### Permanent Index of Matrices Associated with Graphs

#### Abstract

A total weighting of a graph $G$ is a mapping $f$ which assigns to each element $z \in V(G) \cup E(G)$ a real number $f(z)$ as its weight. The vertex sum of $v$ with respect to $f$ is $\phi_f(v)=\sum_{e \in E(v)}f(e)+f(v)$. A total weighting is proper if $\phi_f(u) \ne \phi_f(v)$ for any edge $uv$ of $G$. A $(k,k')$-list assignment is a mapping $L$ which assigns to each vertex $v$ a set $L(v)$ of $k$ permissible weights, and assigns to each edge $e$ a set $L(e)$ of $k'$ permissible weights. We say $G$ is $(k,k')$-choosable if for any $(k,k')$-list assignment $L$, there is a proper total weighting $f$ of $G$ with $f(z) \in L(z)$ for each $z \in V(G) \cup E(G)$. It was conjectured in [T. Wong and X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011), 198-212] that every graph is $(2,2)$-choosable and every graph with no isolated edge is $(1,3)$-choosable. A promising tool in the study of these conjectures is Combinatorial Nullstellensatz. This approach leads to conjectures on the permanent indices of matrices $A_G$ and $B_G$ associated to a graph $G$. In this paper, we establish a method that reduces the study of permanent of matrices associated to a graph $G$ to the study of permanent of matrices associated to induced subgraphs of $G$. Using this reduction method, we show that if $G$ is a subcubic graph, or a $2$-tree, or a Halin graph, or a grid, then $A_G$ has permanent index $1$. As a consequence, these graphs are $(2,2)$-choosable.