### Optimal Decision Trees on Simplicial Complexes

#### Abstract

We consider topological aspects of decision trees on simplicial complexes, concentrating on how to use decision trees as a tool in topological combinatorics. By Robin Forman's discrete Morse theory, the number of evasive faces of a given dimension $i$ with respect to a decision tree on a simplicial complex is greater than or equal to the $i$th reduced Betti number (over any field) of the complex. Under certain favorable circumstances, a simplicial complex admits an "optimal" decision tree such that equality holds for each $i$; we may hence read off the homology directly from the tree. We provide a recursive definition of the class of *semi-nonevasive* simplicial complexes with this property. A certain generalization turns out to yield the class of *semi-collapsible* simplicial complexes that admit an optimal discrete Morse function in the analogous sense. In addition, we develop some elementary theory about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit optimal decision trees for several well-known simplicial complexes.