On a Sumset Problem for Integers

Shan-Shan Du, Hui-Qin Cao, Zhi-Wei Sun


Let $A$ be a finite set of integers. We show that if $k$ is a prime power or a product of two distinct primes then \[ |A+k\cdot A|\geq(k+1)|A|-\lceil k(k+2)/4\rceil \] provided $|A|\geq (k-1)^{2}k!$, where $A+k\cdot A=\{a+kb:\ a,b\in A\}$. We also establish the inequality $|A+4\cdot A|\geq5|A|-6 $ for $|A|\geq5$.


additive combinatorics, sumsets

Full Text: PDF