instance q and x1 in
Fig. 22.

8.1 Cliques in Two Different Subtrees

In this section, we deal with the case where the maximal cliques belong to two different
subtrees.

Lemma 21 (The Q-node case, Two Subtrees). If at most three cliques creating the ob-
struction belong to two different subtrees, then G and R′ contain an SE, 1-FAT, 2-FAT,
1-BI, or 2-BI obstruction.

Proof. The proof is similar to that of Lemma 19. If two maximal cliques create an
obstruction, we can argue as in the first paragraph of the proof of Lemma 19, and we
obtain an SE obstruction. It remains to deal with the case of three maximal cliques a, b,
and c.

We can assume that a ⊳ b ⊳ c and that, for some i < j, we have a, c ∈ Ti and b ∈ Tj .
Furthermore, without loss of generality, there exist p ∈ P (a) \ P (c). Since p belongs to
sections of Ti, then p /∈ P (b), and thus 〈p〉′ lies to the left of Ib. We distinguish two cases.

Case 1: P (b) \P (c) 6= ∅. Then there exists q ∈ P (b) \P (c) such that 〈q〉′ lies between
〈p〉′ and Ic. Since q is non-adjacent to p, it belongs to sections of either Q or Tj . Notice
that in any case s←q (Q) is on the right of si(Q). Arguing as in Case 1 of the proof of

Lemma 19, we observe that there exists r ∈ P (c) \P (b). Furthermore, it follows that 〈r〉′

lies to the right of 〈q〉′; see Fig. 22a on the left.
If there exists a path P1 from p to r avoiding N [q], we get a 1-FAT obstruction for

x1 = p, y1 = q, z1 = r and P1. By Lemma 7, we know that si(Q) 6= s←q (Q). If
si(Q) 6⊆ s←q (Q), then there exists some w ∈ si(Q) \ s←q (Q). Therefore, P1 = pwr is such a
path. It remains to deal with the case where no such path P1 exists, which implies that
si(Q) ( s←q (Q); see Fig. 22a on the right.

Consider the set W = si(Q). Let t2 be a vertex of W whose section s→t2 (Q) is leftmost.
Let C be the component of G[Q] \ W containing q. Since s←q (Q) \ W is non-empty, C
consists of the vertices of at least two subtrees of the Q-node. If t2 was adjacent to all
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Figure 22: (a) Case 1: The pre-drawn intervals and the situation in the MPQ-tree for
si(Q) ( s←q (Q). (b) Case 2: The pre-drawn intervals and the situation when there exists
no path from x to z avoiding the vertices of b.

vertices of C, it would be possible to flip the ordering of this component, contradicting
the fact that there are only two possible orderings for Q. Therefore, t2 is not adjacent to
all vertices of C. We choose x1 ∈ C \N [t2] whose section s←x1

(Q) is leftmost. Let P1 be a
shortest path from q to x1 whose inner vertices are adjacent to t2. It follows that x2 = p,
y2 = q, z2 = r, P2 = x2t2, t2, x1, and P1 define a 2-FAT obstruction. (By Lemma 9, all
inner vertices of P1 are adjacent to t2.)

Case 2: P (b) \ P (c) = ∅. Then there exists r ∈ P (c) \ P (b). Since 〈r〉′ lies on the
right of Ib, the vertex r is not contained in a and it belongs to sections of Ti. We use the
same approach as in Case 2 of the proof of Lemma 19. Since P (b) ⊆ P (a) ∩ P (c), every
pre-drawn interval of P (b) covers [x(a),y(c)]. Let u ∈ P 7→(b) and v ∈ P 7→(b) (possibly
u = v).

By applying Sliding Lemma 15 twice, we get x, z /∈ P (b) such that 〈x〉′ covers ℓ(v)
and 〈z〉′ covers r(u); see Fig. 22b on the left.

Suppose that there exists a path Px,z from x to z avoiding all vertices of b. Let x1 = x,
z1 = z, and P1 be a shortest path from x1 to z1 in G[Q] \ b. By Lemma 10, there exists
y1 ∈ b non-adjacent to P1. We obtain a 1-BI obstruction.

Suppose next that there is no path Px,z avoiding b. We know that x and z belong to
sections of Ti, since there exist paths Px,p and Pr,z avoiding b, from the above applications
of Sliding Lemma 15. Since no path Px,z avoiding b exists, we have si(Q) ( sj(Q). As
in Case 1, let W = si(Q), and let t2 be a vertex of W whose section s→t2 (Q) is leftmost
(possibly t2 = u or t2 = v). We again infer that t2 is not adjacent to all vertices of C,
where C is the component of G[Q]\W containing b\W . We choose x1 ∈ C \N [t2] whose
section s←x1

(Q) is leftmost. Since si(Q) ( sj(Q) ⊆ b, there exists y2 ∈ b non-adjacent to x
and z. We get a 2-BI obstruction for x2 = x, y2, z2 = z, u, v, a shortest path P1 from y2
to x1 in C, and P2 = x2t2. (By Lemma 9, all inner vertices of P1 are adjacent to t2.)
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8.2 k-FAT and (k, ℓ)-CE Lemmas

In this section, we give two tools for the case, analyzed in Section 8.3, where the three
maximal cliques creating the obstruction belong to three different subtrees. These tools
give insight into the structure of the Q-nodes, and explain the way in which complex
obstructions such as k-FAT and (k, ℓ)-CE obstructions are formed.

k-FAT Lemma. First, we present a useful lemma that allows to locate k-FAT obstruc-
tions. The key idea of the proof is similar to Case 1 of the proof of Lemma 21, but applied
inductively for k.

Lemma 22 (k-FAT). Let Q be a Q-node with children T1, . . . , Tn, and let a, b and c
be three cliques of T [Q] contained respectively in Tα, Tβ and Tγ, for α < β < γ. Let
xk ∈ P (a), yk ∈ P (c) and zk ∈ P (b) be three disjoint pre-drawn intervals such that 〈yk〉

′

is between 〈xk〉
′ and 〈zk〉

′. Then G[Q] and R′[{xk, yk, zk}] contain a k-FAT obstruction.

Proof. The proof, illustrated in Fig. 23, is by induction. We always denote the vertices
as in the definition of k-FAT obstructions. If we find a 1-FAT or 2-FAT obstruction, the
statement is true. Otherwise, we recurse on a smaller part of the Q-node, where we find a
structure identical to a (k − 1)-FAT obstruction, except for the fact that the vertex xk−1

is free. Together with some vertices in the remainder of the Q-node, we obtain a k-FAT
obstruction. We next provide the details.

