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Abstract

We show that symmetric Venn diagrams for n sets exist for every prime n,
settling an open question. Until this time, n = 11 was the largest prime for which
the existence of such diagrams had been proven, a result of Peter Hamburger. We
show that the problem can be reduced to finding a symmetric chain decomposition,
satisfying a certain cover property, in a subposet of the Boolean lattice Bn, and prove
that such decompositions exist for all prime n. A consequence of the approach is
a constructive proof that the quotient poset of Bn, under the relation “equivalence
under rotation”, has a symmetric chain decomposition whenever n is prime. We
also show how symmetric chain decompositions can be used to construct, for all n,
monotone Venn diagrams with the minimum number of vertices, giving a simpler
existence proof.
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1 Introduction

1.1 Venn Diagrams

Following Grünbaum [Grü75], an n-Venn diagram is a collection of n simple closed curves
in the plane, {Θ1, Θ2, . . . , Θn}, with the property that for each S ⊆ {1, 2, . . . , n} the
region ⋂

i∈S

int(Θi) ∩
⋂
i6∈S

ext(Θi)

is nonempty and connected, where int(Θi) and ext(Θi) denote the interior and exterior,
respectively, of Θi. For this paper, we require that any two of the curves Θi intersect
in only a finite number of points. Figure 1 shows four 3-Venn diagrams ((b), (c) and
(d) are from [CHP96]). A region of the Venn diagram is a maximal connected subset of
R2 − ∪n

i=1Θi, where R2 denotes the set of all points in the plane. Thus, a Venn diagram
partitions R2 −∪n

i=1Θi into exactly 2n regions, one for each subset of {1, 2, . . . , n}.
A Venn diagram is called simple if no three curves have a common point of intersection.

In Figure 1, the Venn diagram (a) is simple, but the others are not.
It is known that n-Venn diagrams exist for all n ≥ 1 and constructions of Venn

[Ven80] and Edwards [Edw89] are illustrated in [Rus97]. Most of the results, conjectures,
and problems we mention in this paper can be found in [Rus97], an excellent survey and
expository article on Venn diagrams by Frank Ruskey.

1.2 Symmetric Venn Diagrams

A symmetric Venn diagram is one with rotational symmetry. That is, there is a point
p in the plane such the each of the n rotations of Θ1 about p by an angle of 2πi/n,
0 ≤ i ≤ n− 1, coincides with one of the curves Θ1, Θ2, . . . , Θn. For example, in Figure 1,
the Venn diagrams (a) and (c) are symmetric, but (b) and (d) are not.

Symmetric Venn diagrams have been considered by several researchers including Hen-
derson [Hen63], Grünbaum [Grü92, Grü99], Ruskey [Rus97], Edwards [Edw98], and Ham-
burger [Ham02]. Henderson [Hen63] proved that symmetric Venn diagrams are not possi-
ble when n is not prime, but symmetric Venn diagrams are known for the primes n = 3, 5, 7
and, most recently, for n = 11 [Ham02]. It has been an open question whether a sym-
metric n-Venn diagram exists for every prime number n [Grü75]. The main result of this
paper is a constructive proof to show that the answer is yes - symmetric n-Venn diagrams
exist for every prime n.

For a survey of results on symmetric Venn diagrams, as well as Hamburger’s construc-
tion of the first known symmetric Venn diagram for n = 11 sets see [Ham02].

1.3 Monotone Venn Diagrams

Two distinct regions of a Venn diagram are adjacent if their boundaries intersect at a set
of positive length. For example, in Figure 1(d), the region corresponding to {1, 2, 3} is
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Figure 1: Four 3-Venn diagrams.
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adjacent only to {1, 3} and {2, 3}. A monotone Venn diagram is one in which every region
corresponding to a subset of size k is adjacent to at least one region corresponding to a
set of size k − 1 (if k > 0) and at least one region corresponding to a set of size k + 1 (if
k < n). For example, in Figure 1, Venn diagrams (a), (b), and (c) are monotone, but (d)
is not, since the region corresponding to {1, 2} is not adjacent to the region {1, 2, 3}.

Monotone Venn diagrams are interesting because of their relationship to convex Venn
diagrams. A Venn diagram is convex if the bounded region enclosed by each curve Θi

is convex. If, in addition, the complement of the unbounded region is convex, the Venn
diagram is strongly convex. Convex n-Venn diagrams for all n were shown to exist in
[RRS51] and the existence of strongly convex n-Venn diagrams for all n was established
by Grünbaum in [Grü75]. The Venn diagrams constructed in both of these papers were
monotone as well. It was shown in [BGR98] that a Venn diagram is isomorphic to a
convex Venn diagram if and only if it is monotone. In Figure 1, diagram (c) is a convex
Venn diagram isomorphic to the (non-convex) monotone Venn diagram (b).

Define a vertex of a Venn diagram defined by the curves {Θ1, Θ2, . . . , Θn} to be a
point in the plane where two or more of the curves Θi intersect. We can regard the Venn
diagram as a plane graph P (that is, a planar embedding of a planar graph) whose vertices
are these intersection points and where two vertices are joined by an edge in P if they
are consecutive intersection points on one of the curves Θi. The number of vertices of the
Venn diagram is the number of faces in any embedding of the dual graph of P .

In [BR98] Bultena and Ruskey ask for Venn diagrams with the minimum number of

vertices. They show that a monotone Venn diagram always has at least

(
n

b(n/2)c
)

vertices

and provide a construction which shows that monotone Venn diagrams which achieve this
lower bound exist for all n > 1. The proof is a delicate inductive construction. It turns
out that with the symmetric chain decomposition approach, we get a simpler proof of this
result.

1.4 Symmetric Chain Decompositions in the Boolean Lattice

Consider a finite partially ordered set (poset) A = (A,≤). For x 6= y ∈ A, y is said to
cover x if x ≤ y and if there is no z ∈ A such that x < z < y. The poset A is ranked if
one can define a function r(x) on the elements x ∈ A such that r(x) = 0 for all minimal
elements x and r(y) = r(x) + 1 for all x, y such that y covers x. If A is ranked, we say
that r(x) is the rank of x and the rank of A is maxx r(x).

A symmetric chain in a ranked poset A of rank n is a sequence of elements x1, x2, . . . , xt ∈
A, such that xi+1 covers xi for all i and r(x1) + r(xt) = n. A symmetric chain decompo-
sition (SCD) of A is a partition of the elements of A into symmetric chains.

The Boolean lattice Bn = (2[n],⊆) is the ranked poset consisting of all subsets of
[n] = {1, 2, . . . , n}, ordered by inclusion. For s ∈ 2[n], r(s) is the cardinality of s. It is
well-known that Bn has an SCD. Figure 2 illustrates (a) the Hasse diagram of B4 and
(b) an SCD in B4. In Section 3.1, we present the construction of Greene and Kleitman
[GK76] for an SCD in Bn. One of our main results in this paper is to show that this
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Figure 2: The Hasse diagram of B4 (a) with a symmetric chain decomposition (b).
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SCD can be used to construct monotone n-Venn diagrams with the minimum number of
vertices for every positive n. Note that any SCD in Bn has exactly

(
n

bn/2c
)

chains, one for

each element of rank bn/2c of Bn.

