### A Combinatorial Proof of a Formula for Betti Numbers of a Stacked Polytope

#### Abstract

For a simplicial complex $\Delta$, the graded Betti number $\beta_{i,j}({\bf k}[\Delta])$ of the Stanley-Reisner ring ${\bf k}[\Delta]$ over a field ${\bf k}$ has a combinatorial interpretation due to Hochster. Terai and Hibi showed that if $\Delta$ is the boundary complex of a $d$-dimensional stacked polytope with $n$ vertices for $d\geq3$, then $\beta_{k-1,k}({\bf k}[\Delta])=(k-1){n-d\choose k}$. We prove this combinatorially.