Let k be some yet unspecified integer, determined by the recursion. We want to argue
that G[Q] contains a k-FAT obstruction because the ordering of 〈xk〉

′, 〈yk〉
′ and 〈zk〉

′ is
incorrect (in every representation, 〈zk〉 is between 〈xk〉 and 〈yk〉). Suppose that there
exists a path from xk to zk whose inner vertices are non-adjacent to yk. Then we obtain
a 1-FAT obstruction. It remains to deal with the harder situation where no such path
exists.

Let C(xk) be the connected component of G[Q]\N [yk] containing xk. By our assump-
tion, zk /∈ C(xk). We denote by Wk the subset of N [yk] containing those vertices that are
adjacent to some vertex of C(xk); see Fig. 23, middle. Notice that the vertices of C(xk)
appear only in sections and subtrees to the left of sβ(Q). Therefore, every vertex of Wk

lies in the sections of Q and stretches from the left of sβ(Q) to sγ(Q); see Fig. 23, right.
In other words, Wk ⊆ sβ(Q) ∩ sγ(Q) and every vertex of Wk is adjacent to zk.

xk yk zk

Tα Tβ Tγ

xk zk yk

tk

· · · · · ·

Wk

Pkxk

yk

zk

C(xk) N [yk]

Wk

Figure 23: On the left, the position of the pre-drawn intervals. In the middle, the con-
struction of Wk ( N [yk] in G[Q]. On the right, the Q-node with the three subtrees and
the intervals of Wk depicted in its sections.
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Tα Tβ Tγ

xk zk yk

tk xk−1

· · · · · ·
Pk Pk−1

C(zk)

C(yk)
(a)

Tα Tβ Tγ

xk zk yk

tk xk−1

· · · · · ·
Pk

C(yk) = C(zk)
(b)

Figure 24: (a) In Case 1, there exists a path Pk−1 from xk−1 to yk whose inner vertices
avoid zk. (b) In Case 2, we have C(yk) = C(zk) and such a path might no longer exist.
For instance, every path from xk−1 to yk in C(yk) might use the depicted interval in the
sections of Q, which is also adjacent to zk.

Let C be a connected component of G[Q] \ Wk. If C contains a vertex from some
section of Q, we call it big. Notice that in this situation C has a vertex contained in
two consecutive sections of Q and their subtrees. Otherwise, C consists of some vertices
of a subtree of Q, and we call it small. The section above a subtree containing a small
component is a subset of Wk. Additionally, if two small components are placed in two
different subtrees, the two sections above these subtrees are different.

The graph G[Q] \ Wk is disconnected, as xk and zk belong to different components.
Let us denote the connected component containing yk by C(yk), and the one containing zk
by C(zk). Let tk be a vertex of Wk whose section s→tk (Q) is leftmost. Let Pk be a shortest
path from xk to tk in G[C(xk) ∪ {tk}]; see Fig. 23, right. We distinguish two cases.

Case 1: C(yk) 6= C(zk). This case is very similar to the proof of Lemma 21; see
Fig. 24a. Every vertex of Wk is adjacent to some vertex of C(xk) and to some vertex of
C(yk). Therefore, it is also adjacent to every vertex of C(zk). If C(zk) was big, then we
could reverse its sections in the Q-node, contradicting the fact that there are only two
possible orderings for a Q-node. Therefore, C(zk) is small. Notice that then C(yk) is not
small, since otherwise we would get sβ(Q) = Wk = sγ(Q), contradicting Lemma 7. Thus,
C(yk) is big.

Let us set yk−1 = zk and zk−1 = yk. The vertex tk is not universal for C(yk); otherwise,
every vertex of Wk would be universal and this would give additional orderings of C(yk)
in Q. Let xk−1 be a vertex of C(yk)\N [tk] whose section s←xk−1

(Q) is leftmost. Notice that
s←xk−1

(Q) is always the next section to s→tk (Q). Let Pk−1 be a shortest path from xk−1 to
zk−1 in C(yk). By Lemma 9, all inner vertices of Pk−1 are adjacent to tk. Since this path
lies in C(yk), the inner vertices are non-adjacent to yk−1, xk and Pk. We have constructed
a 2-FAT obstruction.

Case 2: C(yk) = C(zk). In this case, the component C(yk) is big; see Fig. 24b.
Therefore, similarly as above, tk is not universal for C(yk). We put yk−1 = zk and
zk−1 = yk. We choose xk−1 ∈ C(yk) \ N [tk] in the same way as in Case 1. Notice that
xk−1 is a non-neighbor of yk−1, since otherwise it would be a neighbor of tk. On the other
hand, xk−1 might be adjacent to zk−1 or not. If it is, we get a 2-FAT obstruction for k = 2
with P1 = xk−1zk−1. If it is not, we proceed as follows.

As before, every shortest path from xk−1 to zk−1 has all inner vertices adjacent to
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tk. Since all vertices of C(yk) are non-adjacent to xk and the inner vertices of Pk, every
shortest path satisfies this as well. There exists a shortest path from xk−1 to zk−1 in C(yk),
but we cannot guarantee that the inner vertices of this path are non-adjacent to yk−1. We
solve this issue by applying the entire argument of the proof recursively to C(yk).

In every representation extending the partial representation, the intervals of C(xk)
form a connected subset of the real line placed to the left of 〈yk〉

′. Therefore, 〈tk〉 stretches
from C(xk) to 〈zk〉

′, covering 〈yk〉
′. Thus 〈xk−1〉 is placed to the right of 〈zk〉

′ = 〈yk−1〉
′

in every extending representation (see Fig. 6b). Again, 〈yk−1〉
′ has to be placed between

〈xk−1〉 and 〈zk−1〉
′. We assume that 〈xk−1〉 is pre-drawn on the right of 〈yk−1〉

′ and repeat
the same argument for C(yk) and the MPQ-tree restricted to these vertices. The role
of xk, yk and zk is played by xk−1, yk−1 and zk−1, respectively. (The ordering of the
pre-drawn intervals is flipped.)

The paragraphs above show the induction step of our proof (by induction on, say, the
number of considered sections of Q). By the induction hypothesis, we find a (k− 1)-FAT
obstruction. By making xk−1 free and adding xk, tk and Pk, we get a k-FAT obstruction
in the original partial representation. Clearly tk is adjacent to the entire (k − 1)-FAT
obstruction with the exception of xk−1, since all further vertices are contained in a section
to the left of s←xk−1

(Q). The reason is that we always use shortest paths which are Q-
monotone by Lemma 9. By the same reason, they are non-adjacent to the inner vertices
of Pk and to xk, as required.

