Words with many Palindrome Pair Factors

Adam Borchert, Narad Rampersad


Motivated by a conjecture of Frid, Puzynina, and Zamboni, we investigate infinite words with the property that for infinitely many $n$, every length-$n$ factor is a product of two palindromes. We show that every Sturmian word has this property, but this does not characterize the class of Sturmian words. We also show that the Thue—Morse word does not have this property. We investigate finite words with the maximal number of distinct palindrome pair factors and characterize the binary words that are not palindrome pairs but have the property that every proper factor is a palindrome pair.


Palindrome pairs; Periodic words; Sturmian words; Thue-Morse word

Full Text: PDF