Counting Words with Laguerre Series

Jair Taylor

Abstract


We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of weighted sums of Laguerre polynomials with parameter $\alpha = -1$.  We describe how such a series can be computed by finding an appropriate ordinary generating function and applying a certain transformation. We use this technique to find the generating function for the number of $k$-ary words avoiding any vincular pattern that has only ones, as well as words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length.

Keywords


Laguerre polynomial, orthogonal polynomial, combinatorics on words, vincular pattern

Full Text: PDF