To make the argument complete, we should check that all the assumptions used
throughout the proof apply recursively, in particular the arguments concerning non-
universality of tk−1 and reversing big components. This is true because both components
C(yk−1) and C(zk−1) of C(yk) \Wk−1 appear to the left of xk−1, so tk and the other ver-
tices of Wk are universal for them. This property is preserved throughout the recursion,
so C(yℓ) and C(zℓ) are adjacent to all vertices of Wk,Wk−1, . . . ,Wℓ+1. Similarly, the rest
of the inductive proof can be formalized.

The above proof shows that the structure of a Q-node can be highly complicated,
leading to complicated obstructions such as k-FAT. Actually, k-FAT Lemma 22 is a very
useful tool because it can be also applied in situations where not all xk, yk, and zk are
pre-drawn, to build other obstructions. Fig. 25 shows an example.

Lemma 23. Consider a k-FAT obstruction Hk for k > 2. If we swap the positions of
〈xk〉

′ and 〈yk〉
′, then we obtain a new obstruction which contains a 1-FAT obstruction for

x′1 = yk, y
′
1 = xk, and z′1 = zk. Further, if k = 2 and this does not happen, then x2 is

adjacent to t2.

Proof. For k > 3, the graph Hk \ N [xk] is connected; in particular, there exists a path
P ′1 = yktk−1zk avoiding N [xk]. For k = 2, there exists the path P ′1 = y2t2z2 avoiding
N [x2], unless x2 is adjacent to t2.

(k, ℓ)-CE Lemma. Suppose that we have the situation in Fig. 26. We can easily show
that it yields to a (k, ℓ)-CE obstruction:
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xk zk

u

yk

R′ xk zk yk

· · · · · · ⇒

xk zkyk

R̂′

Figure 25: Suppose that we show that a partial representation R′ has three pre-drawn
intervals as on the left, and that there is a vertex yk adjacent to u and non-adjacent
to xk and zk. Then 〈yk〉 has to be placed between 〈xk〉

′ and 〈zk〉
′ in every extending

representation. Thus, we can assume it is pre-drawn there and obtain a modified partial
representation R̂′. If we further show that xk, yk and zk are placed in appropriate sections
of G[Q] for some Q-node Q, we can apply k-FAT Lemma 22 and we get a k-FAT obstruc-

tion in G[Q] and R̂′[{xk, yk, zk}]. Together with 〈u〉′, this forms a k-BI obstruction in G
and R′.

Lemma 24 ((k, ℓ)-CE). Let Q be a Q-node with children T1, . . . , Tn, and let a, b and
c be three cliques of T [Q] contained respectively in Tα, Tβ and Tγ, for α < β < γ. Let
xk ∈ a, yk ∈ c and zk ∈ P (b) be three non-adjacent vertices having a common pre-drawn
neighbor u such that 〈u〉′ single overlaps 〈zk〉

′. Then G[Q] ∪ {u} and R′[{zk, u}] contain
a (k, ℓ)-CE obstruction, where either ℓ = 1 or k = ℓ = 2.

Proof. By applying k-FAT Lemma 22 twice, once when 〈xk〉 is on the left of 〈yk〉 and once
when it is on the right, we obtain the (k, ℓ)-CE obstruction. Further, by Lemma 23, we
get that either ℓ = 1, or k = ℓ = 2.

The proof of the following lemma reveals the structure of the minimal (k, ℓ)-CE ob-
structions in detail:

Lemma 25. For 2 > k > ℓ, the list of minimal (k, ℓ)-CE obstructions is given in Fig. 9.
For k > 3, the minimal (k, ℓ)-CE obstructions have ℓ = 1 and consist of the graph Hk

together with a vertex u, either adjacent to all vertices of Hk, or u = tk.

Proof. The simplest case is when there exist a path Pk from xk to zk avoiding N [yk],
and a path P ′ℓ from yk to zk avoiding N [xk]. Let Pk and P ′ℓ be shortest such paths as
in Fig. 26, right. We get a (1, 1)-CE obstruction. By Lemma 9, the paths Pk and P ′ℓ
are monotone. Therefore, their inner vertices are non-adjacent to each other, with the
possible exception of the last vertices before zk, which can be adjacent or even identical.

R′

zk

u

xk yk

Tα Tβ Tγ

xk zk yk

u

· · · · · ·
Pk P ′ℓ

Figure 26: When 〈u〉′ single overlaps 〈zk〉
′, and the vertices xk, yk, and zk are placed in

the MPQ-tree as on the right, we get a (k, ℓ)-CE obstruction.
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Tα Tβ Tγ

xk zk yk

tk xk−1

· · · · · ·
Pk P ′ℓ = yktkzk

(a)

Tα Tβ Tγ

xk zk yk

tk
t′ℓ xk−1

y′ℓ−1 · · · · · ·

Wk

Pk−1 P ′ℓ−1

C(xk)
C(zk)

C(yk)
(b)

Figure 27: (a) Case 1: If there exists a path P ′ℓ from yk to zk avoiding N [xk], then we get
a (k, 1)-CE obstruction. (b) Case 2: We get a (2, 2)-CE obstruction.

Concerning minimality, we can always find one of the three finite (1, 1)-CE obstructions
depicted in Fig. 9a. The reason is that when paths Pk and P ′ℓ are long, we can take as xk

and yk one of their inner vertices, making them shorter.
Suppose next that there exists no path Pk from xk to zk avoiding N [yk]. Assuming

that 〈xk〉 is placed on the left of 〈yk〉, we apply k-FAT Lemma 22 and we get the subgraph
Hk of a k-FAT obstruction (which is not the complete k-FAT obstruction because xk and
yk are free). Let C(xk), Wk, and tk be defined as in the proof of k-FAT Lemma 22.

