The Number of Euler Tours of Random Directed Graphs

Páidí Creed, Mary Cryan


In this paper we obtain the expectation and variance of the number of Euler tours of a random Eulerian directed graph with fixed out-degree sequence. We use this to obtain the asymptotic distribution of the number of Euler tours of a random $d$-in/$d$-out graph and prove a concentration result. We are then able to show that a very simple approach for uniform sampling or approximately counting Euler tours yields algorithms running in expected polynomial time for almost every $d$-in/$d$-out graph. We make use of the BEST theorem of de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, which shows that the number of Euler tours of an Eulerian directed graph with out-degree sequence $\mathbf{d}$ is the product of the number of arborescences and the term $\frac{1}{|V|}[\prod_{v\in V}(d_v-1)!]$. Therefore most of our effort is towards estimating the moments of the number of arborescences of a random graph with fixed out-degree sequence.


Random regular graphs; Eulerian graphs; Algorithms for Counting

Full Text: PDF