A Note on the Acquaintance Time of Random Graphs

William B. Kinnersley, Dieter Mitsche, Paweł Prałat


In this short note, we prove the conjecture of Benjamini, Shinkar, and Tsur on the acquaintance time $\mathcal{AC}(G)$ of a random graph $G \in G(n,p)$. It is shown that asymptotically almost surely $\mathcal{AC}(G) = O(\log n / p)$ for $G \in G(n,p)$, provided that $pn > (1+\epsilon) \log n$ for some $\epsilon > 0$ (slightly above the threshold for connectivity). Moreover, we show a matching lower bound for dense random graphs, which also implies that asymptotically almost surely $K_n$ cannot be covered with $o(\log n / p)$ copies of a random graph $G \in G(n,p)$, provided that $pn > n^{1/2+\epsilon}$ and $p < 1-\epsilon$ for some $\epsilon>0$. We conclude the paper with a small improvement on the general upper bound showing that for any $n$-vertex graph $G$, we have $\mathcal{AC}(G) = O(n^2/\log n )$.


random graphs, vertex-pursuit games, acquaintance time

Full Text: PDF