Case 1: There exists some path P ′ℓ from yk to zk avoiding N [xk]. Let P
′
ℓ be a shortest

such path (notice that ℓ = 1). Together with the above subgraph Hk, we get a (k, 1)-CE
obstruction; see Fig. 27a. In particular, if some vertex w ∈ Wk is non-adjacent to xk

(possibly w = tk), we can use P ′ℓ = ykwzk.
We note that when k > 3, such a path P ′ℓ necessarily exists, as we can use P ′ℓ =

yktk−1zk, as argued in Lemma 23. Therefore, the (k, 1)-CE obstructions consist of the
subgraph Hk together with u; assuming minimality, we have that either u is adjacent to
all vertices of Hk, or u = tk. If k = 2, then P ′ℓ might still exist but it might be longer
and might use inner vertices not contained in Hk. Concerning minimality, we always find
one of the three (2, 1)-CE obstructions depicted in Fig. 9b. Indeed, P2 can be assumed
to be of length one or two, since otherwise we could use one of its inner vertices as x2.
For length two, we get P ′1 = yktkzk. For length one, we get a path P ′1 from z2 to y2, and
we can assume that y2 is adjacent to x1 (otherwise we could use as y2 the neighbor of x1

on P1).
Case 2: No such path P ′ℓ exists. By Lemma 23, necessarily k = 2. We want to show

that there exists a (2, 2)-CE obstruction which we describe in detail.
Notice that all vertices w ∈ Wk are adjacent to xk, yk, and zk, since otherwise there

would exist a path P ′ℓ = ykwzk avoiding N [xk]. Hence the vertices ofWk belong to sections
of Q, covering all subtrees between Tα and Tγ; see Fig. 27b. Let C(yk) and C(zk) be the
components of G[Q] \Wk containing yk and zk, respectively. Since there exists no path
P ′ℓ, we obtain that C(xk), C(yk), and C(zk) are pairwise different. To determine the
structure of a (2, 2)-CE obstruction, we apply the argument from Case 1 of the proof of
k-FAT Lemma 22 symmetrically twice.

Let tk be a vertex of Wk having leftmost section s→tk (Q) and let t′ℓ be a vertex of Wk

having rightmost section s←t′
ℓ

(Q) (possibly tk = t′ℓ). It is easy to see that C(zk) is small,
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otherwise we could flip it and obtain an ordering of the maximal cliques not compatible
with the Q-node.

Similarly as in the proof of k-FAT Lemma 22, this implies that both C(xk) and C(yk)
are big. Therefore, tk is not universal for C(yk) and t′ℓ is not universal for C(xk). As in the
proof of k-FAT Lemma 22, we choose xk−1 ∈ C(yk) non-adjacent to tk and y′ℓ−1 ∈ C(xk)
non-adjacent to t′ℓ. There exist paths Pk−1 from xk−1 to yk and P ′ℓ−1 from y′ℓ−1 to xk. In
consequence, we obtain a (2, 2)-CE obstruction.

Regarding minimality, notice that we can assume that y2 is adjacent to x1, and x2 is
adjacent to y′1; otherwise, we could choose as y2 and x2 the neighbors of x1 and y′1 on the
paths P1 and P ′1, respectively. We get the four minimal finite (2, 2)-CE obstructions that
are illustrated in Fig. 9c.

8.3 Cliques in Three Different Subtrees

When a Q-node Q is obstructed by three maximal cliques a ∈ Tα, b ∈ Tβ and Tγ , where
α < β < γ, the situation is quite complex. Fig. 28 gives an overview of the cases and
obstructions obtained in this case.

Lemma 26. Without loss of generality, we can assume that a ⊳ b ⊲ c and y(a) 6 y(c).

Proof. Since a, b and c create an obstruction, b is either a minimal or a maximal element
in ⊳ |{a,b,c}. Without loss of generality (using the flip operation), we can assume that b
is maximal, so a ⊳ b ⊲ c. Since we can swap a and c by reversing the Q-node, we can
assume that y(a) 6 y(c).

Since a ⊳ b ⊲ c, both Ia and Ic appear on the left of Ib. Since y(a) 6 y(c), either Ia
contained in Ic, or Ia is on the left of Ic. The first case is easier:

Lemma 27. If Ia is contained in Ic, then G and R′ contain a (k, ℓ)-CE obstruction,
where ℓ = 1 or 2 > k > ℓ.

Proof. The proof is illustrated in Fig. 29. By Lemma 14, P (c) ⊆ P (a). Since b is placed
between a and c in the Q-node Q, every vertex contained in both a and c is contained in
b as well. Hence P (c) ( P (b), and there exists r ∈ P (b) \ P (c). Since 〈r〉′ is on the right
of Ic, it is also on the right of Ia, and thus r /∈ P (a).

Let u ∈ P 7→(c). We apply Sliding Lemma 15 to Ic, Ib, and 〈r〉′. We get a pre-drawn
interval 〈zk〉

′ covering r(u), and an induced path Pr,zk from r to zk consisting of pre-drawn
intervals not in P (c). Therefore zk is on the left of c in Q. Since all pre-drawn intervals
of Pr,zk do not belong to P (c), they are on the right of Ic. Thus they are also on the right
of Ia, which implies that they do not belong to P (a). Consequently, zk is between a and
c in Q.

Let xk ∈ a and yk ∈ c be vertices non-adjacent to zk. By (k, ℓ)-CE Lemma 24, xk, yk,
zk, and u create a (k, ℓ)-CE obstruction, for ℓ = 1 or 2 > k > ℓ. Notice that the clique
associated to zk is some b′ 6= b.
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Lemma 26

a ⊳ b ⊲ c, y(a) ≤ y(c)

Lemma 27

P (b) \ P (c) 6= ∅

Lemma 28

P (a) \ P (c) 6= ∅

Lemma 29

P (a) ( P (c)

P (b) ( P (c)

Lemma 30

Lemma 31

P (a) \ P (c) 6= ∅

Lemma 32

P (a) ( P (c)

(k, ℓ)-CE

k-BI
k-FB

k-EFB

k-FAT
k-FS

k-FNS

k-FDS

k-EFS

(k, 1)-CE

k-FS

(k, 1)-CE

k-FB

k-BI

k-FDS
k-EFDS

Sliding Lemma

15

k-FAT Lemma

22

(k, ℓ)-CE Lemma

24

Ia

Ic

Ib

rIa Ic Ib

Ia Ic Ib

r

Ia Ic Ib

rp

Ia Ic Ib

rq

Ia Ic Ib

q

Ia Ic Ib

q r

Ia Ic Ib

q rxk

Ia Ic Ib
q r
p

Figure 28: A summary of Section 8.3. The diagram starts in the middle with Lemma 26.
Inside the cases, we draw the positions of Ia, Ib, Ic, and some pre-drawn intervals. An
arrow at a pre-drawn interval means that it may be further stretched in the given direction.
The obtained obstructions are highlighted in gray, the used tools have highlighted borders.
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slide

Ia

Ic

Ib

r

u

zk

Tα Tβ Tγ

xk r yk

u
zk Pr,zk

· · · · · ·

Figure 29: Proof of Lemma 27. On the left, the pre-drawn intervals. On the right, their
positions in the MPQ-tree.

