### Incidences with Curves in $\mathbb{R}^d$

#### Abstract

This bound generalizes the well-known planar incidence bound of Pach and Sharir to $\mathbb{R}^d$. It generalizes a recent result of Sharir and Solomon concerning point-line incidences in four dimensions (where d=4 and k=2), and partly generalizes a recent result of Guth (as well as the earlier bound of Guth and Katz) in three dimensions (Guth's three-dimensional bound has a better dependency on $q_2$). It also improves a recent d-dimensional general incidence bound by Fox, Pach, Sheffer, Suk, and Zahl, in the special case of incidences with algebraic curves. Our results are also related to recent works by Dvir and Gopi and by Hablicsek and Scherr concerning rich lines in high-dimensional spaces. Our bound is not known to be tight in most cases.