A Combinatorial Approach to the $q,t$-Symmetry Relation in Macdonald Polynomials

Maria Monks Gillespie

Abstract


Using the combinatorial formula for the transformed Macdonald polynomials of Haglund, Haiman, and Loehr, we investigate the combinatorics of the symmetry relation $\widetilde{H}_\mu(\mathbf{x};q,t)=\widetilde{H}_{\mu^\ast}(\mathbf{x};t,q)$. We provide a purely combinatorial proof of the relation in the case of Hall-Littlewood polynomials ($q=0$) when $\mu$ is a partition with at most three rows, and for the coefficients of the square-free monomials in $\mathbf{x}$ for all shapes $\mu$. We also provide a proof for the full relation in the case when $\mu$ is a hook shape, and for all shapes at the specialization $t=1$. Our work in the Hall-Littlewood case reveals a new recursive structure for the cocharge statistic on words.


Keywords


Macdonald polynomials, Hall-Littlewood polynomials, Young tableaux, Cocharge, Garsia-Procesi modules, Mahonian statistics

Full Text:

PDF