1.5 Necklaces

It will be convenient at times to view the elements of Bn as elements of {0, 1}n, the set of
all n-bit strings. With each x = x1x2 · · ·xn ∈ {0, 1}n, we associate a set, S(x) defined by

S(x) = {i | xi = 1, 1 ≤ i ≤ n}.

The Boolean lattice, then, is Bn = ({0, 1}n,≤), the poset whose base set is {0, 1}n, and
whose ordering, ≤ is defined for x, y ∈ {0, 1}n by x ≤ y ↔ S(x) ⊆ S(y). The Hasse
diagram of the Boolean lattice Bn is isomorphic to the n-cube.

For x = x1x2 · · ·xn ∈ {0, 1}n, let σ be the rotation of x defined by σ(x) = x2x3 · · ·xnx1.
Let σ1 = σ and for i > 1, let σi(x) = σ(σi−1(x)). Define the relation “∼” on {0, 1}n by
x ∼ y iff y = σi(x) for some integer i ≥ 0. Then “∼” is an equivalence relation on {0, 1}n

and the equivalence classes are called necklaces.
Let Nn be the set of necklaces of {0, 1}n and define the necklace poset, Nn, by Nn =

(Nn,�) with ordering � defined for η1, η2 ∈ Nn by η1 � η2 if and only if some x ∈ η1

differs from some y ∈ η2 only in one bit i, where xi = 0 and yi = 1. As we discuss in
Section 5, it can be shown from results in order theory that when n is prime, Nn has
a symmetric chain decomposition. It is well-known that when n is prime, each of the
necklaces, other than the ones containing 0n and 1n, has exactly n elements.

We will require something stronger. One of our main results is to show that when
n is prime, we can always select a set Rn, consisting of one representative string from
each necklace Nn, so that the necklace-representative subposet (Rn,≤) of Bn induced by
Rn has a symmetric chain decomposition with a certain cover property. Furthermore,
from the SCD in this necklace-representative poset, we can construct a symmetric Venn
diagram.

1.6 Overview of Main Results and Organization of Paper

Our main results in this paper are:

• For all n ≥ 1, any symmetric chain decomposition in the Boolean lattice satisfying a
certain “chain cover property” can be used to construct a monotone Venn diagram
with the minimum number of vertices. A well-known symmetric chain decomposi-
tion of the Boolean lattice [Aig73, GK76] is shown to have this cover property.

• When n is prime, there is always a way to select a complete set Rn of necklace
representatives so that the induced necklace-representative subposet (Rn,≤) of the
Boolean lattice has a symmetric chain decomposition which satisfies the required
cover property.

the electronic journal of combinatorics 11 (2004), #R2 6



• For all prime n, there is a symmetric Venn diagram for n sets which can be con-
structed from this symmetric chain decomposition in (Rn,≤).

The suggestion that symmetric chain decompositions might be useful in constructing
symmetric Venn diagrams first appears in the paper of Hamburger [Ham02].

The remainder of this paper is organized as follows. Section 2 shows how to construct
Venn diagrams from symmetric chain decompositions with the chain cover property: the
monotone case for all n is covered in Section 2.1, and the symmetric case for n prime is
covered in Section 2.2. Section 3 describes the Greene-Kleitman symmetric chain decom-
position in Bn and shows that it has the required cover property to construct monotone
Venn diagrams for all n. Section 4 contains the key technical result of the paper: a proof
of the existence, when n is prime, of a necklace-representative subposet of Bn with a
symmetric chain decomposition satisfying the required cover property. Section 5 suggests
some related open questions.

2 Venn Diagrams from Symmetric Chain Decompo-

sitions

2.1 Monotone Venn Diagrams for all n

In this subsection we illustrate a connection between Venn diagrams and symmetric chain
decompositions by using a symmetric chain decomposition of the Boolean lattice to give
a simple construction for monotone n-Venn diagrams, with minimum number of vertices,
for all n.

2.1.1 The Chain Cover Graph

Let C be an SCD in a finite ranked poset A = (A,≤) and for chain C ∈ C, let starter(C)
be the first element of C and let terminator(C) be the last element of C. Call the longest
chains in C the root chains. Say that C has the chain cover property if whenever C ∈ C
and C is not a root chain, then there exists a chain π(C) ∈ C such that

starter(C) covers an element πs(C) of π(C) and

terminator(C) is covered by an element πt(C) of π(C).

Call such a mapping π a chain cover mapping.
Note that the SCD of Figure 2 (b) has the chain cover property: define π by π(C2) =

π(C3) = π(C4) = C1; π(C5) = C3; and π(C6) = C2. For example, for chain C2, πs(C2) = ∅
and πt(C2) = {1, 2, 3, 4}, since starter(C2) = {2} covers ∅ from chain π(C2) = C1 and
terminator(C2) = {2, 3, 4} is covered by {1, 2, 3, 4} from chain π(C2) = C1.

We focus on the case where C has a unique root chain (although this can be easily
generalized). When the root chain is unique, π can be described by a rooted tree, T (C, π),
called a chain cover tree, in which each node corresponds to a chain C ∈ C and the parent
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Figure 3: (a) A chain cover tree, T (C, π) for the SCD C of Figure 2(b) and (b) a planar
embedding, P (C, π), of G(C, π), with chain edges dark and cover edges light.

of node C is π(C). Figure 3(a) shows the chain cover tree for the SCD of Figure 2(b) and
the mapping π described above.

Let C be an SCD for A = (A,≤) with the chain cover property and let π be a chain
cover mapping for C. We consider the chain cover graph, G(C, π), whose vertices are the
elements of A and whose edges consist of the covering edges in the chains in C together
with the cover edges, for each non-root chain C ∈ C, from:

• starter(C) to πs(C) and

• terminator(C) to πt(C).

Figure 3(b) shows the chain cover graph for the chain cover tree in Figure 3(a).
First we show that the chain cover graph always has a planar embedding.

Lemma 1 Let C be a symmetric chain decomposition with the chain cover property for
poset A = (A,≤), and let π be a chain cover mapping for C. The chain cover graph
G(C, π) has a planar embedding P (C, π).

