Statistical Distributions and $q$-Analogues of $k$-Fibonacci Numbers

Adam M Goyt, Brady L Keller, Jonathan E Rue

Abstract


We study q-analogues of k-Fibonacci numbers that arise from weighted tilings of an $n\times1$ board with tiles of length at most k.  The weights on our tilings arise naturally out of distributions of permutations statistics and set partitions statistics.  We use these q-analogues to produce q-analogues of identities involving k-Fibonacci numbers.  This is a natural extension of results of the first author and Sagan on set partitions and the first author and Mathisen on permutations.  In this paper we give general q-analogues of k-Fibonacci identities for arbitrary weights that depend only on lengths and locations of tiles.  We then determine weights for specific permutation or set partition statistics and use these specific weights and the general identities to produce specific identities.

Keywords


generalized fibonacci numbers; $q$-analogues; permutations; set partitions

Full Text: PDF