### On the Group of Alternating Colored Permutations

#### Abstract

The group of alternating colored permutations is the natural analogue of the classical alternating group, inside the wreath product $\mathbb{Z}_r \wr S_n$. We present a 'Coxeter-like' presentation for this group and compute the length function with respect to that presentation. Then, we present this group as a covering of $\mathbb{Z}_{\frac{r}{2}} \wr S_n$ and use this point of view to give another expression for the length function. We also use this covering to lift several known parameters of $\mathbb{Z}_{\frac{r}{2}} \wr S_n$ to the group of alternating colored permutations.

#### Keywords

colored permutations; alternating group; permutation statistics; canonical presentation