Proof. We describe a planar embedding of G(C, π) by giving the coordinates of each
vertex and then specifying that each edge is drawn as a straight line between its endpoints.
Let T = T (C, π) be the chain cover tree. Order the children of each node in T from shortest
chain to longest chain and perform a preorder labeling of the nodes of T . A preorder
labeling of an ordered tree is a labeling λ(v) of the nodes of the tree by consecutive
integers in such a way that at every node v, if C1, C2, . . . , Ck is the ordered list of children
of v, then for 1 ≤ i < k, λ(v) < λ(u) < λ(w) for any nodes u, w in the subtrees rooted at
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Ci, Ci+1, respectively. For example, a preorder labeling of the chain cover tree in Figure
3(a), with children ordered as shown, is:

λ(C1) = 1; λ(C2) = 2; λ(C6) = 3; λ(C3) = 4; λ(C5) = 5; λ(C4) = 6.

Now, if vertex s of G(C, π) is on chain C ∈ C, embed s at the point with coordinates
(λ(C), rank(s)). Embed all edges of G(C, π) as straight lines. The resulting embedding
for the chain cover graph given by the chain cover tree of Figure 3(a) is the one shown in
Figure 3(b).

Because children of a node are ordered shortest chain to longest, and all chains are
symmetric, it is easy to see that no edges cross and therefore this embedding is planar.
The proof is by induction.

If the root r of T has no children, the graph is a vertical chain. Otherwise, let C be the
last (longest) child of r. Assume inductively that the embedding described above is planar
on the subgraph corresponding to the subtree TC of T rooted at C and on the subgraph
corresponding to T ′, the tree T with the subtree rooted at C removed. All chains in the
subtree rooted at C have preorder labels greater than all chains in T ′, so nodes in chains
in C’s subtree are embedded to the right of those in chains in T ′. Let s = starter(C) and
t = terminator(C). No node with a chain in C’s tree has y coordinate larger than r(t) or
smaller than r(s), since C was longest. Furthermore, no node in T ′ not in r’s chain has y
coordinate larger than rank(t) or smaller than r(s). Thus, the cover edges from chain C
to chain r, which are the only edges in G connecting vertices in the two subtrees, do not
cross any other edges. (These edges are: from (λ(C), r(s)) to (λ(r), r(s) − 1) and from
(λ(C), r(t)) to (λ(r), r(t) + 1).) 2

2.1.2 The Venn Diagram

We now show that when the poset A of Lemma 1 is the Boolean lattice, the dual of any
planar embedding of the chain cover graph G(C, π) is a Venn diagram, a fact which is
a straightforward consequence of classical theorems in graph theory. A plane graph is a
planar embedding of a planar graph.

Following Harary, [Har69], the geometric dual of a plane graph, P is the graph P ∗

constructed by placing a vertex f ∗ in each face f of P (including the unbounded face)
and, whenever two faces f and g have a common boundary edge e in P , joining vertices
f ∗ and g∗ of P ∗ with an edge e∗ crossing only e. It is well-known that the dual of a
plane graph is planar, that each face of P ∗ contains exactly one vertex of P and that P
is connected if and only if P is isomorphic to (P ∗)∗. For B4, an embedding of the dual of
P (C, π) in Figure 3 is shown, superimposed, in Figure 4.

A classical result of graph theory is the correspondence between bonds in a planar
graph G and simple cycles in the dual of any planar embedding of G. (A bond in a graph
G is a minimal set of edges whose removal disconnects G.) The formulation below is
adapted from West [Wes96].

Lemma 2 Edges in a connected plane graph P form a bond in P if and only if the
corresponding dual edges form a cycle in P ∗. 2
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Figure 4: The geometric dual, P ∗, of P (C, π) of Figure 3(b), indicated by the red vertices
and the thin colored edges.
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Figure 5: The 4-Venn diagram corresponding to Figure 4 with the curves {Θ1, Θ2, Θ3, Θ4}
highlighted.
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Identifying the vertices of the n-cube with subsets of [n], call a spanning subgraph G
of the n-cube monotone if every subset of size k is adjacent to a subset of size k − 1 (if
k > 0) and a subset of size k + 1 (if k < n). We then have the following.

Lemma 3 If P is a plane, monotone spanning subgraph of the n-cube, the dual of P is
a monotone Venn diagram.

Proof. The dual of P , P ∗, has exactly one (nonempty) face for each vertex of P , i.e.,
each subset of [n], so P ∗ has the regions required of a Venn diagram. Without loss of
generality, we may assume that ∅ lies in the unbounded face of P ∗. We need to show that
the regions arise as the intersection of n simple closed curves in the plane.

Call an edge e in P (C, π) of the form e = (S, S ∪ {x}) an x-edge of P and the
corresponding edge e∗ in P ∗, an x-edge of P ∗. We show that the x-edges of P ∗ form a
simple cycle, Θx. It follows then that Θx is a simple closed curve. By Lemma 2, it suffices
to show that the set of x-edges of P forms a bond. To see this, let V be the collection of
vertices of P which are subsets of [n] containing x and V the collection of those which do
not contain x. The only edges of P joining a vertex of V to a vertex of V are x-edges,
so removing the x-edges disconnects P . Further, the subgraphs of P , P [V ] and P [V ],
induced by V and V , respectively, are connected: since P is monotone, for every S ⊆ [n]
there is a path in P from S to [n] ∈ V consisting of a nested sequence of subsets and a
path in P from ∅ ∈ V to S consisting of a nested sequence of subsets. If x ∈ S, the nested
path from S to [n] contains no x edge; if x 6∈ S, the nested path from ∅ to S contains no
x edge. Thus no proper subset of the x-edges can disconnect P , and so the x-edges of P
form a bond separating V and V . It follows that Θx is a simple closed curve containing
all faces corresponding to subsets containing x in its interior and those not containing x
in its exterior. Every edge of P ∗ is an x-edge for exactly one x ∈ [n] and therefore belongs
to exactly one of the curves Θx. Thus, P ∗ is a Venn diagram. 2

Figure 5 illustrates the four curves Θ1, . . . , Θ4 which comprise the geometric dual P ∗

of P (C, π) from Figure 4.

Lemma 4 Let C be a symmetric chain decomposition with the chain cover property for
Bn, let π be a chain cover mapping for C, and let P be a planar embedding of the chain
cover graph, G(C, π). Then the dual, P ∗, of P . is an n-Venn diagram. Moreover, it is a
monotone Venn diagram with the minimum number of vertices.

Proof. Clearly, G(C, π) is a spanning subgraph of the n-cube, planar by Lemma 1. To
see that it is also monotone, note that in G(C, π), every vertex S 6= [n] is adjacent to a
set which covers it in Bn (either its successor in its chain C or, if it is the last element
of C, then πt(C)). Similarly, in G(C, π), every vertex S 6= ∅ is adjacent to a set which
it covers in Bn (either its predecessor in its chain C or, if it is the first element of C,
then πs(C)). Thus, P is a plane, monotone spanning subgraph of the n-cube, and by
Lemma 3, P ∗ is a monotone Venn diagram. The number of vertices of P ∗ is the number
of faces of P , which is just the number of symmetric chains in C:

(
n

bn/2c
)
, that is, the
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minimum possible number of vertices in a monotone Venn diagram, according to Bultena
and Ruskey [BR98]. 2

In view of Lemma 4, we look closer in Section 3.1 at symmetric chain decompositions
of Bn. In Lemma 9 of Section 3.2 we show that we can always find one with the chain
cover property and conclude in Theorem 2 of that section that we can always use this
approach to construct monotone Venn diagrams.

