The Toggle Group, Homomesy, and the Razumov-Stroganov Correspondence

Jessica Striker

##article.abstract##


The Razumov-Stroganov correspondence, an important link between statistical physics and combinatorics proved in 2011 by L. Cantini and A. Sportiello, relates the ground state eigenvector of the $O(1)$ dense loop model on a semi-infinite cylinder to a refined enumeration of fully-packed loops, which are in bijection with alternating sign matrices. This paper reformulates a key component of this proof in terms of posets, the toggle group, and homomesy, and proves two new homomesy results on general posets which we hope will have broader implications.

##article.subject##


Posets; Alternating sign matrices; Loop models

Full Text: PDF