Correlation Among Runners and Some Results on the Lonely Runner Conjecture

Guillem Perarnau, Oriol Serra

Abstract


The Lonely Runner Conjecture, posed independently by Wills and by Cusick, states that for any set of runners running along the unit circle with constant different speeds and starting at the same point, there is a time where all of them are far enough from the origin. We study the correlation among the time that runners spend close to the origin. By means of these correlations, we improve a result of Chen on the gap of loneliness. In the last part, we introduce dynamic interval graphs to deal with a weak version of the conjecture thus providing a new result related to the invisible runner theorem of Czerwinski and Grytczuk.

Keywords


Lonely Runner Conjecture

Full Text:

PDF