On a Rado Type Problem for Homogeneous Second Order Linear Recurrences

Hayri Ardal, Zdeněk Dvořák, Veselin Jungić, Tomáš Kaiser


In this paper we introduce a Ramsey type function $S(r;a,b,c)$ as the maximum $s$ such that for any $r$-coloring of ${\Bbb N}$ there is a monochromatic sequence $x_1,x_2,\ldots,x_s$ satisfying a homogeneous second order linear recurrence $ax_i+bx_{i+1}+cx_{i+2}=0$, $1\leq i\leq s-2$. We investigate $S(2;a,b,c)$ and evaluate its values for a wide class of triples $(a,b,c)$.

Full Text: PDF