The case where Ia is on the left of Ic is further divided into several subcases. In the
next two lemmas, we focus on the situation where P (b) \ P (c) 6= ∅.

Lemma 28. If Ia is on the left of Ic, P (b) \ P (c) 6= ∅ and P (a) \ P (c) 6= ∅, then G and
R′ contain a k-FAT, k-BI (k 6 2), k-FB, or k-EFB obstruction.

Proof. The proof is illustrated in Fig. 30. Let p ∈ P (a) \P (c) and r ∈ P (b) \P (c). Then
〈p〉′ is on the left of Ic, and 〈r〉′ is on the right of Ic. Clearly, 〈p〉

′ and 〈r〉′ are disjoint, so
p appears in the Q-node on the left of r. Let u ∈ P 7→(c) and v ∈ P 7→(c) (possibly u = v).

If r(u) 6 r(r), then zk = r. Obviously, zk is between p and c in the Q-node. Otherwise,
P (c) ( P (b), and we apply Sliding Lemma 15 to Ic, Ib, and r. We obtain a pre-drawn
interval 〈zk〉

′ not contained in P (c) covering r(u), and a path Pr,zk whose inner vertices
are pre-drawn and not contained in P (c). Notice that all of these pre-drawn vertices are
on the right of Ic. Therefore, these vertices are not contained in P (a). In this case, we
also get that zk is between p and c in the Q-node.

Similarly, if ℓ(p) 6 ℓ(v), then xk = p. Otherwise, we use the flipped version of Sliding
Lemma 15 to Ic, Ia, and p, which gives a pre-drawn interval 〈xk〉

′ not contained in P (c)
covering ℓ(v). By a similar argument, in both cases, we show that xk is on the left of zk
in the Q-node.

Let yk ∈ c be a vertex non-adjacent to zk (possibly, yk = u or yk = v). Such a vertex
exists because zk is on the left of c in the Q-node. Notice that yk is also non-adjacent
to xk. Since yk is adjacent to u and v, in every extending representation 〈yk〉 is between
〈xk〉

′ and 〈zk〉
′. So we can assume that it is pre-drawn in this position and, by k-FAT

Lemma 22, we get a k-FAT obstruction. Together with u and v (or possibly only one of
them), we get one of the obstructions in Fig. 31.

slide?slide?
Ia Ic Ib

p r
u v

xk zk

Tα Tβ Tγ

p r yk

u
zkxk

v
Pr,zk

Pp,xk · · · · · ·

Figure 30: Proof of Lemma 28. On the left, the pre-drawn intervals, with possible sliding
on each side. On the right, their positions in the MPQ-tree.

the electronic journal of combinatorics 25 (2018), #P00 37



xk zkyk
u or v

k-FAT
(a)

xk zk

u or v

yk

k-BI
(b)

xk zk

u or v

yk

k-FB
(c)

xk zk
u v

yk

k-EFB
(d)

xk zk
u v

yk

k-BI
(e)

Figure 31: The different obstructions obtained in the proof of Lemma 28. If ℓ(xk) 6

ℓ(u) 6 r(u) 6 r(zk), we get one of the obstructions (a) to (c). Since zk is in the Q-node
between xk and c, if u or v intersect xk, then they also intersect zk. In the cases (d)
and (e), ℓ(u) < ℓ(xk) and r(zk) < r(v). Since u intersects zk, there are only two possible
obstructions.

Lemma 29. If Ia is on the left of Ic, P (b) \ P (c) 6= ∅ and P (a) ( P (c), then G and R′

contain a k-FAT, (k, 1)-CE, k-FS, k-FDS, k-FNS, or k-EFS obstruction.

Proof. We choose r ∈ P (b)\P (c) and q ∈ P (c)\P (a) with leftmost right endpoint. Then
〈r〉′ is on the right of Ic and 〈q〉′ is on the right of Ia. We note that q might be adjacent to
r or not, and might belong to P (b) or not. Since P (a) ( P (c), we get from the structure
of the Q-node that also P (a) ( P (b). Let u ∈ P 7→(a). Notice that at least one of q and
u belongs to P 7→(c).

Case 1: u ∈ P 7→(c). Then r(u) 6 r(q) and P (c) ( P (b); the situation is depicted
in Fig. 32a. We apply Sliding Lemma 15 to Ic, Ib, and r. We get a pre-drawn interval
zk /∈ P (c) covering r(u), and a path Pr,zk consisting of pre-drawn intervals not contained
in P (c). Therefore, zk is on left of c in the Q-node. Since Ia is on the left of Ic, all vertices
of Pr,zk are also not contained in P (a). Thus zk is on the right of a in the Q-node.

Choose yk ∈ c non-adjacent to zk. By Lemma 10, there exists xk ∈ a non-adjacent
to both zk and q. Since zk is between a and c in the Q-node, also xk is non-adjacent to
yk. Since ykqzk is a path avoiding N [xk], by (k, ℓ)-CE Lemma 24 we obtain a (k, 1)-CE
obstruction.

Case 2: q ∈ P 7→(c). Then r(q) < r(u). First we argue that, without loss of generality,
we can assume that either 〈q〉′ and 〈r〉′ are disjoint, or 〈r〉′ covers r(q). Suppose that 〈r〉′

is contained in 〈q〉′. Since q ∈ P 7→(c), this implies that P (c) ( P (b). By applying Sliding
Lemma 15 to Ic, Ib and r, we obtain a pre-drawn interval r̃ not in P (c) which covers r(q).
We also get a path Pr,r̃ whose vertices are pre-drawn and not contained in P (c); since
Ia is on the left of Ic, they are also not in P (a). Therefore r̃ is between a and c in the

Q-node. Further, r̃ belongs to some clique b̃ for which Ib̃ is on the right of Ic. From now

on, we work with r̃ as r, and with b̃ as b. Hence the assumption on the relative positions
of 〈q〉′ and 〈r〉′ holds.
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Figure 32: Proof of Lemma 29. On the left, the pre-drawn intervals. On the right, their
positions in the MPQ-tree. (a) Case 1. (b) Subcase 2A. (c) Subcase 2B.

