A Note on Sparse Random Graphs and Cover Graphs

Tom Bohman, Alan Frieze, Miklós Ruszinkó, Lubos Thoma


It is shown in this note that with high probability it is enough to destroy all triangles in order to get a cover graph from a random graph $G_{n,p}$ with $p\le \kappa \log n/n$ for any constant $\kappa < 2/3$. On the other hand, this is not true for somewhat higher densities: If $p\ge \lambda (\log n)^3 / (n\log\log n)$ with $\lambda > 1/8$ then with high probability we need to delete more edges than one from every triangle. Our result has a natural algorithmic interpretation.

Full Text: