On the Crossing Number of $K_{m,n}$
Abstract
The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.