2.2 Symmetric Venn Diagrams from Symmetric Chain Decom-

positions

We would first like to emphasize that the basic idea to be applied here is not new. Virtually
all approaches to constructing symmetric Venn diagrams which appear in the literature are
based on the following scheme. (1) Construct a special planar graph G, whose vertices are
n-bit necklace-representatives, (2) embed G in the plane in a pie slice of (2πi)/n radians,
(3) rotate the embedding about the center of the pie through (2πi)/n for 1 ≤ i < n, and
(4) embed the dual of the graph G, keeping the symmetry. The bottleneck to proving
that symmetric Venn diagrams exist for all prime n has been finding the right graph
G in Step (1). For a given value of n, this is usually done with an ad hoc approach.
This scheme was used by Savage and Winkler in 1992 to construct one of the first simple
symmetric 7-Venn diagrams, listed as M1 in [Rus97], where a suitable G was found using
a trial-and-error approach. In the mid–nineties, Ruskey developed the idea (described
in the section, “Symmetric Diagrams and Necklaces” in [Rus97]) of constructing G by
organizing necklaces into two opposing trees. Coupled with exhaustive search techniques,
this allowed him to discover many new symmetric 7-Venn diagrams, listed in [Rus97].
Recently, in a tour de force, Hamburger[Ham02] extended the idea of two opposing trees
to create the graph G in Step (1) for n = 11 and constructed for the first time a symmetric
11-Venn diagram. Hamburger refers to the dual of G as a doodle.

The main contribution in the current paper is to show that for every prime n there is a
way to construct the graph G in Step (1) that guarantees we can carry out the remaining
steps to get a symmetric Venn diagram. In this section, we show that when n is prime, we
can modify the technique of Section 2.1 to find a Venn diagram with rotational symmetry
if we can find a necklace-representative subposet of Bn which has a symmetric chain
decomposition with the chain cover property.

As in Section 1.5, it will be convenient at times to view the elements of Bn as n-bit
strings. Recall from Section 1.5 that the rotation σi of an n-bit string is defined by
σi(x1x2 · · ·xn) = xi+1 · · ·xnx1 · · ·xi.

Lemma 5 Let n be prime. If there exists a set Rn of necklace representatives for {0, 1}n

such that the subposet Rn = (Rn,≤) of Bn has a symmetric chain decomposition with the
chain cover property, then a symmetric n-Venn diagram can be constructed.

Proof. Assuming that such a set Rn exists, let C be an SCD in Rn and let π be a chain
cover mapping for C. By Lemma 1, the chain cover graph G(C, π) has a planar embedding.
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10110

Figure 6: Embedding of the chain cover graph for a necklace-representative subposet of
B5.

(See Figure 6 for an example when n = 5 and

Rn = {00000, 1000, 11000, 11100, 11110, 11111, 10100, 10110},

where the chains are indicated by bold edges and the chain cover edges are light.)
Fix a point p in the plane and partition the plane into n pie slices about p, each of

(2πi)/n radians. We embed G(C, π) as a plane graph P0 = P0(C, π) in one of the pie slices,
with the vertex [n] = 11 · · ·1 at p and the vertex ∅ = 00 · · ·0 at the point at infinity. (If
we view the embedding on the sphere, p is at the north pole and the point at infinity is
the south pole.) Rotate the embedding of P (clockwise) through (2πi)/n radians for each
i, 1 ≤ i ≤ n − 1. In the i-th rotation of P , relabel each vertex x of P by σi(x) and let Pi

be the resulting plane graph. Vertices [n] = 11 · · ·1 and ∅ = 00 · · ·0 coincide in each Pi.
(See Figure 7.)

Let P denote the union of the Pi, 0 ≤ i < n. Then P is a plane, monotone, spanning
subgraph of the n-cube, so by Lemma 3, the dual of P is an n-Venn diagram. Furthermore,
as in the proof of Lemma 3, the x-edges in P correspond to a simple cycle Θx in the dual of
P , for each x ∈ [n]. However, we want the Venn diagram to have rotational symmetry. We
follow the construction of the geometric dual, adjusting the topology to ensure symmetry.
All faces of P incident with edges of P0 are interior to the pie slice containing P0, except
for the faces fl and fr, which are shared with Pn−1 and P1, respectively. Embed a section
of the dual, P ∗, as follows: For each face f 6= fr of P that is incident with an edge of P0,
vertex f ∗ of P ∗ is placed in the interior of the face f . Vertex f ∗

r of P ∗ is placed in the
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Figure 7: The planar graph P obtained by embedding the graph of Figure 6 in a pie slice
and rotating it about the center by (2πi)/n radians for each i, 0,≤ i ≤ 4. There is one
more vertex at infinity, where the five edges shown by the arrows are incident.
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interior of the face fr of P at the point obtained by rotating point f ∗
l by (2πi)/n radians

about p. Now a special point is chosen on each edge of P0. For each face f of P with an
edge e of P0 on its boundary, a “half-edge” of P ∗ is drawn from f ∗ to the special point
on e, so that the half-edges incident at f ∗ are internally disjoint. Two half-edges of P ∗

meet at the special point of each edge e of P0 to form the edge e∗ of P ∗. The complete
embedding of P ∗ is now obtained by rotating the embedding of this section (clockwise)
through (2πi)/n radians for each i, 1 ≤ i ≤ n − 1. (See Figure 8.)

The resulting embedding of P ∗ has rotational symmetry, but we want to show specif-
ically that each of the n rotations of Θ1 about p by an angle of 2πi/n, 0 ≤ i ≤ n − 1,
coincides with one of the curves Θ1, Θ2, . . . , Θn. Note that the j-edges in Pi, when rotated
clockwise about p by an angle of 2π/n, become the (j − 1)-edges in Pi+1 (mod n), if j > 1
or, if j = 1, the n-edges in Pi+1 (mod n). Thus rotating Θj clockwise about p by an angle
of 2π/n gives Θj−1 if j > 1 or, if j = 1, Θn. (See Figure 9.) 2

Note 1. It can be checked that the resulting symmetric Venn diagram will also be
monotone with the minimum number of vertices, owing to the SCD with the chain cover
property of Rn. This is not necessarily true in general: Grünbaum [Grü92] was the first
to give examples of non-monotone symmetric Venn diagrams. Another 32 are reported
by Ruskey in [Rus97].

