Inversion of Bilateral Basic Hypergeometric Series

Michael Schlosser


We present a new matrix inverse with applications in the theory of bilateral basic hypergeometric series. Our matrix inversion result is directly extracted from an instance of Bailey's very-well-poised ${}_6\psi_6$ summation theorem, and involves two infinite matrices which are not lower-triangular. We combine our bilateral matrix inverse with known basic hypergeometric summation theorems to derive, via inverse relations, several new identities for bilateral basic hypergeometric series.

Full Text: