The Gonality Sequence of Complete Graphs

Filip Cools, Marta Panizzut


The gonality sequence $(\gamma_r)_{r\geq1}$ of a finite graph/metric graph/algebraic curve comprises the minimal degrees $\gamma_r$ of linear systems of rank $r$. For the complete graph $K_d$, we show that $\gamma_r =  kd - h$ if $r<g=\frac{(d-1)(d-2)}{2}$, where $k$ and $h$ are the uniquely determined integers such that $r = \frac{k(k+3)}{2} - h$ with $1\leq k\leq d-3$ and $0 \leq h \leq k $. This shows that the graph $K_d$ has the gonality sequence of a smooth plane curve of degree $d$. The same result holds for the corresponding metric graphs.


Gonality sequence; Complete graphs; Plane curves

Full Text: