# Color Neighborhood Union Conditions for Long Heterochromatic Paths in Edge-Colored Graphs

### Abstract

Let $G$ be an edge-colored graph. A heterochromatic (rainbow, or multicolored) path of $G$ is such a path in which no two edges have the same color. Let $CN(v)$ denote the color neighborhood of a vertex $v$ of $G$. In a previous paper, we showed that if $|CN(u)\cup CN(v)|\geq s$ (color neighborhood union condition) for every pair of vertices $u$ and $v$ of $G$, then $G$ has a heterochromatic path of length at least $\lfloor{2s+4\over5}\rfloor$. In the present paper, we prove that $G$ has a heterochromatic path of length at least $\lceil{s+1\over2}\rceil$, and give examples to show that the lower bound is best possible in some sense.