3 Symmetric Chain Decompositions in the Boolean

Lattice

3.1 The Greene-Kleitman Symmetric Chain Decomposition in
Bn

It is well-known that Bn has a symmetric chain decomposition which can be constructed by
the greedy lexicographic matching approach of Aigner [Aig73] or the parenthesis matching
approach of Greene and Kleitman [GK76]. White and Williamson [WW77] and Griggs
[Gri77b] have shown that both of these approaches give the same SCD, which, as shown in
Greene and Kleitman [GK76], is the same as a natural recursive construction of deBruijn
et al. [dBvETK51].

In this paper we make use of the formulation due to Greene and Kleitman. We go
through the construction in detail since we will exploit several properties beyond those
required to prove the SCD.

As a first step, in the string x = x1x2 · · ·xn, regard the 0’s as left parentheses and
the 1’s as right parentheses. Match parentheses in the usual way. That is, as string
x = x1x2 · · ·xn ∈ {0, 1}n is scanned from left to right, when a 0 is encountered, it
becomes (temporarily) an unmatched 0. When a 1 is encountered, it is matched to the
rightmost unmatched 0 to its left, if any, otherwise, it becomes an unmatched 1.

Let U0(x), U1(x), and M(x) represent, respectively, the sets of indices of the unmatched
0’s, the unmatched 1’s, and the matched pairs for the entire string x. For example, if
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Figure 8: The geometric dual of the graph of Figure 7, embedded to have rotational
symmetry, as described in the proof of Lemma 5.
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Figure 9: The 5 simple closed curves comprising the geometric dual graph in Figure 8.
Rotating any one by (2πi)/5 radians about the center gives one of the others.
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x = 01100101110010, then

U0(x) = {11, 14},
U1(x) = {3, 10},
M(x) = {(1, 2), (5, 6), (7, 8), (4, 9), (12, 13)}.

Lemma 6 For x ∈ {0, 1}n, if U1(x), U0(x) 6= ∅, then max(U1(x)) < min(U0(x)).
Proof. If j ∈ U1(x), xj is an unmatched 1, so there is no unmatched 0 to the left of xj .
2

The symmetric chain decomposition of Bn is now defined by specifying, for each x ∈
{0, 1}n, the successor of x, τ(x), on the chain containing x (we say τ(x) = nil if x is the
last element of its chain):

τ(x) =

{
nil if U0(x) = ∅, else
x1 · · ·xi−11xi+1 · · ·xn where i = min(U0(x))

In the example above with x = 01100101110010, since U0(x) = {11, 14}, we obtain
τ(x) = 01100101111010. Because of Lemma 6 we can make the following observations
about τ .

Lemma 7 For x ∈ {0, 1}n, let U1(x) = {i1, . . . , ij} and U0(x) = {ij+1, . . . , it}, where
i1 < i2 < · · · < it. Then if U0(x) 6= ∅,

S(τ(x)) = S(x) ∪ {ij+1}
U1(τ(x)) = {i1, . . . , ij+1},
U0(τ(x)) = {ij+2, . . . , it},
M(τ(x)) = M(x).

2

Then chains in the Greene-Kleitman SCD are constructed starting from bitstrings with
no unmatched 1 as follows.

Lemma 8 For x ∈ {0, 1}n with U1(x) = ∅, let k = |U0(x)|. Then

Cx = x, τ(x), τ 2(x), τ 3(x), . . . , τk(x),

is a symmetric chain ending at the string with 1 in position i if and only if i ∈ S(x)∪U0(x).

Proof. By repeated application of Lemma 7, if the elements of U0(x), in increasing
order, are i1, i2, . . . , ik, then for t ≤ k, S(τ t(x)) = S(x) ∪ {i1, i2, . . . it} and U0(τ

t(x)) =
U0(x) − {i1, i2, . . . it}. The set U0(τ

t(x)) becomes empty only when t = k. So, the chain
starts at S(x) and ends at S(x) ∪ U0(x). Note that |S(x)| = |U1(x)| + |M(x)| = |M(x)|,
since U1(x) = ∅ and n − |S(x)| = |U0(x)| + |M(x)|, so

|S(x)| + |S(x) ∪ U0(x)| = |M(x)| + (n − |M(x)|) = n,

and, therefore, the chain is symmetric. 2

the electronic journal of combinatorics 11 (2004), #R2 18



Theorem 1 (Greene and Kleitman [GK76]) The following is a symmetric chain decom-
position of Bn:

C = {Cx | x ∈ {0, 1}n, U1(x) = ∅}. (1)

Proof. To show that the chains are disjoint, define

τ−1(x) =

{
nil if U1(x) = ∅, else
x1 · · ·xj−10xj+1 · · ·xn where j = max(U1(x))

(2)

It follows from Lemmas 6 and 7 that if U0(x) 6= ∅ then τ−1(τ(x)) = x and if U1(x) 6= ∅
then τ(τ−1(x)) = x. Thus, the chains in C are disjoint, and by the previous lemma
they are symmetric. Furthermore, any element x ∈ {0, 1}n is in the chain Cy, where, by
repeated application of τ−1 and Lemma 7, y satisfies S(y) = S(x)−U1(x) and U1(y) = ∅.
2

Figure 2(b) shows the resulting SCD in B4.

3.2 Monotone Venn Diagrams from the Greene-Kleitman SCD

We now extend Theorem 1 to show that this SCD has the chain cover property.

Lemma 9 The Greene-Kleitman symmetric chain decomposition of Bn has the chain
cover property, with chain cover mapping π, defined for Cx ∈ C with S(x) 6= ∅ by

π(Cx) = (Cy),

where S(y) = S(x) − {max(S(x))}.
Proof. Since Cx ∈ C, U1(x) = ∅. Since we are given that S(x) 6= ∅, let k = max(S(x)),
so that S(y) = S(x)−{k}. We show that Cy ∈ C and the mapping π(Cx) = (Cy) satisfies
the required covering property.

Since in x, xk = 1 was matched to a 0 in some position m(k) < k, this pair becomes
unmatched in y, but no other matched pair is affected, so

U0(y) = U0(x) ∪ {k, m(k)}; U1(y) = ∅; M(y) = M(x) − {(m(k), k)}.
Since U1(y) = ∅, y is a chain starter and Cy ∈ C. Furthermore, by Lemma 8,

terminator(Cy) = S(y)∪U0(y) = (S(x)−{k})∪(U0(x)∪{k, m(k)}) = S(x)∪U0(x)∪{m(k)},
which covers terminator(Cx) = S(x) ∪ U0(x) in Bn. Clearly x covers y in Bn, so the
required properties of π are satisfied. 2

Lemma 9 was the final piece required to prove the following.

