MacMahon-type Identities for Signed Even Permutations

  • Dan Bernstein


MacMahon's classic theorem states that the length and major index statistics are equidistributed on the symmetric group $S_n$. By defining natural analogues or generalizations of those statistics, similar equidistribution results have been obtained for the alternating group $A_n$ by Regev and Roichman, for the hyperoctahedral group $B_n$ by Adin, Brenti and Roichman, and for the group of even-signed permutations $D_n$ by Biagioli. We prove analogues of MacMahon's equidistribution theorem for the group of signed even permutations and for its subgroup of even-signed even permutations.

Article Number