We apply Sliding Lemma 15 to Ia, Ib and r, and we get a pre-drawn interval s /∈ P (a)
covering r(u). This sliding is weaker that in Case 1: we know that s is on the right
of a, but we do not know its position with respect to c. We distinguish three subcases
according to the relative positions of q and s in the Q-node.

Subcase 2A: s is on the right of q. The situation is depicted in Fig. 32b. Let xk = s
and yk = r. If 〈q〉′ is on the left of 〈r〉′, let zk = q. Otherwise, let zk ∈ c be a vertex
non-adjacent to r, but possibly adjacent to xk. Since in every extending representation
zk is placed on the left of yk, we can apply k-FAT Lemma 22 to xk, yk and zk, and get
a subgraph Hk. If 〈q〉′ is on the left of 〈r〉′, then Hk gives a k-FAT obstruction. If 〈r〉′

covers r(q), then Hk together with ũ = q gives a k-FS obstruction.
Subcase 2B: s is on the left of q. We choose xk ∈ a and yk ∈ c non-adjacent to s; such

vertices exist because s is between a and c in the Q-node. By (k, ℓ)-CE Lemma 24, we
get a (k, ℓ)-CE obstruction for xk, yk, zk = s and u. Notice that we can construct a path
Pyk,zk from yk to zk avoiding N [xk] by applying Sliding Lemma 15 to Ia, Ic, and q. Thus
ℓ = 1.

Subcase 2C: 〈s〉′ intersects 〈q〉′. Notice that 〈s〉′ also intersects 〈r〉′. Therefore, if
s /∈ P (c), then it appears in the Q-node between a and c. Let zk = s; we get a (k, 1)-
CE obstruction as follows. We choose yk ∈ c non-adjacent to zk. By Lemma 10, there
exists xk ∈ a non-adjacent to q, yk, and zk. By (k, ℓ)-CE Lemma 24, we get a (k, 1)-CE
obstruction for xk, yk, zk and u as illustrated in Fig. 33a; notice that the path ykqzk avoids
N [xk].

It remains to deal with the situation when s ∈ P (c). Let zk = r. If 〈q〉′ intersects 〈r〉′,
let yk ∈ c be a vertex non-adjacent to r; otherwise let yk = q. By Lemma 10, there exists
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Figure 33: Four possible obstructions obtained in Subcase 2C of the proof of Lemma 29.
(a) If s /∈ P (c), we get a (k, 1)-CE obstruction. (b) If 〈q〉′ intersects 〈r〉′, we get a k-FNS
obstruction. Recall that the relative order of ℓ(q) and ℓ(s) does not matter. (c) If 〈q〉′ is
on the left of 〈r〉′ and ℓ(q) 6 ℓ(s), we get a k-FDS obstruction. (d) If 〈q〉′ is on the left of
〈r〉′ and ℓ(s) < ℓ(q), we get a k-EFS obstruction.

xk ∈ a non-adjacent to q, yk, and zk. In every extending representation, 〈yk〉 is placed on
the left of 〈zk〉

′, and 〈xk〉 is placed on the left of 〈yk〉. Therefore, by k-FAT Lemma 22, we
get a subgraph Hk of a k-FAT obstruction. Together with u, v = s, w = q (for yk 6= q),
or possibly some of them, we get a k-FDS, k-EFS, or k-FNS obstruction; see Fig. 33b, c,
and d.

The case where P (b) ( P (c) is addressed in Lemmas 31 and 32. First, we need an
auxiliary result.

Lemma 30. If Ia is on the left of Ic and P (b) ( P (c), there exist q ∈ P (c) \ P (b) and
r ∈ P (b) \P (a) such that 〈q〉′ is on the right of Ia and on the left of Ib, and 〈r〉′ is on the
right of Ia, containing Ic and Ib. Without loss of generality, 〈q〉′ covers ℓ(r).

Proof. The proof is depicted in Fig. 34. Clearly, there exists q ∈ P (c) \ P (b). Due to the
structure of the Q-node, we also have that q /∈ P (a). Therefore, 〈q〉′ is between Ia and Ib.

Next, we argue that there exists r ∈ P (b) \ P (a). For contradiction, assume that
P (b) ( P (a). Let v ∈ P 7→(b); notice that v contains Ia and Ic. By the flipped version
of Sliding Lemma 15 applied to Ic, Ib and q, there exists a path consisting of pre-drawn
intervals not contained in P (b) from q to z, where 〈z〉′ covers ℓ(v). At least one interval of
this path intersects Ia, so it belongs to P (a). This contradicts the fact that b is between
a and c in the Q-node. Hence, there exists r ∈ P (b) \ P (a).

slide
Ia Ic IbIc̃

q

r

q̃

Tα Tβ Tγ

q

r
q̃

Pr,zk· · · · · ·

Figure 34: Proof of Lemma 30. On the left, the pre-drawn intervals. On the right, their
positions in the MPQ-tree.
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Figure 35: Proof of Lemma 31. We derive that 〈xk〉
′ is on the left of 〈q〉′, which gives a

k-FS obstruction based on the positions in the Q-node.

We choose r having rightmost left endpoint. Clearly, 〈r〉′ is on the right of Ia, and
contains Ib and Ic. Suppose that ℓ(r) < ℓ(q). Since r has rightmost left endpoint among
all intervals in P (b) \ P (a), and every interval in P (a) has its left endpoint more to the
left, we obtain that r ∈ P 7→(b). Therefore, we can apply the flipped version of Sliding
Lemma 15 to Ic, Ib and q. We get a pre-drawn interval q̃ /∈ P (b) covering ℓ(r), and a
path Pq,q̃ from q to q̃ whose vertices are not in b. Therefore, q̃ is on the right of b in the
Q-node. Let c̃ be a maximal clique containing q̃. Since Ic̃ is contained in q̃, it is between
Ia and Ib. Therefore, we can work with q̃ and c̃ instead of q and c. Thus we can assume
that 〈q〉′ covers ℓ(r).

For P (b) ( P (c), we distinguish two cases.

Lemma 31. If Ia is on the left of Ic, P (b) ( P (c), and P (a) \ P (c) 6= ∅, then G and R′

contain a k-FS obstruction.