Theorem 2 For any n ≥ 1, a monotone Venn diagram with minimum number of vertices
can be obtained as the dual of any planar embedding of the planar graph G(C, π), where
C is the Greene-Kleitman SCD of Bn, and π is the chain cover mapping for C defined in
Lemma 9.
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Proof. Combine Lemma 4 from the previous section with Lemma 9. 2

Note 2. It follows from the proof of Lemma 9 that if |C| denotes the length of a chain
then |C| = |π(C)| − 2 for every non-root chain C in the Greene-Kleitman SCD. Thus, in
the chain cover tree, T (C, π), all children of any node all have the same length. Thus any
ordering of the children gives a planar embedding, by the technique described in Lemma 1.
Indeed, any ordering of the children and their parent can be used! So, although some may
be isomorphic, we can obtain many different monotone Venn diagrams by independently
permuting the children at nodes in the chain cover tree.

3.3 Further Properties of the Greene-Kleitman SCD

We next identify some additional properties related to the Greene-Kleitman SCD which
will be crucial for construction of symmetric Venn diagrams in Section 4.

Lemma 10 For x ∈ {0, 1}n, if xi = 0 and either xi+1 = 1 or xi−1 = 0, then i 6=
min(U0(x)).

Proof. If xi = 0, as x is scanned left-to-right, xi = 0 is unmatched when it is first
scanned. If xi+1 = 1, it will be matched with xi, so i 6∈ U0(x). If xi = xi−1 = 0, then
both xi and xi−1 are unmatched when xi is scanned. As the scan continues beyond xi, xi

has priority over xi−1 for being matched with a 1. Thus, if xi ∈ U0(x), then so is xi−1, so
min(U0(x)) ≤ i − 1. 2

Similarly, we can prove the following.

Lemma 11 For x ∈ {0, 1}n, if xi = 1 and either xi+1 = 1 or xi−1 = 0, then i 6=
max(U1(x)). 2

4 Symmetric Chain Decompositions in a Necklace-

Representative Poset

We show for prime n in this section, how to identify a subset Rn ⊆ {0, 1}n of necklace
representatives, so that Rn = (Rn,≤), the subposet of Bn induced by Rn, has an SCD
J with the chain cover property. This proof is constructive, so by Lemma 5, this proves
that symmetric Venn diagrams exist for all prime n and provides a construction.

4.1 Block Codes for n-bit Strings

With each x ∈ {0, 1}n, we associate a sequence β(x) over the alphabet {2, . . . , n,∞}
called the block code of x as follows.

If x has the form

x = 1a10c11a20c2 · · ·1ak0ck, k > 0, ai > 0, ci > 0, 1 ≤ i ≤ k, (3)

then
β(x) = (a1 + c1, a2 + c2, . . . , ak + ck).
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Otherwise, for convenience, we define β(x) = (∞).

We regard the block codes as ordered lexicographically, using c < ∞ for any integer c, so
that the block code (∞) is strictly greater than β(x) for any x of the form (3).

For example, considering the rotations of x = 0011011, we have

β(0011011) = (∞), β(0110110) = (∞), β(1101100) = (3, 4), β(1011001) = (∞),

β(0110011) = (∞), β(1100110) = (4, 3), β(1001101) = (∞). (4)

If b = (b1, b2, . . . , bk) is a sequence of integers, we let |b| denote the number of terms
of b, |b| = k, and we let ||b|| denote the sum of the integers comprising b, ||b|| = b1 +
b2 + · · · + bk. Analogous to the rotation σ of a string, define rotation σ on sequences by
σi(b) = (bi+1, . . . , bk, b1, . . . , bi) for i < k. Concatenation of sequences b and b′ is denoted
by bb′.

Lemma 12 If x ∈ {0, 1}n, y is a rotation of x, and both x and y start with ‘1’ and end
with ‘0’, then β(y) is a rotation of β(x).

Proof. Let x = 1a10c11a20c2 · · · 1ak0ck , k > 0, ai > 0, ci > 0, 1 ≤ i ≤ k. Then for
some t, 0 ≤ t < k, y = σa1+c1+···at+ct(x), so β(y) = σt(β(x)). 2

The following result is well known (e.g. proof of Prop. 5.1.2 in [Lot83]).

Lemma 13 If w is a sequence of length k and if σi(w) = w where 1 ≤ i ≤ k − 1, then
there is a nonempty subsequence v of w such that w = vv · · · v = vt for some t ≥ 2. 2

Lemma 14 If n is prime, no two strings of {0, 1}n in the same necklace have the same
finite block code.

Proof Assume x ∈ {0, 1}n with (∞) 6= β(x) = b = (b1, b2, · · · , bk). Then ||b|| = n, which
is prime. Suppose y 6= x is a rotation of x and y starts with ‘1’ and ends with ‘0’. Then
by Lemma 12, β(y) = σj(b) where 1 ≤ j ≤ k − 1. If β(x) = β(y), then b = σj(b), so by
Lemma 13, b = vt for some nonempty subsequence v of b and t ≥ 2. Then ||b|| = t||v||.
We must also have ||v|| ≥ 2, since bi ≥ 2 for 1 ≤ i ≤ k, by definition of block code. Thus,
||b|| is not prime, a contradiction. 2

4.2 Choosing Necklace Representatives

We assume for the remainder of this section that n is prime. For x ∈ {0, 1}n, let ρ(x)
denote the representative of the equivalence class of x under rotation. Choose necklace
representatives as follows:

ρ(x) is the rotation y of x for which β(y) is minimum.
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For example, if x = 0011011, then ρ(x) = 1101100, since it can be seen from (4) that
β(1101100) = (3, 4) which is the minimum over all rotations of 0011011.

By Lemma 14, if n is prime, each equivalence under rotation in {0, 1}n has a unique
representative. We let Rn be the set of these representatives. Then

Rn = {ρ(x) | x ∈ {0, 1}n} = {x ∈ {0, 1}n | ρ(x) = x}.
Let Rn = (Rn,≤) be the subposet of {0, 1}n induced by Rn. We call this poset the
necklace-representative poset, and our goal is to show that it has a symmetric chain de-
composition with the chain cover property.

4.3 A Symmetric Chain Decomposition for Rn when n is Prime

We will make use of the Greene-Kleitman mapping τ from Section 3. Recall that if S(x)
is the set of positions of the 1’s in x, if U0(x) is the set of positions of the unmatched 0’s
in x, and if U0(x) 6= ∅, then τ(x) is defined by S(τ(x)) = S(x) ∪ {min(U0(x))}.

We first note that when τ is restricted to elements of R∗
n = Rn −{0n, 1n} with at least

two unmatched 0’s, the block code is preserved by τ . Note that x = 0n and x = 1n are
the only elements of Rn with β(x) = (∞).

Lemma 15 If x ∈ R∗
n and x has at least two unmatched 0’s, then β(x) = β(τ(x)).

Proof. Since x ∈ R∗
n, x1 = 1 and xn = 0, so n ∈ U0(x) and 1 6∈ U0(X). We are given

that |U0(x)| ≥ 2, so if i = min(U0(x)), we must have 2 ≤ i ≤ n − 1 and τ(x) 6= nil, so
let τ(x) = y = y1 · · · yn. By definition of τ , the only difference between x and y is that
xi = 0 and yi = 1. Furthermore, by Lemma 10 of Section 3, xi−1xixi+1 = 100, and so
yi−1yiyi+1 = 110. That is, y = τ(x) differs from x only in that one of the blocks 1aj0cj of
x with aj ≥ 1 and cj ≥ 2 changes to 1aj+10cj−1. This does not change the block code. (It
also implies that if x has the form (3), then so does y.) 2

Recall that if U1(x) is the set of unmatched 1’s in x and if U1(x) 6= ∅, then τ−1(x) is
defined by S(τ−1(x)) = S(x)−{max(V1(x))}. Similarly, when τ−1 is restricted to elements
of R∗

n = Rn − {0n, 1n} with at least two unmatched 1’s, the block code is preserved.

Lemma 16 If x ∈ R∗
n and x has at least two unmatched 1’s, then β(x) = β(τ−1(x)).

Proof. Since x ∈ R∗
n, x1 = 1 and xn = 0, so 1 ∈ U1(x) and n 6∈ U1(x). Since |U1(x)| ≥ 2,

if i = max(U1(x)), we must have 2 ≤ i ≤ n − 1 and τ−1(x) 6= nil, so let τ−1(x) = y =
y1 · · ·yn. By definition of τ−1, the only difference between x and y is that xi = 1 and
yi = 0. Furthermore, by Lemma 11, xi−1xixi+1 = 110, and so yi−1yiyi+1 = 100. That is,
y = τ(x) differs from x only in that one of the blocks 1aj0cj of x with aj ≥ 2 and cj ≥ 1
changes to 1aj−10cj+1. This does not change the block code. (It also implies that if x has
the form (3), then so does y.) 2

Now observe in the following corollary that when n is prime, τ maps elements of R∗
n

with at least two unmatched 0’s to elements of R∗
n and τ−1 maps elements of R∗

n with at
least two unmatched 1’s to elements of R∗

n.
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Corollary 1 If x ∈ R∗
n and |U0(x)| ≥ 2, then τ(x) ∈ R∗

n. Similarly, If x ∈ R∗
n and

|U1(x)| ≥ 2, then τ−1(x) ∈ R∗
n.

Proof. It follows from Lemma 15 that β(x) = β(τ(x)). Since x ∈ R∗
n, β(x) 6= ∞ and the

sequence β(x) is lexicographically smaller than any of its rotations. Thus, the same is true
for β(τ(x)), which, by definition of Rn, means that τ(x) ∈ Rn. Furthermore, as noted at
the end of the proof of Lemma 15, τ(x) starts with 1 and ends with 0, so τ(x) ∈ R∗

n. A
similar argument follows for τ−1(x) from Lemma 16. 2

Theorem 3 If n is prime, Rn has a symmetric chain decomposition with the chain cover
property.

Proof. First consider R∗
n = (R∗

n,≤), the poset Rn with elements 0n and 1n removed. We
show R∗

n has an SCD.
Since for x ∈ {0, 1}n, U1(x) is the set of unmatched 1’s in x, for every x ∈ R∗

n,
1 ∈ U1(x). Define, as chain starters, the set S∗ of strings in R∗

n for which the only
unmatched 1 occurs in position 1:

S∗ = {z ∈ R∗
n | U1(z) = {1}}.

By Lemma 7, |U0(x)| = |U0(τ(x))| + 1. For z ∈ S∗, let k = k(z) = |U0(z)| ≥ 1
(since n ∈ U0(z)). If k ≥ 2, τ i(z) has at least 2 unmatched zeros for each i such that
0 ≤ i ≤ k − 2. Thus by repeated application of Corollary 1, τ i(z) ∈ R∗

n for 0 ≤ i ≤ k − 1.
Define the chain of z, Jz, by

Jz = z, τ(z), τ 2(z), . . . , τk−1(z).

Clearly Jz is a chain in R∗
n and, by Lemma 7, the terminator of Jz has its 1’s in

positions S(τk−1(z)) = S(z) ∪ (U0(z) − {n}). To show Jz is symmetric we show that
|S(z)|+ |S(τk−1(z))| = n. S(z) is the set of ones in z, and since z has only one unmatched
1, z must have |S(z)| − 1 matched 0’s and |U0(z)| unmatched 0’s. So,

n = 2|S(z)| − 1 + |U0(z)|
= |S(z)| + |S(z)| + |U0(z)| − 1

= |S(z)| + |S(τk−1(z))|.
From Theorem 1, distinct elements of {0, 1}n, each with at least one unmatched 0,

cannot be mapped to the same element by τ , so this remains true when the domain of τ
is restricted. Thus for distinct z, z′ ∈ S∗, the chains Jz and Jz′ have no common elements.

Furthermore, any element x ∈ R∗
n is in the chain Jy, where, by repeated application of

Lemma 7 and τ−1, y satisfies S(y) = S(x)− (U1(x)−{1}) and U1(y) = {1}. By repeated
application of Corollary 1, y is also in R∗

n, so y ∈ S∗.
This shows that every x ∈ R∗

n is in a chain Jz for some z ∈ S∗ and therefore the set
of chains

{Jz | z ∈ S∗}
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is a symmetric chain decomposition of R∗
n. We extend this to an SCD in Rn by extending

the chain 10n−1, 110n−2, . . . , 1n−200, 1n−10 to the chain 0n, 10n−1, 110n−2, . . . , 1n−200, 1n−10, 1n.
Then for the SCD in Rn, the chain starters are

S = (S∗ − {10n−1}) ∪ {0n},
and the chain terminator of the chain Jz starting at z is 1n, if z = 0n. Else it’s the string
y with S(y) = S(z) ∪ (U0(z) − {n}).

It remains to show that the SCD {Jz | z ∈ S} of the necklace-representative poset
Rn, has the chain cover property. Suppose z ∈ S − {0n}. Then 1 ∈ U1(z) and (since
z 6= 10n−1) |S(z)| ≥ 2. Let α(z) be the string obtained by changing the last 1 in z to a 0.
Then z covers α(z) in Bn. We show

• α(z) ∈ S∗, so either α(z) ∈ S − {0n} or α(z) = 10n−1, and

• the terminator of chain Jz is covered by the terminator of chain Jα(z), if α(z) 6= 10n−1,
and by 1n−10, otherwise.

Since z1 = 1, zn = 0, and |S(z)| ≥ 2, the position l of the last 1 in z must satisfy 1 < l < n.
Thus,

z = z1z2 · · · zl−110 · · ·0,
α(z) = z1z2 · · · zl−100 · · ·0.

Also, since z ∈ S∗, z1 is the only unmatched 1 in z. So, since l > 1, zl is a matched 1.
Let m < l be the position of the 0 matched to zl. Then m and l become unmatched 0’s in
α(z), so U0(α(z)) = U0(z)∪ {l, m}. However, no matched 1 in a position j < l is affected
and clearly z1 = 1 cannot become matched. Thus U1(α(z)) = U1(z) = {1}.