Proof. The proof is illustrated in Fig. 35. By Lemma 30, there exist q ∈ P (c) \ P (b) and
r ∈ P (b) \P (a) such that 〈q〉′ covers ℓ(r). Let xk ∈ P (a) \P (c) and yk = q. Then 〈xk〉

′ is
on the left of Ic, and therefore also on the left of Ib. Thus xk /∈ P (b). We infer that xk is
on the left of b in the Q-node, so it is non-adjacent to yk. In consequence, 〈xk〉

′ is on the
left of 〈yk〉

′. Let zk ∈ b be a vertex non-adjacent to yk.
If zk is adjacent to xk, we get a 1-FS obstruction. Otherwise, in every extending

representation, 〈zk〉 is to the right of 〈yk〉
′. By k-FAT Lemma 22, we get a subgraph Hk

of a k-FAT obstruction. Together with u = r, this leads to a k-FS obstruction.

Lemma 32. If Ia is on the left of Ic, P (b) ( P (c) and P (a) ( P (c), then G and R′

contain a (k, 1)-CE, k-FB, k-BI, k-FDS, or k-EFDS obstruction.

Proof. Let p ∈ P 7→(a), and q be the vertex from Lemma 30. By applying Sliding
Lemma 15 to Ia, Ic and q, we get a pre-drawn interval s /∈ P (a) covering r(p), and a
path Pq,s of intervals not in P (a), so s appears on the right of a in the Q-node. Similarly
as in Case 2 of the proof of Lemma 29, we distinguish three cases according to the relative
positions of s and q in the Q-node; see Fig 36.

Case 1: s is on the left of q. By Lemma 10, there exists xk ∈ a non-adjacent to all
vertices of Pq,s, in particular non-adjacent to s and q. Let yk = q, zk = s, and u = p.
Clearly, zk is between xk and yk in the Q-node. By (k, ℓ)-CE Lemma 24 and the existence
of Pyk,zk , we get a (k, 1)-CE obstruction. Notice that 〈yk〉

′ can be made free; see Fig. 36a.
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Figure 36: Proof of Lemma 32. On the left, the pre-drawn intervals. On the right, their
positions in the MPQ-tree. (a) Case 1. (b) Case 2. (c) Case 3, if ℓ(yk) 6 ℓ(s). (d) Case
3, if ℓ(yk) > ℓ(s).

Case 2: s is on the right of q. Since q is between b and s in the Q-node, we get that
s /∈ P (b). Let xk = s, zk = q, and u = r, where r is the vertex from Lemma 30. There
exists yk ∈ b non-adjacent to zk and, by the structure of the Q-node, also non-adjacent
to xk. Since yk is adjacent to p and r, 〈yk〉 is between 〈xk〉

′ and 〈zk〉
′ in every extending

representation. By k-FAT Lemma 22, we get a subgraph Hk of a k-FAT obstruction. If
r(r) 6 r(xk), together with u, we obtain a k-FB or a k-BI obstruction. If r(r) > r(xk),
together with u and v = p, we obtain a k-BI obstruction; see Fig. 36b.

Case 3: 〈s〉′ intersects 〈q〉′. Since s contains Ib, it belongs to P (b). Let yk = q, u = p,
v = s, and w = r; we note that possibly s = r. By Lemma 10, there exists xk ∈ a
non-adjacent to yk, v, and w. Since xk is adjacent to u, then 〈xk〉 is on the left of 〈yk〉

′

in every extending representation. Finally, there exists zk ∈ b non-adjacent to yk. Since
zk is adjacent to u, v, and w, we have that 〈zk〉 is on the right of 〈yk〉

′ in every extending
representation.

Since zk is between xk and yk in the Q-node, we can apply k-FAT Lemma 22, which
gives a subgraph Hk of a k-FAT obstruction. If ℓ(yk) 6 ℓ(v), together with u and v, we
obtain a k-FDS obstruction; see Fig. 36c. If ℓ(yk) > ℓ(v), together with u, v, and w, we
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get a k-EFDS obstruction; see Fig. 36d.

In summary, we conclude:

Lemma 33 (The Q-node, Three Subtrees). If the three cliques creating the obstruction
belong to three different subtrees, then G and R′ contain a k-FAT, k-BI (k 6 2), k-FS, k-
EFS, k-FB, k-EFB, k-FDS, k-EFDS, k-FNS, or (k, ℓ)-CE obstruction (either k = ℓ = 2,
or k > ℓ = 1).

Proof. For an overview, see the diagram in Fig. 28. The proof follows from Lemmas 26–
32.

9 Proofs of the Main Results

Now, we are ready to put all results together to prove the main theorem. It states that a
partial representation R′ of G is extendible if and only if G and R′ contain none of the
obstructions described in Section 2.

Proof of Theorem 1. If G and R′ contain one of the obstructions, they are non-extendible
by Lemma 5. It remains to prove the converse. If G is not an interval graph, it contains an
LB obstruction [30]. Otherwise, G is an interval graph and there exists an MPQ-tree T for
it. By Lemma 12, we know that a partial representation R′ is extendible if and only if T
can be reordered according to ⊳. If it cannot be reordered, then the reordering algorithm
fails in some node of T . If this reordering fails in a leaf, we get a 1-BI obstruction by
Lemma 16. If it fails in a P-node, we get an SE, 1-BI, or 1-FAT obstruction by Lemma 19.
And if it fails in a Q-node, we get one of the obstructions of Section 2 by Lemmas 20, 21,
and 33.

Next, we show that a partial representation R′ is extendible if and only if every
quadruple of pre-drawn intervals is extendible by itself.

Proof of Corollary 2. The result follows from the fact that all the obstructions of Theo-
rem 1 contain at most four pre-drawn intervals.

Concerning the certifying algorithm, we first show that k-FAT obstructions can be
found in linear time:

Lemma 34. Suppose that the assumptions of k-FAT Lemma 22 are satisfied. Then we
can find a k-FAT obstruction in time O(n+m).

Proof. Since the proof of k-FAT Lemma 22 is constructive, the algorithm follows it. Let
Q be the Q-node. We search the graph G[Q] \N [yk] from xk to compute C(xk), and test
whether zk belongs to it. If it does, the algorithm stops and outputs 1-FAT. Otherwise,
we compute Wk, choose tk, and store it together with Pk. We choose xk−1 as in the the
proof; if si(Q) = s→tk (Q), then either s←xk−1

(Q) = si+1(Q), or xk−1 belongs to sections of
Ti+1. Then we apply the rest of the algorithm recursively. It is important that then we
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can remove C(xk) and Wk from the graph because they are not used in the remainder of
the obstruction.

Since the algorithm searches each vertex and edge of G[Q] \N [yk] at most once when
computing C(xj), we obtain that the algorithm runs in time O(n+m).