Since U1(α(z)) = {1}, to show α(z) ∈ S∗, it remains to show α(z) ∈ R∗
n: if zl−1 = 1,

then the last block of z has the form 1ai0ci where ai ≥ 2 and ci ≥ 1, and so the last block
of α(z) is 1ai−10ci+1, so β(α(z)) = β(z); if zl−1 = 0 and if β(z) = (b1, b2, · · · , bk), then
β(α(z)) = (b1, b2, · · · , bk−2, bk−1 + bk). In the first case, β(α(z)) is the lexicographically
smallest of all of its rotations, since β(z) was, and therefore α(z) ∈ R∗

n. We show this is
also true in the second case. We know that since z ∈ Rn∗, for any i < k, (b1, . . . , bk) <
(bi+1, . . . , bk, b1, . . . , bi) and, thus, (b1, . . . , bk−i) ≤ (bi+1, . . . , bk). Then (b1, . . . , bk−i−2) <
(bi+1, . . . , bk−2), or both ((b1, . . . , bk−i−2) = (bi+1, . . . , bk−2) and bk−i−1 ≤ bk−1 < bk−1 + bk.
Either way, (b1, . . . , bk−2, bk−1 + bk) < (bi+1, . . . , bk−2, bk−1 + bk, b1, . . . bi), so β(α(z)) is the
lexicographically smallest of all of its rotations. Therefore α(z) ∈ R∗

n.
To show that the terminator t of Jz is properly covered, note first that if α(z) = 10n−1,

then |S(z)| = 2, and, therefore, since Jz is symmetric, |S(t)| = n − 2. But also, t ∈ R∗
n,

so tn = 0. Thus, t is covered by 1n−10 on the chain J0n.
Otherwise, if α(z) 6= 10n−1, then Jα(z) is a chain in the SCD of Rn which terminates

at the bitstring with ones exactly in the positions

S(α(z)) ∪ (U0(α(z)) − {n}) = (S(z) − {l}) ∪ ((U0(z) ∪ {m, l}) − {n})
= S(z) ∪ (U0(z) − {n}) ∪ {m},
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which, since m 6∈ S(z) ∪ U0(z), covers the terminator t of Jz which has S(t) = S(x) ∪
(U0(x) − {n}).

Thus, for z ∈ S − {0n}, the mapping π defined by

π(Jz) =

{
J0n if |S(z) = 2|, i.e. if α(z) = 10n−1

Jα(z) otherwise

is a chain cover mapping for the SCD {Jz | z ∈ S}, of Rn, and, therefore, the necklace-
representative poset has an SCD with the chain cover property. 2

Note 3. It is interesting that for each chain Jz in the SCD of Rn, Cτ−1(z) is a chain
in the Greene-Kleitman SCD of Bn (except for z = 0n).

Note 4. It turns out that our SCD J for Rn and the chain cover mapping π for J
have the following property: if π(J) = π(J ′) for chains J, J ′ ∈ J , then J and J ′ have
the same length. So, as in the case of Note 2, independently permuting the children of
nodes in the chain cover tree T (J , π) gives rise to different (some possibly isomorphic)
symmetric Venn diagrams.

From Lemma 5 and Theorem 3 we get our main result:

Theorem 4 Venn diagrams with rotational symmetry exist for all prime n. 2

The algorithm to compute and embed G(J , π) for arbitrary n has been programmed,
and labeled versions of the output for n = 11, 13, and 17 are available as xfig files at:
http://www.csc.ncsu.edu/faculty/savage/. We do show here the output for n = 11 and
n = 13, with the vertex labels suppressed in consideration of the limited space. Figures 10
and 11, respectively, show planar embeddings of the chain cover graph G(J , π) resulting
from the SCD J and the chain cover mapping π in the necklace-representative poset Rn

when n = 11 and n = 13. These depict one “wedge” of the dual of the symmetric Venn
diagram. Embedding this wedge in a pie slice of (2π)/n radians and then rotating the
embeddings through each of (2πi)/n for 1 ≤ i ≤ n − 1 gives the full symmetric dual of
the Venn diagram. The resolution was too poor to show n = 17 on one page. Just for the
record, we note that the symmetric 11-Venn diagram which results from Figure 10 is not
isomorphic to the original one constructed by Hamburger in [Ham02], or to subsequent
constructions for n = 11 [HS]. To see this, note that all wedges constructed by our method
from symmetric chains in Rn are necessarily symmetric about a line drawn between the
middle levels, whereas the wedges of the constructions in [Ham02, HS] do not have that
property.

5 Open Questions

Does there always exist a simple symmetric n-Venn diagram when n is prime? The answer
is known to be yes for n = 3, 5 [Grü75], and 7 [Grü92], but is open beyond that.

Another interesting question to consider:

Does the necklace poset Nn have a symmetric chain decomposition for all n
(not just prime n)?
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Figure 10: A planar embedding of the chain cover graph G(J , π) resulting from the SCD
J and the chain cover mapping π in the necklace-representative poset R11 as described
in Theorem 3.
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Figure 11: Two views of a planar embedding of the chain cover graph G(J , π) resulting
from the SCD J and the chain cover mapping π in the necklace-representative poset R13

as described in Theorem 3.
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Here is what we know so far for general n: A poset which has a symmetric chain
decomposition is called a symmetric chain order (SCO). An SCO A is rank-symmetric
and rank-unimodal, meaning that if ai denotes the number of elements of rank i,

a0 = an ≤ a1 = an−1 ≤ · · · ≤ abn/2c = adn/2e,

where n is the rank of A. It also holds that an SCO is strongly Sperner, which means that
for all k, the union of k middle levels is a k-family (union of k antichains) of maximum
size. A ranked poset with these properties of being rank-symmetric, rank-unimodal, and
strongly Sperner is said to be a Peck poset. Thus, an SCO is Peck, but the converse is
false in general.

The necklace poset Nn is a quotient of the Boolean lattice Bn, meaning that its elements
are orbits of Bn under the action of a group of automorphisms of Bn, ordered in the natural
way. For Nn, the group is that induced on Bn by the action of rotations of the ground set
{1, . . . , n}, that is, the powers of the permutation (12 · · ·n).

Stanley[Sta84] showed that any quotient of the Boolean lattice is Peck, hence this is
true for the necklace poset, Nn. For prime n, it is easy to show that Nn satisfies an addi-
tional condition, the normalized matching condition, which is equivalent to what is called
the LYM property. It turns out that the LYM Property, together with rank-symmetry
and rank-unimodality (which are easily verified directly in the prime case without Stan-
ley’s result) implies the poset is a SCO[Gri77a]. In this paper we gave an explicit SCD of
the necklace poset in the prime case. For composite n, however, the situation is still up
in the air. But the fact that Nn is Peck lends some support that it may also be a SCO
for general n.
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