Similarly, a (k, ℓ)-CE obstruction can be obtained from (k, ℓ)-CE Lemma 24 in time
O(n + m). Since obstructions are built constructively, we get a linear-time certifying
algorithm for the partial representation extension problem:

Proof of Corollary 3. We can assume that G is an interval graph; otherwise we can find an
LB obstruction in time O(n+m) using [32]. Each interval graph has O(n) maximal cliques
of total size O(n +m), and that they can be found in linear time [36]. We compute the
MPQ-tree T in timeO(n+m) using [28]. Next, we use the partial representation extension
algorithm of [23] in time O(n + m), which either finds an extending representation, or
finds an obstructed node which cannot be reordered according to ⊳. We distinguish three
cases according to the distinct types of obstructed nodes.

Case 1: A leaf cannot be reordered. We output a 1-BI obstruction in time O(n), by
searching the partial representation.

Case 2: A P-node P cannot be reordered. From the partial representation extension
algorithm, we get directly a two-cycle, ensured by Lemma 17, and four maximal cliques
a, b, c, and d defining it. By Lemma 18, one of these maximal cliques can be omitted,
and it can be clearly found in constant time. It remains to output an SE, 1-BI, or 1-FAT
obstruction in time O(n+m), by following Lemma 19. For 1-BI and 1-FAT obstructions,
we find a shortest path in G[P ] \N [yk] by searching the graph.

Case 3: A Q-node Q cannot be reordered. From the partial representation exten-
sion algorithm, we get four maximal cliques defining the obstruction and, by following
Lemma 20, we can reduce it to at most three maximal cliques. An SE obstruction can be
computed in time O(n +m). If three maximal cliques are contained in two subtrees, we
follow Lemma 21 and output one of the obstructions in time O(n+m).

If three maximal cliques belong to three different subtrees, we follow the structure
of the proof of Lemma 33. In all cases, we derive some vertices somehow placed in the
Q-node and some pre-drawn intervals, which can be easily done in time O(n+m). Next,
we either apply k-FAT Lemma, or (k, ℓ)-CE Lemma to construct the obstruction, which
can be done in time O(n+m) by Lemma 34.

10 Conclusions

In this paper, we have described the minimal obstructions that make a partial interval
representation non-extendible. There are three main points following from the proof:

1. Minimal obstructions for the partial representation extension problem are much
more complicated than minimal forbidden induced subgraphs of interval graphs,
characterized by Lekkerkerker and Boland [30].
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2. Nevertheless, it is possible to describe these obstructions using structural results
derived in [23] and in this paper. We show that almost all of these obstructions
consist of three intervals xk, yk and zk that are forced by the partial representation
to be drawn in an incorrect left-to-right order. This incorrect placement leads to
the complex zig-zag structure of a k-FAT obstruction.

3. The structure of the sections of a Q-node Q can be very intricate. Suppose that
we contract in G[Q] the sections of each subtree Ti into one vertex. Then we get
an interval graph which has a unique interval representation up to flipping the real
line. Such interval graphs have been extensively studied, see for instance [16, 12, 34].
Therefore, our structural results needed to find minimal obstructions may be of
independent interest.

Structural Open Problems. The first open problem we propose is a characteriza-
tion of minimal obstructions for other graph classes. We select those classes for which
polynomial-time algorithms are known [8, 20, 21]. Circle graphs (CIRCLE) are intersection
graphs of chords of a circle. Function graphs (FUN) are intersection graphs of continuous
functions f : [0, 1] → R, and permutation graphs (PERM) are function graphs which can
be represented by linear functions. Proper interval graphs (PROPER INT) are intersection
graphs of closed intervals in which no interval is a proper subset of another interval. Unit
interval graphs (UNIT INT) are intersection graphs of closed intervals of length one.

Problem 35. What are the minimal obstructions for partial representation extension of
the classes CIRCLE, FUN, PERM, PROPER INT, and UNIT INT?

The second open problem involves a generalization of partial representations called
bounded representations [2, 21, 37, 38]. Suppose that a graph G is given together with
two closed intervals Lv and Rv for every vertex v ∈ V (G). A bounded representation of
G is a representation such that ℓ(v) ∈ Lv and r(v) ∈ Rv for every vertex v ∈ V (G). We
call bounds solvable if and only if there exists a bounded representation. This generalizes
partial representations: we can use singletons Lv and Rv for pre-drawn intervals and put
them equal R for the others.

Problem 36. What are minimal obstructions making bounds for interval graphs unsolv-
able?

Algorithmic Open Problems. We have described a linear-time certifying algorithm
that can find one of the minimal obstructions in a non-extendible partial representation.
There are several related computational problems, suggested by Jan Kratochv́ıl, for which
the complexity is open:

Problem 37. What is the computational complexity of the problem of testing whether
a given minimal obstruction is contained in G and R′?
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Since a minimal obstruction contains at most four pre-drawn intervals, we can test
over all subsets of at most four pre-drawn intervals whether they form an obstruction
(say, by freeing the rest of them and testing whether the modified partial representation
is extendible). If k is fixed, we can test whether the subgraph of a given obstruction is
contained in G. Given a triple xk, yk and zk forming a k-FAT obstruction, the proof of
k-FAT Lemma 22 and the algorithm of Lemma 34 constructs it while minimizing k. The
approach needs to be changed to check whether they also form an ℓ-FAT obstruction, for
ℓ > k.

The next problem generalizes the partial representation extension problem.

Problem 38. What is the computational complexity of testing whether at most ℓ pre-
drawn intervals can be freed to make a partial representation R′ extendible?

Similar problems are usually NP-complete. On the other hand, we propose the fol-
lowing reformulation which might lead to a polynomial-time algorithm. Every minimal
obstruction contains at most four pre-drawn intervals. Let P be the set of pre-drawn in-
tervals, and let S consist of all subsets of P of size at most four which form an obstruction.
We can clearly compute S in polynomial time. Then the problem above is equivalent to
finding a minimal hitting set of P and S. This problem is in general NP-complete, but
the extra structure given by the MPQ-tree might make it tractable.

Problem 39. What is the complexity of testing whether it is possible to remove at most
ℓ vertices from an interval graph G to make a partial representation extendible R′?

This problem is fundamentally different from Problem 38, in which the partial rep-
resentation R′ is modified. In this problem, we modify the graph G itself, changing its
structure. When we remove a pre-drawn vertex, we also remove its pre-drawn interval
from the partial representation. We note that the assumption that G is an interval graph
is important. For general graphs G, the problem is known to be NP-complete even when
R′ = ∅ [31].

Acknowledgements
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